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The hypothalamic-pituitary-adrenal (HPA) axis is critical for life. It has a circadian rhythm that

anticipates the metabolic, immunoregulatory and cognitive needs of the active portion of the

day, and retains an ability to react rapidly to perceived stressful stimuli. The circadian variation

in glucocorticoids is very ‘noisy’ because it is made up from an underlying approximately hourly

ultradian rhythm of glucocorticoid pulses, which increase in amplitude at the peak of circadian

secretion. We have shown that these pulses emerge as a consequence of the feedforward–feed-

back relationship between the actions of corticotrophin hormone (ACTH) on the adrenal cortex

and of endogenous glucocorticoids on pituitary corticotrophs. The adrenal gland itself has

adapted to respond preferentially to a digital signal of ACTH and has its own feedforward–feed-

back system that effectively amplifies the pulsatile characteristics of the incoming signal. Gluco-

corticoid receptor signalling in the body is also adapted to respond in a tissue-specific manner

to oscillating signals of glucocorticoids, and gene transcriptional and behavioural responses

depend on the pattern (i.e. constant or pulsatile) of glucocorticoid presentation. During major

stressful activation of the HPA, there is a marked remodelling of the pituitary–adrenal interac-

tion. The link between ACTH and glucocorticoid pulses is maintained, although there is a massive

increase in the adrenal responsiveness to the ACTH signals.
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Introduction

It is 65 years since Hans Selye (1) demonstrated the critical role of

the hypothalamic-pituitary-adrenal (HPA) axis for life and the pow-

erful effects of its response to stress. Subsequently, glucocorticoids,

which are the primary output of this axis, were shown to have a

remarkably wide spectrum of activities in multiple mammalian tis-

sues. They have a pivotal role in the maintenance of internal

homeostatic processes (2) and their regulatory effects show

temporal, tissue and cell specificity. Furthermore, the response to

glucocorticoids will vary depending on the prior state of the body,

which, in terms of central nervous system (CNS) effects, will include

whether they are released on a basal or stressed background and

whether conditions are pathological or normal. Glucocorticoids

modulate cytotoxic (neuronal/glial death, oxidative stress) and

chemotactic phenomena characteristic of neuroinflammatory

processes (3), and alter neuronal metabolic homeostasis (glucose

utilisation, ATP production) (4) and viability (5). Moreover, at a

supracellular circuit level, glucocorticoids interact with the major

neurotransmitters and many secondary neuropeptidergic systems,

effectively influencing different aspects of cognitive phenotypes,

such as learning ability, performance, emotional perception and

overall mood (6). The output of these systems depends not only on

the physiological or pathological status of the animal, but also on

the timing of endogenous glucocorticoid pulses (7). During stressful

conditions, glucocorticoids play a key role in orchestrating the

short-term autonomic and behavioural defences against the stres-

sor, as well as the long-term physiological responses that provide

adaptation for future confrontation to similar insults (8). In this

context, glucocorticoids regulate the effectiveness of many CNS

outputs modulating immunological, metabolic and cognitive

processes (9).

The principal endogenous glucocorticoids are cortisol (mammals

including man) and corticosterone (the majority of rodents and

birds), which we shall collectively refer to as CORT. CORT is charac-

terised by its circadian pattern of basal secretion from the adrenal
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glands, with the highest levels being seen just prior to the start of

the active cycle (i.e. just prior to awakening), followed by a gradual

decline, reaching nadir levels during the inactive phase. This daily

rhythm is under central regulation by corticotrophin-releasing hor-

mone (CRH) and arginine vasopressin (AVP) from the paraventricu-

lar nucleus (PVN) of the hypothalamus. The PVN receives a

powerful input from the suprachiasmatic nucleus (SCN) (10,11),

predominately via projections from the subparaventricular zone. The

SCN is the major co-ordinator of the whole body’s circadian activi-

ties and regulates the CRH and AVP secretion from the PVN by pro-

viding an inhibitory effect during the inactive phase of the cycle in

addition to the feedback inhibition from circulating CORT (12,13).

Additionally, the PVN receives internal and external inputs from the

limbic system and brain stem; these inputs are responsible for

mounting appropriate stress responsiveness to cognitive, emotional

and physiological stressors (14,15).

After synthesis, CRH and AVP are released into the hypophyseal

portal system via axonal projections to the median eminence. Both

CRH and AVP are transported via the vasculature to the pituitary

where they activate pituitary corticotrophs. Here, they stimulate the

release of corticotrophin (ACTH), which in turn is released into the

general systemic circulation and stimulates the adrenal cortex to

produce CORT. After de novo synthesis and release into the sys-

temic circulation, CORT is able to act at target tissues to exert met-

abolic, cardiovascular, immunological and cognitive responses in

response to the relevant inputs (14). At physiological levels, CORT

auto-restricts its further production by forming negative-feedback

loops at the levels of pituitary, the hypothalamic PVN and hippo-

campus to inhibit further ACTH and CORT release (14,16).

Splanchnic nerve innervation of the adrenal glands also contrib-

utes to the circadian rhythm. The adrenal glands receive autonomic

(sympathetic) innervation that lies under the influence of neuronal

projections of the autonomic portion of the PVN and, consequently,

the SCN to the spinal cord (17). The splanchnic nerve alters adrenal

sensitivity, transection increases CORT secretion in the inactive

phase but has no effect in the active phase, suggesting that the

sympathetic nervous system exerts an inhibitory effect on CORT

during the circadian nadir (18). The splanchnic nerve also mediates

a light-induced mechanism that can alter adrenal clock gene func-

tion and CORT synthesis. This phenomena acts during both the sub-

jective day and night, with the irradiance threshold being greater

during the subjective day. This suggests that photic signals may

reach the adrenal gland via a SCN independent mechanism and be

involved in the temporal physiology of CORTs (19,20). Additionally,

the adrenal gland itself can exert internal homeostatic control via

an autonomous clock that influences ACTH sensitivity and adrenal

steroidogenesis (21,22).

The diurnal pattern of peak and trough CORT secretion is consid-

erably more pronounced than the circadian pattern of ACTH. Stud-

ies examining 24-h cortisol and ACTH profiles of healthy individuals

reveal a four- to six-fold difference between the circadian peak and

trough amplitudes of CORT, whereas the corresponding ACTH dif-

ference is approximately two- to three-fold. The characteristics of

these 24-h profiles alter with age (trough CORT and ACTH levels

are higher in elderly people) (23) or in response to pathological

conditions, including major depression, Alzheimer’s disease and

Parkinson’s disease (23–25).

The circadian variation of cortisol also interacts with several

other important biological oscillations, such as activity, body tem-

perature (26) and the transcriptional activity of many glucocorticoid

responsive genes. These genes include tryptophan hydroxylase in

the raphe nucleus of the brainstem, which has a circadian rhyth-

micity that can be abolished by exogenous steroids (27) and is a

gene that is implicated in regulation of affect, activity and temper-

ature.

The classic transcriptional (genomic) effects of CORT are relatively

slow and are mediated by activation of its cognate intracellular

nuclear receptors, the glucocorticoid receptor (GR) and the mineral-

ocorticoid receptor (MR) (2,28). MRs have approximately five- to

ten-fold higher affinity for CORT compared to GRs (29). Neverthe-

less, glucocorticoids can also exert rapid, nongenomic effects by

acting at the level of cellular membranes (30,31); these effects may

include the classical nuclear receptors (32), as well as membrane

bound variants (33). The latter have a lower affinity for glucocortic-

oids than the classical nuclear receptors (34). As a result, although

nuclear MRs are almost constantly occupied even at low concentra-

tions, nuclear GR and membrane associated MRs and GRs are

effectively only occupied and activated whenever CORT levels rise

sufficiently, with prime examples being towards the circadian peak

or under stressful conditions that up-regulate HPA activity (2).

The distribution of these receptors is tissue-specific, providing an

additional mechanism for regulatory control, with GRs being pres-

ent throughout the brain and periphery and MRs having a more

limited localisation; they are mainly present in cardiovascular tis-

sues, liver and kidneys, as well as in most corticolimbic regions of

the brain, including those involved in HPA axis regulation (2). Hip-

pocampus, basal ganglia, lateral septum and medial amygdala neu-

rones present a high MR : GR ratio (35) and, because MR remain

occupied even during nadir levels of CORT, these remain under con-

stant, nuclear MR-dependent, genomic regulation of glucocortic-

oids, which involve stabilising, homeostatic events (9). When CORT

levels rise, these brain areas become additionally susceptible to the

membrane MR-dependent, nongenomic, rapid effects of glucocor-

ticoids (36), which prepare the behavioural response of the individ-

ual to a stressor by enhancing processes such as synaptic plasticity

(at a cellular level) (37) and, collectively, predictability, decision-

making, selective attention and risk assessment (at a cognitive level)

(38). Additionally, under high CORT levels, brain regions such as

hypothalamic PVN, lateral amygdala, cerebellum and dorsomedial

prefrontal cortex (PFC) with a low MR : GR ratio (35) become

susceptible to the genomic (late) and nongenomic (rapid) GR-

dependent effects, which, on the one hand, counteract membrane

MR-coordinated actions by promoting the attenuation or even ter-

mination of any initiated stress response and, on the other hand,

enhance the long-lasting, neurobehavioural adaptive mechanisms,

such as strategic planning, memory storage and consolidation (38).

Other brain areas, such as lateral geniculate, orbitofrontal and dor-

solateral PFC, whose MR : GR ratio is approximately 1 (35), may

also contribute to these processes. Glial populations tend to express

both kinds of GRs (39), and thus may differentially respond to
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glucocorticoid-related effects based on their concentration and the

temporal pattern of exposure.

The physiology underlying nongenomic, rapid glucocorticoid

effects has been linked to various second messenger cellular sys-

tems under different conditions. For example, the binding of phar-

macological doses of CORT to GR stimulated phosphatidylinositol

3-kinase and protein kinase Akt, leading to acute, cardioprotective

endothelial NO synthase activation and nitric oxide-dependent va-

sorelaxation in the heart of rat models of myocardial infarction

(40). At the level of the prefrontal cortex, increased CORT impairs

working memory and enhances memory consolidation via mem-

brane GR activation, which promotes noradrenergic-dependent acti-

vation of adenylate cyclase, leading to increased intracellular cAMP

concentrations and cAMP-dependent protein kinase A activation

(41). On the other hand, nongenomic MR effects include increasing

intracellular calcium concentrations and activating protein kinases

(A, C, mitogen-activated) and Rac1 (a small G protein) (42).

Ultradian rhythm

The circadian variation seen in CORT’s natural rhythm is made up

of underlying discrete pulses of HPA activity, a rapid and dynamic

ultradian rhythm (Fig. 1) (43). This was previously interpreted as

noise in the system, primarily because it was notoriously difficult to

study basal unstressed conditions. As a result of developments in

automated blood sampling (44,45) and mathematical modelling

techniques, which allow accurate interpretation of secretory

dynamics, such as deconvolution analysis (43), it is possible to

study basal HPA activity in more depth. This pulsatile pattern of

secretion is produced at an approximately frequency of 60–90 min

(43,46,47) with an increase in pulse amplitude and frequency corre-

sponding to the circadian peak of secretion (43). This has been doc-

umented in all mammalian species studied (45,48,49), including

humans (43). The actual pattern of secretion is highly individual

and marked variations are seen according to genetic background,

sex hormones, neonatal epigenetic programming effects, environ-

mental stressors and changes associated with age (50–53).

The origin of the ultradian rhythm has been subject to many

hypotheses, although it has always been assumed to result from

some elusive hypothalamic pulse generator. Recently, however, it

has become clear that, unlike the circadian rhythm, ultradian pulsa-

tility is not under central regulation from the SCN because, as in

SCN-lesioned rodents, the ultradian rhythm persists despite a loss

in circadian rhythmicity (54). The central hypothalamic ‘pulse gener-

ator’ hypothesis (55) envisaged that CRH has pulsatile characteris-

tics (55–57) and that these pulses of CRH must drive ACTH (58)

and glucocorticoid pulsatility resulting in the ultradian rhythm.

However, there are a few caveats; first, there is a mismatch in

pulse frequency. In rodents, CRH pulse frequency is significantly

higher at three pulses per hour (55) in comparison to hourly ACTH

(59) and corticosterone pulses (45). Additionally, ACTH and gluco-

corticoid pulsatility show autonomy from the hypothalamus. In

sheep, pituitary-adrenal pulsatility continues after hypothalamic

disconnection from the pituitary gland (60), suggesting a subhypo-

thalamic origin.

The breakthrough in our understanding of the origin of ultradian

pulsatility came from mathematical modelling (61), which created

predictions that were later supported by in vivo experimental work.

This modelling was based on the previously accepted understanding

that (i) there is a delay in CORT secretion because of the require-

ment for its de novo synthesis and (ii) this CORT can induce a

rapid, nongenomic negative-feedback at the level of the pituitary

corticotrophs to inhibit CRH induced ACTH secretion (62,63). This

creates a feedforward–feedback system with built-in delays that,

for simple mathematical reasons, has to oscillate. We have used

mathematical modelling to describe how the constant CRH drive

will result in activation of the subhypothalamic-pituitary-adrenal

oscillator with oscillating levels of both ACTH and CORT at a

physiological frequency. However, if the magnitude of CRH drive

decreases significantly, as occurs at night in man and in the

morning in the rodent, oscillatory activity will cease, whereas, in

contrast, under very high CRH levels, perhaps after an acute stres-

sor, oscillatory activity will be damped. A further prediction from

our mathematical models is that a stressor can induce phase shifts

Corticolimbic areas

Hypothalamus (PVN)

Anterior pituitary

Adrenal cortex

CORT

ACUTE STRESS

1 2

3

CRH

ACTH

Fig. 1. The principal regulatory mechanisms that underlie hypothalamic-

pituitary-adrenal (HPA) activity. Corticotrophin-releasing hormone (CRH)

released from the paraventricular nucleus (PVN) of the hypothalamus

reaches the anterior pituitary through the hypophyseal portal circulation,

and stimulates corticotrophs to release corticotrophin (ACTH), which in turn

reaches the adrenal gland through the systemic circulation and promotes

the cortical synthesis and secretion of glucocorticoids (CORT). CORT, in turn,

exerts an auto-inhibitory effect on their production by acting on at least

three different levels: anterior pituitary, hypothalamus and hippocampus

(displayed as part of corticolimbic system). CORT also affects extensive corti-

colimbic regions of the brain, which in turn modulate, primarily via indirect

projections, the mode of HPA axis activity. (1) CORT pulsatility emerges as a

consequence of the feedforward–feedback with a built-in delays relationship

between the actions of ACTH on the adrenal cortex and endogenous CORT

on the pituitary corticotrophs. (2) Physiological CRH drive creates the vari-

ability in the amplitude and duration of each CORT pulse throughout the

day, which enables the gradual increase of CORT levels during the most

active parts of the day (darker parts of the blue arrow) and their gradual fall

during the less active parts of the day (lighter parts of the blue arrow). (3)

An acute stressor, leading to a substantial raise in the hypothalamic CRH

secretion, results in increased CORT levels characterised by a dampened

oscillatory profile, and eventually resets the phase of the ultradian rhythm.

Green arrows, stimulatory effect; red arrows, inhibitory effect; grey arrows,

mixed effect.
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in the ultradian pattern, in effect acting as a resetting mechanism

for the phase of the ultradian rhythm, and that the ability to

respond to perturbations would be much greater under oscillatory

rather than equilibrium conditions (64).

This model of a subhypothalamic origin of pituitary-adrenal

pulsatility was tested in vivo by examining endogenous ACTH and

corticosterone responses in freely running male Sprague–Dawley rats

under different rates of constant CRH infusions at the circadian

trough when endogenous CRH drive was very low and there was

minimal secretion of endogenous ACTH and corticosterone. As pre-

dicted by the mathematical model (61), constant CRH infusion

induced an ultradian pattern of ACTH and corticosterone secretion

with consistent pulse frequency and amplitudes for the duration of

the infusion and with ACTH oscillations preceding CORT ones. This

pulsatile response was dose-dependent and, when high levels of CRH

were infused, the pattern was disrupted with a large pulse of ACTH

and CORT followed by a dampening of CORT oscillations. In addition,

in comparison with control rodents at the circadian peak when

endogenous CRH activity is maximal, frequency analysis revealed no

significant difference between these endogenous oscillations and the

oscillations induced by constant CRH infusion. These data confirm

that pulses emerge as a consequence of the feedforward–feedback

relationship between the actions of ACTH on the adrenal cortex and

endogenous glucocorticoids on the pituitary corticotrophs (61,65).

Whether the pulsatility of hypothalamic CRH secretion could impact

on this subhypothalamic system remains unknown.

The adrenal gland itself preferentially responds to an oscillatory

ACTH signal; in methylprednisolone (a synthetic glucocorticoid)

suppressed rodents, pulsatile ACTH infusions result in pulsatile

corticosterone secretion. When a constant infusion of ACTH is

given at the same total dose, there is no adrenal response at all

(66). We have now demonstrated that the adrenal gland also has

its own internal feedforward–feedback system that is able to

effectively amplify the response to rapid changes of ACTH inher-

ent in the pulsatile characteristics of the incoming signal. In the

rat, a pulse of ACTH induces a pulse of steroidogenic transcription

(67,68); specifically, steroidogenic acute regulatory protein (StAR),

a key steroidogenic gene that is a rate-limiting step in the pro-

duction of steroid hormones promoting intra-mitochondrial choles-

terol translocation for subsequent steroidogenesis and increased

CORT (69), shows a rapid rise in heteronuclear RNA (hnRNA) levels

within 15 min (68), and returns to basal levels by 30 min. Similar

responses were seen in protein phosphorylation for CREB (68),

involved in the regulation of StAR (70), and hnRNA levels in mel-

anocortin 2 receptor accessory protein (68), involved in the level

and activity of the melanocortin receptor and thus the cells’

responsiveness to ACTH (71) This suggests that the intra-adrenal

dynamics of response to each pulse of ACTH effectively sensitises

its responsiveness in the short term, an effect that appears to be

lost with constant infusion.

Glucocorticoid-induced gene transcription pulsatility

CORT in the circulation is bound predominantly to corticosteroid-

binding globulin (CBG) and, to a lesser extent, to albumin. It is only

the free fraction of CORT that is active, and this comprises only

approximately 5% of total CORT under basal (nonstressed) trough

levels (72). The biological relevance of pulsatile CORT secretion

would only be significant, therefore, if it also resulted in pulsatile

concentrations of free hormone. Because CBG is saturated at rela-

tively low CORT concentrations, including the basal (nonstressed)

levels found at the circadian peak of CORT secretion (72) and

because, similar to CORT, CBG exhibits diurnal variation (73), result-

ing in a higher proportion of free CORT during the circadian peak,

CBG actually accentuates free CORTs diurnal profile (74,75). Any

pulse above the saturation threshold will result in a disproportion-

ately high pulse of free and thus active CORT. To establish whether

or not this was indeed the case, we performed in vivo microdialysis

studies that confirmed synchronous total blood and hippocampal

free CORT pulses (76,77). The next question is whether these pulses

of tissue CORT are paralleled by pulses of glucocorticoid receptor

binding and gene transcription. This has now been confirmed both

in vitro and in vivo, with evidence that different patterns of gluco-

corticoid presentation have differential effects on gene regulation,

and that these effects are highly specific for the endogenous gluco-

corticoids (CORT) only. Indeed, oscillations in CORT induce a phe-

nomenon known as ‘gene pulsing’ (Fig. 2) (78,79); as CORT levels

rise during an endogenous pulse, CORT binds and activates GR,

which is translocated into the nucleus, dimerises and interacts with

glucocorticoid response elements (GRE) on deoxyribonucleic acid

(DNA) to initiate transcription. There is rapid cycling of GR and

transcription factors on and off chromatin, and, as CORT levels fall,

GR is dissociated from its substrate and released into the nucleo-

plasm waiting for the next CORT pulse when it can be reactivated,

rapidly responding to the next pulse. Under constant presentation

of CORT (as seen in glucocorticoid-based therapeutics), the mode of

genomic responses changes, with the transcription levels of many

glucocorticoid responsive genes constantly rising, exhibiting a very

different pattern of gene transcription (78). In addition to the clas-

sical GRE-dependent interactions, GR can interact with a large

cohort of other transcription factors via DNA-binding mechanisms

influencing DNA accessibility, chromatin remodelling and transcrip-

tional regulation (80), as well as DNA independent binding mecha-

nisms via protein–protein interactions (81,82). GR transcriptional

control is therefore dynamic, diverse and reliant on its co-operative

partners. This helps to explain the wide-ranging and variable GR

cell and tissue specific effects that are observed (83).

In a similar manner, different patterns of glucocorticoid presen-

tation exert different neuronal and behavioural responses. Indeed,

the c-fos mRNA response to the neural activation by noise stress is

markedly altered in the amygdala, hippocampus and hypothalamic

PVN depending not only on the pattern of presentation (constant

versus pulsatile), but also on the phase within each pulse. During

the rising phase of the pulse, an exaggerated noise stress response

was observed in comparison to the falling phase (84). Quite

remarkably, this alternation of c-fos mRNA levels was in parallel to

differences in the behavioural responses observed in response to

this stressor. The same pattern of pulse phase dependency has been

observed in aggressive and novelty behaviour, as well as rapid HPA

negative-feedback (45,62,84,85).
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The rapidity of these neurochemical and behavioural responses

to pulses of CORT implies the involvement of nongenomic biological

events in addition to the more classical phasic GR and MR co-ordi-

nated effects. There is growing evidence that this is the case and

we shall outline the evidence on the importance of pulsatility for

cognitive responses further below.

Glucocorticoid ultradian rhythmicity and stress
activation

During major stress-mediated activation of the HPA axis, there is a

marked increase in CORT levels, initially accompanied by an eleva-

tion of ACTH levels, which then return to normal or subnormal lev-

els despite CORT levels remaining elevated (86,87). Many

explanations have been suggested for this phenomenon, including

alternative mechanisms for CORT production mediated by auto-

nomic projections (88,89) and pro-inflammatory cytokines (90,91).

Another possibility is that the initial high levels of ACTH lead to

altered adrenal sensitivity to subsequent ACTH stimulation. Our pre-

liminary unpublished data suggest that a marked remodelling of

the pituitary–adrenal interaction takes place during a major stress-

ful activation. The synchrony between ACTH and CORT pulses is

maintained, although this is combined with a massive increase in

adrenal responsiveness to the ACTH signals (92).

Impact of rapidly changing levels of glucocorticoids on
cognition

Glucocorticoids are key regulators of learning and memory (emo-

tional, social and stress-related) for which the neuroanatomical

bases lie in the corticolimbic areas and primarily the hippocampus.

Within these systems, glucocorticoids interact at multiple levels,

resulting in structural and frequently opposing or bidirectional

functional consequences (93). At the synaptic level, glucocorticoids

modulate the (presynaptic) activity and postsynaptic responses to

glutamatergic and GABAergic neurotransmissions, which are cru-

cially involved in the molecular phenomena of long-term potentia-

tion (LTP) and long-term depression underlying learning. At a

cellular level, glucocorticoids influence the electrical properties of

neuronal activity (94) and the turnover of dendritic spines, both

important features for effective trans-neuronal communication (95).

Moreover, glucocorticoids interact with the noradrenergic and cho-

linergic circuits that innervate the hippocampus and amygdala, and

conditionally affect memory formation, as well as with secondary

neuropeptidergic systems including the endocannabinoids (96), also

important in regulating these behavioural adaptations. The variable

nature of these effects is determined by the phase of the glucocor-

ticoid ultradian pulse, the individual’s systemic glucocorticoid con-

centrations, the timing of the stress in relationship to learning/

cognition and the type of learning episode (97,98). Acute increases

in glucocorticoids just prior to/during/immediately post learning can

promote processes such as memory formation, consolidation and

recall of emotionally arousing stimuli (98–100). However, if the

stress is temporally well before the learning and consequently

genomic glucocorticoid actions are present, this can impede mem-

ory processes (101). In addition, chronically raised glucocorticoid

concentrations can impair spatial and retrieval of memory (98,102).

Acute stress/high levels of glucocorticoids increase glutamate

release primarily from neuronal (and secondary from glial) popula-

tions in hippocampus and PFC by increasing the number or the

probability of vesicular exocytosis at the presynaptic level via a

rapid nongenomic MR effect (103). This is followed by increased

translocation of NMDA and, independently, AMPA receptors from

intracellular pools to the postsynaptic plasma membrane (104).

Adrenal cortex 

CORT 

CORT 

30 min
15 min

0
0.5
1
1.5

4.5 Fold induction
3.5

2.5

4

3

2

Systemic circulation

BRAIN

(hippocampus)

GR binding to DNA sites
Gene transcription (hnRNA)

mRNA accumulation

CORT pulse

Fig. 2. Glucocorticoids (CORT) are secreted in a pulsatile manner from the adrenal cortex to systemic circulation, where they predominantly interact with cor-

ticosteroid-binding globulin and, to a lesser extent, with albumin. Only the free fraction of CORT (approximately 5%) is biologically active, and this fraction

oscillates synchronously between the blood and the brain (blue curves). In the latter, and particularly within the hippocampus, free CORT pulsatility induces

‘gene pulsing’; 15 min after a CORT pulse, GR maximises its translocation to the cellular nucleus and its binding to corresponding DNA sites (yellow curve)

and, approximately 15 min later, CORT-sensitive genes such as period 1 reach a peak in their transcriptional levels [heteronuclear RNA (hnRNA) levels]. Thirty

minutes later, corresponding mRNA accumulation also reaches its maximum. GR, glucocorticoid receptor.
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Moreover, acute stress enhances a NMDA receptor-independent

form of LTP by mobilising calcium-permeable AMPA receptors in a

glucocorticoid-dependent manner (105). The duration of this MR-

dependent up-regulation of glutaminergic neurotransmission is

brain-region specific, being short-lasting at the hippocampus and

long-lasting in the basolateral amygdala, where subsequent acute

stressful insults lead to a GR-dependent down-regulation of glut-

aminergic stimulation (106). During chronic stress, glutaminergic

neurotransmission remains constant in the hippocampus, whereas

it gradually decreases in the PFC. There is also a PFC-specific

down-regulation of NMDA and AMPA receptors as a result of dis-

rupted receptor trafficking and/or altered degradation or synthesis.

Glucocorticoids also affect glutamate clearance from the glial cells

through glutamate transporters primarily expressed in these cellular

populations; acute stress increases, whereas chronic stress

decreases, glutamate uptake (clearance) and metabolism in the

frontal cortex and hippocampus (107). Concerning GABAergic neu-

rotransmission within corticolimbic areas, glucocorticoids enhance

neurotransmission under low and high concentrations by increasing

the binding affinity of GABAA receptors, whereas basal levels reduce

neurotransmission (108).

In relation to the wide spectrum of glucocorticoid actions, and

under different physiological or pathological circumstances, pulsatil-

ity offers a means of temporally dissociating or combining the

MR- from the GR-dependent actions (Fig. 3). This temporal dissoci-

ation of the different glucocorticoid-responsive receptors provides

the potential for pulsatility to increase the diversity of glucocorti-

coid-coordinated responses, which will depend on the fluctuating

concentrations of CORT and the duration of secretory pulse derived

high levels within the brain, which, in turn, will change depending

on the physiological or pathological state. These glucocorticoid

responses are temporally dependent and frequently opposing, lead-

ing to opposing biological phenomena; glucocorticoids inhibit pro-

inflammatory cytokines under basal conditions or acute stress (less

than 1 h prior to stress), whereas acute glucocorticoid exposure

greater than 1 h prior to stress along with chronic stress will

enhance neuroinflammatory responses (5,109,110). Other examples

include the brain region-, metabolic state- and developmental

stage-dependent neuroprotective effects of physiological levels of

glucocorticoids versus their neurotoxic effects under increased con-

centrations (5) or the brain region-specific enhancement versus

attenuation of glutaminergic neurotransmission under acute versus

chronic stress conditions, respectively (105). On the other hand, by

periodically synchronising MR and GR activations, pulsatility

achieves a further extension in the diversity of glucocorticoid-

related regulatory capabilities within the CNS because nuclear MRs

and GRs can form heterodimeric complexes with DNA-binding and

transactivation properties different from those of the respective ho-

modimers (111).

Returning to the effects of glucocorticoids on synaptic activity

and neurotransmission, a recent elegant study (112) provides fasci-

nating evidence for the importance of the pulsatile exposure of

glutaminergic synapses to CORT in enhancing their plastic proper-

ties. The study investigated the differential impact of one versus

two CORT pulses (with a 1-h interpulse interval, mimicking the nor-

mal ultradian frequency pattern) on two aspects of the physiology

of glutaminergic neurotransmission, namely the synaptic mobilisa-

tion of AMPA receptors and LTP induction in cultures of hippocam-

pal neurones and dorsal hippocampal slices from rodent brains.

Interestingly, one versus two pulses of CORT resulted in opposing

phenomena: a single CORT pulse significantly increased the surface

diffusion and synaptic accumulation of AMPA receptors leading to

increased amplitude of miniature excitatory postsynaptic currents,

whereas the second pulse eliminated these effects. Moreover,

although a single CORT pulse inhibited LTP induction in a genomic

MR-dependent genomic effects

GR-dependent genomic effects

Rapid nongenomic effects

Intermediate nongenomic effects

(A)

(B)

(C)

II.

I.

III.

Fig. 3. Theoretical approach of the varying interactions among genomic

and nongenomic glucocorticoid effects under differential patterns of

exposure; (I) glucocorticoid pulses (blue curve) characterised by physiological

interpulse intervals (mean duration of approximately 90 min) lead to a

short-lasting association between their rapid/intermediate and delayed

effects (A), whereas (II) glucocorticoid pulses (blue curve) characterised by

prolonged interpulse intervals (over 4–5 h) lead to a complete dissociation

between their rapid/intermediate and delayed effects (B). (III) Finally, acute

stress conditions (blue curve = prolonged high glucocorticoid levels, dimin-

ished or no pulsatility) could result in a prolonged interplay between geno-

mic and nongenomic effects (C). Different patterns of glucocorticoid

exposure have been related to changing phenotypes in various neuronal

functions, such as long-term potentiation (LTP) induction. Black lines, period

of delayed/genomic mineralocorticoid receptor (MR)-dependent effects; red

lines, period of delayed/genomic GR-dependent effects; dark green lines,

rapid, nongenomic effects; light green lines, intermediate, nongenomic

effects. GR, glucocorticoid receptor.
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manner, the second pulse restored this electrophysiological synaptic

feature by acting at a GR-dependent nongenomic level.

The combined assessment of all reported data concerning gluco-

corticoid–glutaminergic interactions in hippocampus (103–107),

with an emphasis on this most recent study of Sarabdjitsingh et al.

(112), provides a remarkable example of the temporal dissociation

as well as combination between rapid and slow (MR- or GR-depen-

dent) actions achieved by pulsatility, which offers an explanation

for the vastly diverse actions of glucocorticoids. The experimentally-

induced transition from no CORT influence to an increased but

time-limited (20 min) CORT stimulation, mimicking an ultradian

pulse, comprises an example of temporally dissociating the various

functions of glucocorticoid-sensitive receptors; under these condi-

tions, CORT promotes (i) direct, nongenomic (and thus rapid)

effects, such as the increase of glutamate release (MR-dependent

action), facilitation of NMDA receptor activation, and enhancement

of GluA1-AMPA receptor activation and surface expression (GR-

dependent action); (ii) indirect nongenomic (and thus subacute)

phenomena, such as the normalising endocannabinoid-induced

inhibition of glutamate release (MR-dependent action); and (iii)

direct, genomic (and thus delayed) effects, such as the suppression

of LTP induction (GR-dependent action) and the enhancement of

the synaptic plasticity-related mitogen-activated protein kinase-

ERG1 pathway (GR-dependent action). On top of this, the applica-

tion of a second pulse of CORT after the initial one provides a

mechanism for temporally associating glucocorticoid-sensitive

receptor functions. The duration of the temporal association

between CORT and its receptors is also of critical importance, as

highlighted by the work of Whitehead et al. (105). In their study,

120 min of exposure of hippocampal slices to CORT (mimicking an

acute stressor) resulted in an enhanced LTP induction as opposed

to the restoration of LTP induction to control levels after the sec-

ond 20-min physiological CORT pulse employed by Sarabdjitsingh

et al. (112). How these temporal effects may contribute to the

increased morbidity and mortality of patients on oral nonpulsatile

CORT replacement clearly needs to be addressed.

Disrupted glucocorticoid pulsatility and glucocorticoid
resistance

The duration of tissue exposure to high CORT levels has clear bio-

logical consequences and oscillating levels of CORT allow a state

of constant dynamic equilibration (113), which prevents either

down-regulation of signalling processes or the abnormal pro-

longed activation of glucocorticoid responsive genes. The extent to

which this contributes to states characterised by a sustained dys-

regulation of the physiological ultradian pattern, such as chronic

stress, various neuropsychiatric disorders or chronic treatment

with high doses of glucocorticoids (114), needs further investiga-

tion, especially those aspects associated with brain glucocorticoid

resistance (115) followed by GR down-regulation and reduced

GR-dependent regulatory influences (116). For example, rapid GR-

dependent negative-feedback regulation of ACTH release under

basal conditions or acute stress (44) may be lost in major depres-

sion, a condition accompanied by an overactive HPA axis (117).

Other examples involve the reduction of immune system’s sensi-

tivity to the immunosuppressive effects of glucocorticoids during

chronic psychological stress (118) or the selective down-regulation

of hippocampal GRs under sustained stress in rodents and nonhu-

man primates (119) or after the experimental induction of viral

encephalitis in rats (120). Additionally, glucocorticoid resistance

has been suggested to contribute to neuropathological mecha-

nisms related to Alzheimer’s disease [another condition accompa-

nied by an up-regulated ultradian pattern (25)] such as cortical

disruption of axonal transport (121).

Conclusions

Pulsatility is a crucial feature of glucocorticoid secretion and its

regulatory effects. Only by gaining a basic understanding of its

importance in normal physiology can we hope to clarify the impor-

tance of its disruption in pathological conditions. Hopefully, this

will also improve our understanding and management of stress-

related conditions (such as schizophrenia, anxiety and mood disor-

ders, neurodegenerative disorders, epileptic syndromes, metabolic

and vascular conditions) (122). The aim should be to develop more

personalised, multivariate therapeutic approaches and prognostic

indices in disease states associated with a dysregulated HPA axis,

as well as improve the efficiency and attenuate any side effects of

glucocorticoid-based treatments (123).
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