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covariate missingness in propensity score
estimation with a binary exposure
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Abstract

Background: Causal effect estimation with observational data is subject to bias due to confounding, which is often
controlled for using propensity scores. One unresolved issue in propensity score estimation is how to handle
missing values in covariates.

Method: Several approaches have been proposed for handling covariate missingness, including multiple
imputation (MI), multiple imputation with missingness pattern (MIMP), and treatment mean imputation. However,
there are other potentially useful approaches that have not been evaluated, including single imputation (SI) +
prediction error (PE), SI + PE + parameter uncertainty (PU), and Generalized Boosted Modeling (GBM), which is a
nonparametric approach for estimating propensity scores in which missing values are automatically handled in the
estimation using a surrogate split method. To evaluate the performance of these approaches, a simulation study
was conducted.

Results: Results suggested that SI + PE, SI + PE + PU, MI, and MIMP perform almost equally well and better than
treatment mean imputation and GBM in terms of bias; however, MI and MIMP account for the additional
uncertainty of imputing the missingness.

Conclusions: Applying GBM to the incomplete data and relying on the surrogate split approach resulted in
substantial bias. Imputation prior to implementing GBM is recommended.

Keywords: Propensity scores, Missing data, Causal inference, Generalized boosted models

Background
Observational studies are common in epidemiology and
medical studies when a randomized trial is not ethical or
feasible. A major challenge facing observational studies
is that the treatment or exposure is not randomized and
the estimate of the effect of the exposure on an outcome
may be due to confounders, variables associated with
both the exposure and outcome. Propensity scores, the
probability of receiving the observed exposure level

given the covariates, are increasingly used to control for
confounding. Propensity scores summarize many con-
founders into a single number [1] that can be used to re-
duce bias in the estimate of the effect of the exposure on
an outcome. Using propensity scores to control for con-
founding assumes no unmeasured confounding and that
all potential confounders are included in the propensity
score model [1]. Thus, it is common to include many
confounders in the propensity score model to satisfy the
no unmeasured confounding assumption. However,
there is often missingness in the confounders, which
raises the question of how best to handle missingness
when applying propensity score methods. There has
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been previous work around various imputation strategies
(e.g., treatment mean imputation, multiple imputation
[MI]) and how to combine results if multiple imputation
is used. However, one approach that has not been exam-
ined in simulation studies when there is missingness on
the confounders is Generalized Boosted Models (GBM)
[2]. GBM does not require complete data (as the com-
monly used logistic regression does) and has been shown
to outperform logistic regression for propensity score es-
timation in complete data [3]. If GBM works well in the
presence of missing data, using it would circumvent the
issues that arise when using MI with propensity score
analysis [4–6]. The goal of this paper is to examine the
performance of GBM vs. other approaches through a
simulation study in order to provide guidance to analysts
when implementing propensity score analysis in the
presence of missingness on the covariates.
The paper is organized as follows. We briefly review

the literature on missingness in the covariates when es-
timating propensity scores for binary exposures using
logistic regression. We then briefly review previous
work showing that GBM outperforms logistic regres-
sion, particularly in the presence of non-linear relation-
ships, which leads to our choice of data generating
scenarios for the simulation study. We then present the
simulation study methods and the results in detail. We
conclude with recommendations for researchers apply-
ing propensity score methods, specifically propensity
score weighting, in the presence of missingness on the
potential confounders.

Methods for handling covariate missingness
Missingness on the propensity score model covariates
poses a challenge in propensity score estimation. As pro-
pensity score estimation frequently involves a large num-
ber of covariates, a large proportion of observations may
contain missingness on at least one covariate, and
proper handling of covariate missingness is necessary for
unbiased estimates of causal effects. Several approaches
have been proposed for handling covariate missingness,
including using only covariates with complete data,
treatment mean imputation, [7] indicator variable, [8, 9]
missingness pattern (MP), [10] the general location
model, [11] MI, and multiple imputation missingness
pattern (MIMP) [12]. Several of these approaches will
not be considered further. Specifically, using only covari-
ates with complete data is not recommended, [7] the
indicator variable approach is not recommended [9] as it
ignores any relation between covariates and is inefficient,
[12] and the MP approach is less efficient than MI or
the MIMP approach discussed below [7]. The general
location model, [11] which models the joint distribution
of the exposure, covariates, and missingness, is

computationally intensive in practice. We review the
remaining approaches in turn.

Treatment mean imputation
Treatment mean imputation has been suggested [7] as
an alternative to MI when MI is not feasible because in
a simulation study in which both the exposure and out-
come were binary, treatment mean imputation per-
formed reasonably well. Based on these results, we
include the approach here in our simulation of a binary
exposure and continuous outcome but speculate that if
the missingness mechanism is anything other than miss-
ing completely at random (MCAR), this approach will
not perform well.

Multiple imputation (MI)
A commonly used technique for handling missing data,
MI could also be adopted for propensity score covariate
missingness under the assumption of missing at random
(MAR) [13]. Multiple random draws from the posterior
predictive distribution of the missing values conditional
on the observed values are used to generate multiple
complete datasets. Each complete dataset can be separ-
ately analyzed with standard methods and estimates are
combined using Rubin’s rules [14, 15]. The overall esti-

mate (θ̂Þ is calculated as the average of point estimates (

θ̂iÞ over the m imputations:

θ̂ ¼ 1
m

Xm
i¼1

θ̂i

and the overall variance ( dvarÞ is estimated as the sum
of within-imputation variance (Wi) and between-
imputation variance (B):

dvar ¼ 1
m

Xm

i¼1
Wi þ 1þ 1

m

� �
B:

However, Rubin’s rules for combining variance esti-
mates may not be valid when MI is applied to propensity
score model covariates due to the extra uncertainty of
estimating propensity scores. Instead, a bootstrap or
jackknife method could be applied for variance estima-
tion [12]. Using MI to handle missingness allows inclu-
sion of auxiliary variables (i.e., variables associated with
the missingness) in the imputation model. It has been
suggested that both the exposure and outcome variables
should be included in the imputation model to avoid
biased estimates [7]. To implement MI, we used a fully
conditional specification [16] using the MI via chained
equations algorithm in the R package mice [17, 18].
Several issues arise when using MI in propensity score

analysis, including whether the causal effects estimated
on each imputed data set should be combined or
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whether the propensity score for each individual should
be combined across imputations [4, 5] prior to estimat-
ing the causal effect. Although this latter approach has
been recommended, [5] it is not clear that Rubin’s rules
apply to this approach [4]. Other issues, which have not
been addressed when using MI with propensity score
analysis, include strategies for handling a situation in
which balance is obtained in some imputations but not
others.

Multiple imputation Missingness pattern (MIMP)
Qu and Lipkovich [12] introduced a new approach to
handling covariate missingness by combining MI and
MP. As missingness on the covariates may be predictive
of treatment assignment, incorporating the MP in the
propensity score model has been suggested [10]. Obser-
vations are classified into groups based on the MP and
assigned an indicator. Missing values are imputed with
MI and the propensity scores are estimated using the co-
variates and an MP indicator for each imputed dataset.
The estimated propensity score is thus conditional on
both observed covariates and the MP. Including the MP
indicator in the propensity score model balances MPs
across exposure groups. This is important because in
order for the strong ignorability assumption to hold bal-
ance must be obtained for the missing as well as the ob-
served values of the potential confounders [10, 19].
Finally, the causal effect is estimated for each imputed
dataset and combined with Rubin’s rules (point estimate)
and the bootstrap (variance).
One challenge with the MIMP approach is that with a

large number of covariates, it is not uncommon to ob-
serve MPs containing very few observations, resulting in
estimated propensity scores with large variability. This
could be solved by pooling similar MPs to reach a pre-
specified minimum number of observations [12].

Single imputation (SI)
As only a point estimate of the propensity score is used
in the outcome analysis model, one could argue that a SI
that incorporates prediction error (SI+ prediction error,
or SI + PE) or a SI that incorporates both prediction
error and parameter uncertainty (SI+ prediction error +
parameter uncertainty, or SI + PE + PU) may be suffi-
cient to eliminate bias due to missingness in the propen-
sity score model covariates. However, one could also
argue that the uncertainty of the missing data imput-
ation should be carried over to the outcome analysis.
Performance of SI + PE and SI + PE + PU has not been
evaluated or compared with the methods discussed
above even though they have been used in applications
of propensity score analysis [20]. We suspect that either
of these approaches would perform better than treat-
ment mean imputation and would avoid the potential

issues with MI described above. Thus, we consider two
SI methods: SI + PE and SI + PE + PU.
SI + PE involves fitting a regression model of the vari-

able containing missing values on the auxiliary variables
and imputing the missing values by adding random
noise to the predicted value. Although the approach may
result in incorrect standard errors due to its inability to
account for uncertainty in the regression coefficients,
and therefore underestimate variability of the imputed
values, [15] this may be less of an issue for propensity
score estimation where only the point estimate of the
propensity scores is used for later outcome analysis. SI +
PE + PU is similar but uses Bayesian methods to draw
the parameters from their posterior distributions.

Propensity score estimation
Logistic regression
Logistic regression is most commonly used for propen-
sity score estimation by regressing the binary treatment
or exposure indicator variable on pre-treatment covari-
ates (i.e., potential confounders). The propensity score
model for a binary exposure variable is estimated as

logit pi T ¼ 1ð Þð Þ ¼ X 0β; i ¼ 1; 2;…; n;

where X = (1, X1, X2,…, Xk), β = (β0, β1, β2,…, βk), k is the
number of covariates, and n is the number of observa-
tions. The propensity score for each individual is then
estimated as

pi ¼
eX

0
iβ

1þ eX
0
iβ
:

Although logistic regression is most commonly used
to estimate propensity scores, it may not be the best
choice in some situations. Using logistic regression to
model the probability of exposure level assumes a linear
relationship between the log-odds of the exposure and
the covariates. However, this assumption is not always
satisfied and including lower- (e.g., the square root) or
higher-order terms of covariates in the logistic model is
unlikely to accurately capture nonlinear relationships
[2]. Also, the propensity score model usually involves a
large number of covariates and variable selection is often
required. This process could be tedious and may exclude
important covariates. In addition, inclusion of two-way
or higher-order interaction terms in a logistic regression
requires users to manually specify all interaction terms.

Generalized boosted modeling (GBM)
The limitations of estimating propensity scores using a
parametric model, such as logistic regression, motivated
development of more powerful and flexible nonparamet-
ric methods, including GBM [2]. GBM estimates pro-
pensity scores by iteratively fitting many regression trees
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using the covariates and linearly combines all regression
trees to form a smoothed function for the final estimate
of the propensity scores. Similar to logistic regression,

GBM also models the log-odds of exposure level, gðXÞ
¼ log pðT¼1jXÞ

1−pðT¼1jXÞ . The algorithm starts with the average

log-odds of exposure level, gðXÞ ¼ log p̂ðT ¼ 1Þ
1−p̂ðT ¼ 1Þ ,

where p̂ðT ¼ 1Þ is the average probability of being ex-
posed, and g(X) is iteratively updated to g(X) + α ∙ h(X) to
find the model that maximizes the log-likelihood of g(X),

l gð Þ ¼
Xn

i¼1
Tig Xið Þ− logð1þ exp g Xið Þð Þ;

where h(X) is estimated by fitting a regression tree that
models the residuals from the current fit to the covari-
ates, and α (0 < α ≤ 1) is a shrinkage parameter which al-
lows a smaller adjustment between iterations to reduce
variance without necessarily increasing bias. A small
shrinkage parameter helps achieve better model fit. An-
other tuning parameter in GBM is the interaction depth.
A maximum depth of four, which allows all four-way in-
teractions between covariates, is recommended for best
model estimation and prediction [2]. The process con-
tinues until the maximum number of iterations is
reached; propensity scores are calculated from the iter-
ation where the average absolute standardized mean
(AASM) difference is minimized. AASM is estimated as
the average of absolute differences between the exposed
mean and weighted unexposed mean across the k
covariates:

1
k

X
k

PnT¼1
i¼1 Xk T ¼ 1ð Þi−

PnT¼0
j¼1 wjXk T ¼ 0ð Þ jPnT¼0

j¼1 wjbsd Xkð ÞT¼1

���������

���������
where wj =

p j

1−p j
.

Using GBM for propensity score estimation has sev-
eral advantages. First, GBM can adaptively include the
covariates that improve prediction of exposure level,
and therefore does not require covariate selection.
Second, GBM automatically includes all higher-order
and interaction terms of the covariates to the depth
specified by the user. Thus, nonlinear relationships
can be accounted for in propensity score estimation
to yield more accurate estimates. Third, the iterative
fitting nature of GBM can identify the propensity
score model that minimizes the differences between
exposure groups on the covariates. One disadvantage
in comparison to logistic regression is that GBM does
not provide parameter estimates, such as logistic re-
gression coefficients, that allow interpretation of the
association between a covariate and the probability of

exposure. However, this is less of a concern as the
main purpose of the propensity score model is to
estimate the conditional probability of exposure.
One potentially important advantage of GBM over

logistic regression for propensity score estimation is
that GBM does not require complete data on the co-
variates. Missing values are handled using the surro-
gate split method. At each iteration, a regression tree,
called a base learner, is built by splitting observations
into left and right nodes. Suppose that a splitting
variable and split point (for partitioning to the left
and right nodes) have been chosen for the next split.
This variable will be referred to as the primary vari-
able. If there are missing values on the primary vari-
able, these observations are sent to a separate third
node, called the missing node. For this node, a surro-
gate variable is found by predicting the left and right
nodes of the primary variable using the other pre-
dictor variables. If the values on both the primary
variable and surrogate variable are missing, then a
second-best surrogate split can be found that yields a
splitting of the data most similar to the primary split.
A simple rule of “go with the majority” is also evalu-
ated, and surrogates that perform worse than this rule
are not used for the surrogate split. Ultimately, the
goal of the surrogate is to split the data as similarly
as possible to the primary variable, although there is
no guarantee that it does so.
Propensity scores estimates, whether estimated by

GBM or logistic regression, can then be used to match,
stratify, or weight observations to balance the covariate
distributions across exposure groups. In this study, we
will focus on inverse probability weighting (IPW). To re-
duce the variance that may be incurred by extreme
weights, the weight is multiplied by the expected value
of being assigned to the observed group [21]. Thus, the

exposed group is weighted by p̂
pi
, and the unexposed

group is weighted by 1−p̂
1−pi

, where p̂ ¼
Pn

i
pi

n .

Methods
Although many methods have been proposed for
handling covariate missingness and several have been
shown to have good performance, SI + PE and SI +
PE + PU have not been previously examined. Perform-
ance of GBM with incomplete covariates using the
surrogate split has also not been evaluated in simula-
tion studies, particularly in comparison to the other
approaches described above. Cham and West exam-
ined the surrogate split approach with GBM in a sin-
gle simulated data set but noted that more extensive
simulation studies were needed [19]. To address these
knowledge gaps, a simulation study was conducted.
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Data generation
The data generation model is illustrated in Fig. 1.
Complete data generation was similar to that of Setogu-
chi et al. [22] and Lee et al. [3] and included a binary ex-
posure, denoted as T, a continuous outcome, denoted as
Y, and 10 covariates, denoted as x1 − x10.

Covariates
Six covariates were binary (x1, x3, x5, x6, x8, x9) following
a Bernoulli distribution with x1, x6, x8~Bern (1, 0.3) and
x3, x5, x9~Bern (1, 0.5). Four covariates were continuous
(x2, x4, x7, x10) following a normal distribution, N(0, 1).
Four covariates (x1 − x4) were correlated with both T
and Y and were true confounders. Three covariates (x5
− x7) were correlated only with T and the other three co-
variates (x8 − x10) were correlated only with Y. Covariate
x1 was correlated with x5 (ρ = 0.2), x2 was correlated with
x6 (ρ = 0.9), x3 was correlated with x7 (ρ = 0.2), and x4
was correlated with x8 (ρ = 0.9).

Exposure
Generation of the exposure was similar to Setoguchi
et al. [22] and Lee et al.’s [3] scenarios A and G with
sample sizes n= 500, 1000, and 5000. In scenario A
(main effects only), linearity and additivity hold, so
higher order terms and interactions among the con-
founders are not needed for the propensity score model.
The true propensity model is given as:

logit p T ¼ 1ð Þð Þ ¼ 0:8x1−0:25x2
þ 0:6x3−0:4x4−0:8x5−0:5x6
þ 0:7x7:

In scenario G (moderate non-additivity and non-
linearity), neither linearity nor additivity hold, so both
higher order terms and interactions among the con-
founders should be included in the propensity score
model (10 two-way interactions and 3 quadratic terms).
The true propensity score model is given as:

logit p T ¼ 1ð Þð Þ ¼ 0:8x1−0:25x2
þ 0:6x3−0:4x4−0:8x5−0:5x6
þ 0:7x7−0:25x

2
2−0:4x

2
4 þ 0:7x27

þ 0:4x1x3−0:175x2x4
þ 0:3x3x5−0:28x4x6−0:4x5x7
þ 0:4 x1x6−0:175 x2x3
þ 0:3x3x4−0:2x4x5−0:4x5x6

Outcome
The regression coefficient of Y on T, which is the true
causal effect, was set to − 0.4. The true outcome model
is given as:

Y ¼ −3:85þ 0:3x1−0:36x2−0:73x3−0:2x4
þ 0:71x8−0:19x9 þ 0:26x10−0:4T þ εY

where εY~N(0, 1).

Fig. 1 Complete data generation model
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Missingness mechanisms
The design for the missingness mechanisms included
four conditions where for each condition the overall rate
of missingness was either 25% or 50%. The rationale for
an overall rate of 50% missingness was that of a planned
missingness design in which some individuals may re-
ceive subsets of questionnaire items [23]. The missing-
ness mechanisms were based on the simulation design
of Collins, Schafer, and Kam [24] but adapted, as de-
scribed below, to our design for studying covariate miss-
ingness in the propensity score model. The rationale for
the design of the missingness mechanisms is that in real
empirical data, the missingness mechanism likely does
not fall into discrete categories of MCAR, MAR, and
MNAR. We do not include a condition in which the
missingness is MNAR because all of the approaches we
examine assume that the missingness is not MNAR and
thus, all of the approaches would be expected to be
biased under MNAR. We do, however, include different
MAR conditions that are likely in real data.
MCAR. For MCAR, approximately 25% or 50% of ob-

servations were missing randomly (i.e., independently of
any other covariate, the exposure, or the outcome) for
each of the four true confounders, x1 − x4.
MAR-1. For MAR 1, missingness on x1, x2, x3, x4 is

dependent on x5, x6, x8, x9, respectively. Specifically, ap-
proximately 15% or 30% of observations are missing on
x1 when x5 is equal to 0, and approximately 35% or 70%
of observations are missing on x1 when x5 is equal to 1,
yielding overall missingness percentages of 25% or 50%;
x2, x3, x4 follow the same pattern. Note that although x5
− x7 predict only the exposure, x5 and x6 are correlated
with the true confounders (x1 and x2 respectively; see
Fig. 1). Similarly, although x8 − x10 predict only the out-
come, x8 and x9 are correlated with the true confounders
(x3 and x4 respectively). Thus, these variables (x5, x6, x8,
x9) are important auxiliary variables that should be in-
cluded in the imputation model in order to satisfy the
MAR assumption. If these variables are not included,
then this mechanism is missing not at random (MNAR).
MAR-2. For MAR 2, missingness on x1, x2, x3, x4 is

dependent on x5, x6, x8, x9, respectively, and Y. To gen-
erate missingness on x1, all observations were first di-
vided into four groups based on the values of x5 and Y
(see Table 1). Each group was then assigned a specific

missingness percentage and missing values were intro-
duced within each group, yielding an overall missingness
percentage of 25% or 50%. Missingness was generated
on covariates x2, x3, x4 using group specific missing per-
centages as shown in Tables 2, 3, and 4. For this condi-
tion, x5, x6, x8, x9, and Y must be included in the
imputation model in order to satisfy the MAR assump-
tion. If these variables are not included, then this mech-
anism is MNAR.
MAR-sinister. For MAR sinister, missingness on x1, x2,

x3, x4 is dependent on the correlation of two other vari-
ables. Specifically, missingness on x1 is dependent on the
correlation between x5 and T. The observations were
first randomly divided into 20 groups and the correlation
between x5 and T was calculated for each group. The 10
groups with lower correlation were assigned a missing-
ness percentage of either 10% or 30% and the 10 groups
with higher correlation were assigned a missingness per-
centage of either 40% or 70%, resulting in an overall
missingness percentage of 25% or 50%. Missingness on
x2, x3, x4 was generated based on the correlation be-
tween x6 and T, x7 and Y, and x8 and Y, respectively. For
this condition, x5, x6, x8, x9, T, and Y must be included
in the imputation model in order to satisfy the MAR as-
sumption. If these variables are not included, then this
mechanism is MNAR.

Analysis
Analysis began with imputation of missing data, followed
by estimation of propensity scores, and finally estimation
of the causal effect.

Imputation
Methods included treatment mean imputation, SI + PE,
SI + PE + PU, MI, and MIMP using the R package mice.
The imputation models include all variables except x7
and x10, which are not correlated with x1, x2, x3, x4. To
implement the SI + PE method, we used the mice func-
tion from the R mice package with ‘method = norm.nob’
[18]. To implement the SI + PE + PU method, we used
the mice function with ‘method = norm’ and m = 1 [18].
For MI and MIMP, we used m= 20 imputations. For
treatment mean imputation, missing values in binary
variables x1 and x3 are replaced by the unrounded mean
of observed values within each exposure group, as

Table 1 Percentages of missingness on x1 based on x5 and Y

Group x5 I{Y >mean(Y)} % of observations % missing on x1 % missing on x1

1 0 0 25 10 20

2 0 1 25 20 40

3 1 0 25 30 60

4 1 1 25 40 80

Total 25 50
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rounding has been suggested to increase bias [25]. For
MIMP, missingness patterns with less than 100 observa-
tions were pooled using the algorithm proposed by Qu
and Lipkovich [12].

Propensity score estimation
To estimate propensity scores, we used logistic regres-
sion applied to the data imputed by treatment mean im-
putation, SI + PE, SI + PE + PU, MI, and MIMP; and
GBM applied to the incomplete data and the data im-
puted by SI + PE. In practice, an analyst would not know
the true propensity score model and would need to
make decisions regarding which variables, as well as
higher order terms and interactions, to include in the
propensity score model. To examine how these decisions
may affect the causal effect estimate, we considered four
variable inclusion strategies for the logistic regression
propensity score model:
a) true confounders x1, x2, x3, x4,
b) x1 left out,
c) nonconfounder x5 included and,
d) x1 left out and x5 included.
When logistic regression was used for propensity score

estimation, only main effects were considered and no
higher order terms or interactions were included in the
model. As GBM is computationally time consuming, it
was only implemented for strategy a) true confounders,
using the ps function in the R package twang [26]. The
shrinkage parameter was set to 0.05.

Estimation of the causal effect
To estimate the causal effect, we used a weighted regres-
sion model in which the IPWs were the weights and the
exposure variable was the only predictor of the outcome
(i.e., we did not incorporate the confounders in the out-
come analysis model). Weights were trimmed at the 1st

and 99th percentiles of their distribution. For MI and
MIMP, estimates were combined using Rubin’s rules by
taking the average of the estimates over the m = 20
imputations.

Evaluation
To summarize, there are 8 data generating scenarios: 2
(exposure models) × 4 (missingness mechanisms); 7 pro-
pensity score estimation strategies; and 4 variable inclu-
sion strategies. The procedure was replicated 1000 times
in each of these conditions before summarizing results
for the different approaches. Approaches are compared
in terms of i) bias, calculated as the difference between
the mean estimate across the 1000 replications in each
condition and the true value; ii) standard deviation (SD)
of the estimates from the 1000 replications, iii) standard
error (SE), estimated from the weighted regression in
each replication and averaged across the 1000 replica-
tions, and iv) root mean square error (RMSE), calculated
as the mean square of the differences between each esti-

mate (β̂iÞ and the true value (β):

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
r

Xr

i¼1

β̂i−β
� �2

s

Results
Scenario a – Main effects only
Table 5 shows simulation results for scenario A with n=
500 and 25% missingness. When only true confounders
were used as covariates for propensity score estimation,
there was no bias associated with SI + PE, SI + PE + PU,
MI, and MIMP under all missingness mechanisms, and
the bias was comparable to that obtained prior to intro-
ducing missing data (see first row of Table 5). Logistic

Table 2 Percentages of missingness on x2 based on x6 and Y

Group x6 I{Y >mean(Y)} % of observations % missing on x2 % missing on x2

1 0 0 30 25 50

2 0 1 40 30 60

3 1 0 20 20 40

4 1 1 10 15 30

Total 25 50

Table 3 Percentages of missingness on x3 based on x8 and Y

Group x8 I{Y >mean(Y)} % of observations % missing on x3 % missing on x3

1 0 0 40 30 60

2 0 1 30 25 50

3 1 0 10 15 30

4 1 1 20 20 40

Total 25 50
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Table 4 Percentages of missingness on x4 based on x9 and Y

Group x9 I{Y >mean(Y)} % of observations % missing on x4 % missing on x4

1 0 0 20 15 30

2 0 1 30 25 50

3 1 0 30 35 70

4 1 1 20 20 40

Total 25 50

Table 5 Simulation results for scenario A, n = 500, 25%missing

Missingness
Mechanism

Method True confounders Leave ×1 out Add ×5 Leave ×1 out + Add ×5

Bias (SD) SE RMSE Bias (SD) SE RMSE Bias (SD) SE RMSE Bias (SD) SE RMSE

complete −0.001 (0.041) 0.068 0.041 0.036 (0.043) 0.067 0.056 −0.001 (0.043) 0.070 0.043 0.042 (0.043) 0.068 0.060

comGBM 0.029 (0.042) 0.067 0.050 – – – – – – – – –

MCAR SI + pe + pu 0.000 (0.049) 0.068 0.041 0.036 (0.049) 0.067 0.061 0.000 (0.051) 0.070 0.051 0.042 (0.050) 0.068 0.065

SI + pe −0.003 (0.049) 0.068 0.041 0.035 (0.048) 0.067 0.059 −0.002 (0.050) 0.070 0.050 0.041 (0.049) 0.068 0.064

TMI 0.105 (0.065) 0.072 0.113 0.131 (0.064) 0.071 0.146 0.109 (0.066) 0.074 0.127 0.138 (0.066) 0.072 0.153

MI −0.001 (0.045) 0.068 0.041 0.036 (0.046) 0.067 0.058 −0.001 (0.047) 0.070 0.047 0.042 (0.047) 0.068 0.063

MIMP −0.001 (0.045) 0.069 0.041 0.035 (0.046) 0.067 0.058 −0.001 (0.047) 0.070 0.047 0.042 (0.047) 0.068 0.063

GBM 0.067 (0.050) 0.066 0.079 – – – – – – – – –

GBM + SI + pe 0.035 (0.047) 0.067 0.054 – – – – – – – – –

MAR1 SI + pe + pu 0.000 (0.048) 0.068 0.041 0.036 (0.048) 0.067 0.060 0.000 (0.050) 0.070 0.050 0.042 (0.049) 0.068 0.065

SI + pe 0.000 (0.048) 0.068 0.041 0.036 (0.047) 0.067 0.059 0.000 (0.050) 0.070 0.050 0.042 (0.048) 0.068 0.064

TMI 0.102 (0.060) 0.070 0.110 0.129 (0.060) 0.069 0.142 0.109 (0.062) 0.071 0.125 0.136 (0.062) 0.070 0.149

MI 0.000 (0.044) 0.068 0.041 0.036 (0.045) 0.067 0.058 0.000 (0.046) 0.070 0.046 0.042 (0.046) 0.068 0.062

MIMP 0.000 (0.045) 0.069 0.041 0.037 (0.045) 0.067 0.058 0.000 (0.046) 0.070 0.046 0.043 (0.046) 0.068 0.063

GBM 0.066 (0.048) 0.066 0.078 – – – – – – – – –

GBM + SI + pe 0.036 (0.046) 0.067 0.055 – – – – – – – – –

MAR2 SI + pe + pu 0.000 (0.049) 0.068 0.041 0.036 (0.049) 0.067 0.061 0.001 (0.051) 0.070 0.051 0.043 (0.049) 0.068 0.065

SI + pe −0.001 (0.048) 0.068 0.041 0.035 (0.048) 0.067 0.059 −0.001 (0.050) 0.070 0.050 0.042 (0.049) 0.068 0.065

TMI 0.104 (0.068) 0.073 0.112 0.129 (0.068) 0.072 0.146 0.111 (0.071) 0.075 0.132 0.137 (0.069) 0.073 0.153

MI 0.000 (0.045) 0.068 0.041 0.037 (0.046) 0.067 0.059 0.001 (0.047) 0.070 0.047 0.043 (0.047) 0.068 0.064

MIMP 0.002 (0.045) 0.069 0.041 0.038 (0.045) 0.067 0.059 0.001 (0.047) 0.070 0.047 0.043 (0.046) 0.068 0.063

GBM 0.069 (0.050) 0.067 0.080 – – – – – – – – –

GBM + SI + pe 0.037 (0.046) 0.067 0.055 – – – – – – – – –

MAR Sinister SI + pe + pu 0.003 (0.048) 0.068 0.041 0.037 (0.048) 0.066 0.061 0.004 (0.049) 0.069 0.049 0.043 (0.048) 0.067 0.064

SI + pe −0.002 (0.049) 0.068 0.041 0.035 (0.049) 0.067 0.060 −0.002 (0.050) 0.070 0.050 0.041 (0.050) 0.068 0.065

TMI 0.118 (0.062) 0.071 0.125 0.144 (0.062) 0.070 0.157 0.122 (0.064) 0.073 0.138 0.151 (0.064) 0.071 0.164

MI 0.003 (0.045) 0.068 0.041 0.040 (0.045) 0.067 0.060 0.003 (0.046) 0.070 0.046 0.046 (0.046) 0.068 0.065

MIMP 0.003 (0.045) 0.068 0.041 0.040 (0.046) 0.067 0.061 0.003 (0.046) 0.070 0.046 0.046 (0.046) 0.068 0.065

GBM 0.074 (0.049) 0.066 0.085 – – – – – – – – –

GBM + SI + pe 0.036 (0.047) 0.067 0.055 – – – – – – – – –

Note. Complete: logistic regression with complete data before introducing missingness; comGBM GBM with complete data before introducing missingness; SI +
pe + pu single imputation + prediction error + parameter uncertainty; SI + pe single imputation + prediction error; TMI treatment mean imputation; MI multiple
imputation (m = 20); MIMP multiple imputation missingness pattern (m = 20); GBM GBM with incomplete data; GBM + SI + pe GBM after single imputation +
prediction error; SD standard deviation; SE standard error; RMSE root mean squared error
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regression with treatment mean imputation had a larger
bias than other imputation approaches under all miss-
ingness mechanisms. Although not as large as treatment
mean imputation, the bias obtained when applying GBM
to incomplete data for propensity score estimation was
substantially more than the SI or MI approaches. Imput-
ing missing values by SI + PE before estimating propen-
sity scores using GBM helped reduce the bias, but it was
still larger than the bias obtained when applying GBM to
complete data prior to introducing missingness (see sec-
ond row of Table 5). GBM using incomplete data had
slightly smaller SEs than the other approaches, whereas
GBM with SI + PE had SEs in line with the other SI and
MI approaches and with the analysis on the complete
data prior to introducing missingness. Treatment mean
imputation had larger SEs than the other approaches.
The causal effect estimates were affected by the vari-

able inclusion strategies (see Table 5). When true con-
founder x1 was omitted from the propensity score
model, an increase in bias was observed for all ap-
proaches under all missingness mechanisms; however, it
was comparable to the bias obtained in the complete
data prior to introducing missingness, with the excep-
tion of treatment mean imputation, which had much lar-
ger bias. The SEs did not differ in comparison to
inclusion of only true confounders. When non-
confounder x5 was included in the propensity score esti-
mation, there was no increase in bias for the SI and MI
approaches under all missingness mechanisms but there
was increased bias for treatment mean imputation. The
SEs slightly increased for all approaches in comparison
to inclusion of only true confounders. When true con-
founder x1 was omitted and non-confounder x5 was in-
cluded in the propensity score model, an even larger
bias was observed for all approaches and all missingness
mechanisms than when only true confounder x1 was
omitted although the SEs did not increase. However, as
before the SI and MI approaches have bias that is similar
to that obtained in the complete data prior to introdu-
cing missingness.
The same pattern of results was obtained with sample

sizes of 1000 or 5000 (except that as expected the SEs
decreased) and thus the results are not presented here
but are available in the supplementary materials. When
the missingness increased from 25 to 50%, the bias for
GBM using incomplete data increased quite substantially
and GBM with SI + PE had slightly larger bias (see sup-
plementary materials). For the SI and MI approaches
using logistic regression, the bias increased for the MAR
sinister mechanism and 50% missingness, that is, as the
missingness mechanism became more complex. The in-
crease to 50% missingness did not have an effect on SEs
in comparison to 25% missingness but within the 50%
missingness condition, the SEs decreased as the sample

size increased. Treatment mean imputation performed
at least as poorly in the 50% missingness condition as it
did in the 25% missingness condition.

Scenario G – moderate non-additivity and non-linearity
Table 6 shows simulation results for scenario G with n=
500 and 25% missingness. Recall that the approaches
using logistic regression included only main effects.
Thus, bias was observed for logistic regression and GBM
when applied to the complete data prior to introducing
missingness; however, for GBM, the bias was the same
magnitude as in Scenario A.
When only true confounders were included in the pro-

pensity score model, causal effect estimates based on
propensity scores estimated from GBM were biased,
with the largest bias observed when applying GBM dir-
ectly to the incomplete data, and smaller bias when ap-
plying GBM to SI + PE data. Treatment mean
imputation had the largest bias. SI + PE, SI + PE + PU,
MI, and MIMP have little to no bias and actually have
less bias than before the missingness was introduced.
This may be a result of the bias due to excluding inter-
actions counteracting that due to missingness.
As in Scenario A, SEs were largest for treatment mean

imputation. GBM using the incomplete data and GBM
with SI + PE had smaller SEs than the other approaches;
these SEs were similar to those of GBM using the
complete data before missingness was introduced. SI +
PE, SI + PE + PU, MI, and MIMP had larger SEs than ei-
ther GBM approach; these SEs were similar to those ob-
tained when logistic regression was used to estimate
propensity scores on the complete data prior to introdu-
cing missingness.
Variable inclusion strategies for the propensity score

model affected the estimates in a similar way as in Sce-
nario A. When true confounder x1 was omitted from the
propensity score model, an increase in bias was observed
for all approaches. When non-confounder x5 was in-
cluded, there was no increase in bias but the SEs in-
creased slightly. When true confounder x1 was omitted
and non-confounder x5 was included, an even larger bias
was observed. All types of propensity model misspecifi-
cation led to increased RMSE estimates, especially when
a true confounder was excluded from the propensity
score model.
As in Scenario A, the bias for GBM using either the in-

complete data or with SI + PE decreased substantially as the
sample size increased (see supplemental materials). How-
ever, the bias for the other approaches did not decrease as
the sample size increased. As expected, the SE and RMSE
estimates decreased as the sample size increased.
When missingness increased from 25 to 50%, a larger

bias was observed for GBM with incomplete data (see
supplemental materials). The bias of GBM with SI + PE
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also increased somewhat. Very little bias was observed
for SI + PE, SI + PE + PU, MI, and MIMP when the data
were missing under MCAR, MAR2, or MAR sinister,
but the bias was larger when the missingness mechanism
was MAR1, with a larger magnitude than with 25% miss-
ingness. SI + PE + PU had a larger bias than other ap-
proaches when the missingness was MAR sinister with
50% missingness.
The bias of approaches using logistic regression in sce-

nario G was from two possible resources: missing data
and propensity score model misspecification due to ex-
cluding interaction and higher order terms. Therefore,

additional simulations were conducted for scenario G
using the correct propensity score model. Table 7 shows
the results for scenario G with a correct logistic model
and 25% missingness under the three different sample
sizes. Except for treatment mean imputation, very little
bias was observed when the data were MCAR, MAR2, or
MAR sinister. When the missingness mechanism was
MAR1, all approaches were slightly biased, with treat-
ment mean imputation having the largest bias. The re-
sults for 50% missingness using the correct logistic
regression model, including interactions and higher
order terms, were similar (see supplementary materials).

Table 6 Simulation results for scenario G, n = 500, 25%missing

Missingness
Mechanism

Method True confounders Leave ×1 out Add ×5 Leave ×1 out + Add ×5

Bias (SD) SE RMSE Bias (SD) SE RMSE Bias (SD) SE RMSE Bias (SD) SE RMSE

complete −0.014 (0.044) 0.071 0.046 0.037 (0.043) 0.068 0.057 −0.016 (0.045) 0.073 0.048 0.040 (0.043) 0.069 0.059

comGBM 0.029 (0.044) 0.067 0.053 – – – – – – – – –

MCAR SI + pe + pu −0.011 (0.052) 0.071 0.053 0.040 (0.049) 0.068 0.063 −0.012 (0.054) 0.072 0.055 0.043 (0.050) 0.068 0.066

SI + pe −0.013 (0.051) 0.071 0.053 0.039 (0.049) 0.068 0.063 −0.014 (0.053) 0.072 0.055 0.042 (0.049) 0.068 0.065

TMI 0.096 (0.064) 0.076 0.115 0.131 (0.061) 0.073 0.145 0.096 (0.067) 0.078 0.117 0.134 (0.063) 0.074 0.148

MI −0.011 (0.048) 0.071 0.049 0.039 (0.046) 0.068 0.060 −0.013 (0.050) 0.073 0.052 0.042 (0.047) 0.069 0.063

MIMP −0.011 (0.048) 0.072 0.049 0.039 (0.046) 0.068 0.060 −0.013 (0.050) 0.073 0.052 0.042 (0.047) 0.069 0.063

GBM 0.060 (0.051) 0.067 0.079 – – – – – – – – –

GBM + SI + pe 0.033 (0.049) 0.067 0.059 – – – – – – – – –

MAR1 SI + pe + pu 0.000 (0.051) 0.070 0.051 0.048 (0.048) 0.067 0.068 −0.002 (0.053) 0.072 0.053 0.052 (0.049) 0.068 0.071

SI + pe −0.001 (0.050) 0.070 0.050 0.048 (0.047) 0.067 0.067 −0.003 (0.052) 0.072 0.052 0.051 (0.048) 0.068 0.070

TMI 0.113 (0.057) 0.073 0.127 0.148 (0.055) 0.070 0.158 0.116 (0.059) 0.074 0.130 0.152 (0.056) 0.071 0.162

MI −0.001 (0.047) 0.071 0.047 0.048 (0.045) 0.068 0.066 −0.002 (0.048) 0.072 0.048 0.051 (0.046) 0.068 0.069

MIMP −0.001 (0.047) 0.071 0.047 0.048 (0.045) 0.068 0.066 −0.002 (0.048) 0.072 0.048 0.052 (0.046) 0.069 0.069

GBM 0.066 (0.050) 0.067 0.083 – – – – – – – – –

GBM + SI + pe 0.039 (0.047) 0.067 0.061 – – – – – – – – –

MAR2 SI + pe + pu − 0.009 (0.051) 0.070 0.052 0.040 (0.050) 0.068 0.064 −0.011 (0.053) 0.072 0.054 0.043 (0.050) 0.068 0.066

SI + pe −0.009 (0.051) 0.070 0.052 0.041 (0.049) 0.068 0.064 −0.010 (0.053) 0.072 0.054 0.045 (0.050) 0.068 0.067

TMI 0.090 (0.069) 0.078 0.113 0.125 (0.066) 0.074 0.141 0.093 (0.071) 0.080 0.117 0.128 (0.067) 0.076 0.144

MI −0.008 (0.046) 0.071 0.047 0.041 (0.046) 0.068 0.062 −0.010 (0.048) 0.073 0.049 0.044 (0.046) 0.069 0.064

MIMP −0.008 (0.047) 0.072 0.048 0.042 (0.046) 0.068 0.062 −0.010 (0.049) 0.073 0.050 0.045 (0.047) 0.069 0.065

GBM 0.058 (0.051) 0.067 0.077 – – – – – – – – –

GBM + SI + pe 0.036 (0.048) 0.067 0.060 – – – – – – – – –

MAR Sinister SI + pe + pu −0.006 (0.050) 0.070 0.050 0.040 (0.048) 0.067 0.062 −0.007 (0.052) 0.071 0.052 0.042 (0.048) 0.068 0.064

SI + pe −0.012 (0.051) 0.071 0.052 0.039 (0.049) 0.068 0.063 −0.014 (0.053) 0.072 0.055 0.042 (0.050) 0.069 0.065

TMI 0.113 (0.060) 0.075 0.128 0.147 (0.057) 0.072 0.158 0.113 (0.062) 0.077 0.129 0.151 (0.059) 0.073 0.162

MI − 0.007 (0.047) 0.071 0.048 0.043 (0.045) 0.068 0.062 −0.009 (0.048) 0.072 0.049 0.046 (0.046) 0.069 0.065

MIMP −0.007 (0.047) 0.071 0.048 0.043 (0.046) 0.068 0.063 −0.009 (0.049) 0.073 0.050 0.046 (0.046) 0.069 0.065

GBM 0.068 (0.050) 0.067 0.084 – – – – – – – – –

GBM + SI + pe 0.035 (0.048) 0.067 0.059 – – – – – – – – –

Note. Complete: logistic regression with complete data before introducing missingness; comGBM GBM with complete data before introducing missingness; SI +
pe + pu single imputation + prediction error + parameter uncertainty; SI + pe single imputation + prediction error; TMI treatment mean imputation; MI multiple
imputation (m = 20); MIMP multiple imputation missingness pattern (m = 20); GBM GBM with incomplete data; GBM + SI + pe GBM after single imputation +
prediction error; SD standard deviation; SE standard error; RMSE root mean squared error
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Discussion
The present study compared seven potentially useful ap-
proaches for missingness on the covariates used for esti-
mating propensity scores. Results suggested that SI + PE,
SI + PE + PU, MI, and MIMP have consistently good per-
formance under Scenario A for all missingness mecha-
nisms, sample sizes, and missing percentages. In
contrast, treatment mean imputation was associated
with a larger bias than the other approaches for all sce-
narios. This is inconsistent with other findings, [7] which
suggested using treatment mean imputation when MI is
not feasible. This discordance may be attributable to dif-
ferences in the simulation study design: 1) the previous
study had 12% missingness compared with 25% or 50%
missingness in the present study; 2) the previous study
imposed missing values on three covariates such that all
were missing or none were. Treatment mean imputation
could be viewed as a single imputation procedure in
which the only covariate is the exposure group and there
is no prediction error or parameter uncertainty added to
the imputed values. Thus, the imputation model would
not include other variables related to the missingness,
such as x5, x6, x8, x9, T, and Y for the MAR-sinister

condition. It is likely for this reason that it does not per-
form as well as the other approaches. In any case, we
strongly recommend against using treatment mean
imputation.
As expected, none of the approaches using logistic re-

gression for propensity score estimation performed well
in Scenario G. When the propensity score model in-
cluded the true confounders, including interaction and
higher-order terms, SI + PE, SI + PE + PU, MI, and
MIMP produced unbiased estimates.
Including a non-confounder in the propensity score

model did not increase bias but the estimate was not as
efficient. In practice, it may be difficult to identify true
confounders from a set of baseline covariates. Including
non-confounder covariates has the benefit of reducing
bias with the chance of slightly reducing efficiency. Our
results are similar to previous simulation studies on vari-
able selection in propensity score models with complete
data [27].
The missingness mechanism played more of a role at

smaller samples sizes, a larger missingness rate, and in
Scenario G. The missingness mechanisms satisfied the
assumptions of MI and MIMP, which assume MAR, but

Table 7 Simulation results for scenario G with the correct logistic model (25%missing)

Missingness
Mechanism

Method n = 500 n = 1000 n = 5000

Bias (SD) SE RMSE Bias (SD) SE RMSE Bias (SD) SE RMSE

complete −0.002 (0.045) 0.070 0.045 0.000 (0.030) 0.049 0.030 0.001 (0.014) 0.022 0.014

MCAR SI + pe + pu −0.002 (0.053) 0.070 0.053 −0.001 (0.035) 0.049 0.035 0.000 (0.016) 0.022 0.016

SI + pe −0.003 (0.052) 0.070 0.052 0.000 (0.035) 0.049 0.035 0.000 (0.016) 0.022 0.016

TMI −0.013 (0.062) 0.076 0.063 −0.009 (0.041) 0.053 0.042 −0.008 (0.018) 0.023 0.020

MI −0.002 (0.048) 0.071 0.048 −0.001 (0.033) 0.049 0.033 0.000 (0.015) 0.022 0.014

MIMP −0.002 (0.048) 0.071 0.049 −0.001 (0.033) 0.050 0.033 0.000 (0.015) 0.022 0.014

MAR1 SI + pe + pu 0.009 (0.052) 0.070 0.053 0.009 (0.035) 0.049 0.036 0.010 (0.016) 0.022 0.019

SI + pe 0.008 (0.051) 0.070 0.052 0.010 (0.034) 0.049 0.035 0.011 (0.016) 0.022 0.019

TMI 0.019 (0.057) 0.073 0.060 0.021 (0.039) 0.051 0.044 0.023 (0.018) 0.023 0.029

MI 0.008 (0.047) 0.070 0.048 0.009 (0.031) 0.049 0.033 0.010 (0.015) 0.022 0.017

MIMP 0.008 (0.048) 0.071 0.048 0.009 (0.032) 0.049 0.034 0.009 (0.015) 0.022 0.017

MAR2 SI + pe + pu −0.001 (0.052) 0.070 0.052 0.003 (0.036) 0.049 0.036 0.002 (0.016) 0.022 0.016

SI + pe 0.000 (0.052) 0.070 0.052 0.003 (0.035) 0.049 0.035 0.002 (0.016) 0.022 0.016

TMI −0.019 (0.064) 0.077 0.067 −0.015 (0.043) 0.054 0.046 −0.015 (0.019) 0.024 0.024

MI 0.000 (0.047) 0.071 0.048 0.003 (0.032) 0.049 0.033 0.002 (0.015) 0.022 0.014

MIMP 0.001 (0.047) 0.071 0.046 0.004 (0.033) 0.050 0.033 0.005 (0.015) 0.022 0.015

MAR sinister SI + pe + pu 0.003 (0.050) 0.070 0.050 0.002 (0.035) 0.049 0.035 0.000 (0.016) 0.022 0.016

SI + pe −0.003 (0.052) 0.070 0.052 0.002 (0.035) 0.049 0.035 0.000 (0.016) 0.022 0.016

TMI 0.002 (0.061) 0.076 0.061 0.003 (0.042) 0.052 0.042 −0.004 (0.018) 0.023 0.018

MI 0.001 (0.047) 0.071 0.048 0.002 (0.033) 0.049 0.032 0.000 (0.015) 0.022 0.015

MIMP 0.001 (0.047) 0.071 0.047 0.002 (0.033) 0.049 0.033 0.000 (0.015) 0.022 0.014

Note. Complete: logistic regression with complete data before introducing missingness; SI + pe + pu single imputation + prediction error + parameter uncertainty;
SI + pe single imputation + prediction error; TMI treatment mean imputation; MI multiple imputation (m = 20); MIMP multiple imputation missingness pattern (m =
20); SD standard deviation; SE standard error; RMSE root mean squared error
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they differed in terms of the complexity of the MAR de-
pendencies. However, the missingness mechanism did
not play a large role, particularly in comparison with role
of GBM vs. logistic regression.
We expected GBM, either with the incomplete data or

SI + PE, to have similar performance to logistic regres-
sion in Scenario A and better performance than logistic
regression in Scenario G. However, results suggested
that applying GBM to the incomplete data for propensity
score estimation resulted in a larger bias than logistic re-
gression with any imputation approach except for treat-
ment mean imputation in both Scenarios A and G. We
suspect that this may be due to the lack of inclusion of
Y in the surrogate split approach used by GBM. GBM
with SI + PE does include information on Y and the bias
did decrease, though not entirely.
Even when there was no missing data involved, the es-

timate using GBM was more biased than the estimate
with logistic regression. This finding contradicts a previ-
ous study comparing the performance of logistic regres-
sion and GBM using a similar study design [3] when the
covariates do not contain missing values. That study’s
results showed that GBM was superior to logistic regres-
sion in both Scenarios A and G. This discrepancy could
be explained by the weight trimming used in the present
study. Lee et al. [3] did not trim weights although ex-
treme weights were observed, with a higher percentage
of extreme weights for logistic regression than GBM.
Lee et al. [28] examined weight trimming with complete
data using the same simulation design. They found that
weight trimming decreased the bias in the case of logis-
tic regression but that the bias for GBM did not decrease
in any scenario when weights were trimmed. Future re-
search should evaluate the effect of weight trimming on
bias when there is missing data.

Limitations
The conclusions drawn from the current study may not
generalize to a scenario where the exposure, outcome,
and covariates are correlated differently. For example, if
the outcome is strongly correlated with the missingness,
then it is possible that the GBM surrogate split approach
may be even more biased for the MAR-2 and MAR-
sinister conditions because in these conditions the miss-
ingness mechanism depended on the outcome but the
outcome is not included in the surrogate split approach.
In addition, we did not examine balance because doing
so would have required resolving the issue of the most
appropriate strategy when balance is obtained in some
imputations but not others. We leave this assessment to
future research.
The present simulation study did not include a condi-

tion for missingness on the outcome variable. If there is
missingness on the outcome variable, then based on the

missing data literature more generally, multiple imput-
ation would be necessary to account for the uncertainty
in the imputation of the outcome variable. We chose not
to include a condition in the simulation study for miss-
ingness on the outcome because the real data we have
worked with has often included planned missingness on
some of the potential confounders or other intermittent
missingness on the questionnaire items but the outcome
data are present. Future simulations should examine
whether MI or MIMP performs better when there is also
missingness on the outcome.
A further direction for future research is a more com-

prehensive assessment of methods for including inter-
action terms in the imputation model. Recent research
[29] has shown if the model is congenial, then multiple
imputation via chained equations, and specifically the
mice R package, using the just-another-variable ap-
proach is unbiased. The problem with some of the ori-
ginal simulations on the topic (e.g., [30]) is that the
parametric models were not congenial with the analytic
models. In other words, they used the defaults in the
mice R package, which do not include interaction terms
in the parametric models. These issues have not yet been
sorted out either specifically to propensity score models
or more generally, as van Buuren [18] describes a simu-
lation study in which a newer approach, a rejection sam-
pling method that creates congenial imputations, [31]
appears to perform the best.

Conclusions
In summary, the results suggest that missing values in
the covariates should be imputed before fitting the pro-
pensity score model to obtain unbiased causal effect esti-
mates. We had expected the standard errors for MI and
MIMP to be uniformly larger because these approaches
take into account both the uncertainty due to imput-
ation and that due to propensity score estimation. How-
ever, the single imputation approaches, which take into
account only uncertainty due to propensity score estima-
tion, had similar standard errors. This finding could be
due to our choice of 20 imputations given that previous
research has shown that as the number of imputations
increases, the standard errors decrease [32]. Given that
our results did not indicate differences in bias or SEs be-
tween the multiple and single imputation approaches,
the single imputation approaches may be preferred due
to their simplicity. Among the multiple imputation ap-
proaches, we recommend the use of MI over MIMP due
to the implementation issues of needing to combine
missingness patterns with too few observations. We do
not recommend using GBM with incomplete data using
the surrogate split method. Rather, imputation should be
done prior to using GBM. We also do not recommend
using treatment mean imputation.
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