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Abstract: With the increasing popularity of electric vehicles, cable-driven serial manipulators have
been applied in auto-charging processes for electric vehicles. To ensure the safety of the physical
vehicle–robot interaction in this scenario, this paper presents a model-independent collision local-
ization and classification method for cable-driven serial manipulators. First, based on the dynamic
characteristics of the manipulator, data sets of terminal collision are constructed. In contrast to
utilizing signals based on torque sensors, our data sets comprise the vibration signals of a specific
compensator. Then, the collected data sets are applied to construct and train our collision localization
and classification model, which consists of a double-layer CNN and an SVM. Compared to previous
works, the proposed method can extract features without manual intervention and can deal with
collision when the contact surface is irregular. Furthermore, the proposed method is able to generate
the location and classification of the collision at the same time. The simulated experiment results
show the validity of the proposed collision localization and classification method, with promising
prediction accuracy.

Keywords: physical vehicle–robot interaction; cable-driven manipulator; collision localization;
collision classification; model-independent method; automatic feature extractor; compensator

1. Introduction

A recent trend in service robot research has emerged from the motivation of using
robots in human-centered environments to develop robot assistants for use in human daily
life and to automate certain processes and tasks that may be inconvenient for us as humans
to perform [1–3]. Today, electric vehicles (EVs) are becoming increasingly popular in our
daily lives, which brings potentially new scenarios applying service robots. Amid numerous
service scenarios for EVs, the inconvenient EV charging connection scenario, which depends
on manual operation, prompts researchers to think about realizing an automatic charging
service for EVs with robots [4–6], which can promote the entire automation of EVs in the last
mile with auto valet parking (AVP) technology. Among the many types of robots that can
be applied in the automatic charging realm for EVs, cable-driven serial manipulators are of
great interest to researchers due to their lightweight structure, large reachable workspace
and potentially low cost [6,7].

In the EV automatic charging scenario applying robot assistants, safety issues are
of primary concern. Similar to the emphasis of collaborative robots on human–robot
safety in physical human–robot interaction (pHRI) [8], vehicle–robot safety should be
considered in physical vehicle–robot interaction (pVRI). In the automatic charging process,
contact between vehicles and robots is inevitable. The intentional contacts desired by the
charging tasks, such as connecting charging plugs and charging ports, are usually quite safe.
However, due to existing errors of positioning sensors after long-term service, accidental
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collisions, which lead to damage to vehicles, may occur. In this context, distinguishing
intentional contacts from accidental collisions and problems related to the reaction after
collision should be paid great attention. Unfortunately, to date, there is very limited
research on these aspects in pVRI.

In pHRI, thus far, numerous studies on collision problems have been carried out, which
can inspire solutions in collision handling in pVRI. In [9], a collision event handling pipeline
is proposed. Based on the pipeline, a typical collision event handling procedure can be
divided into three strategies, namely pre-collision phases, the intermediate process and post-
collision phases. The expansion of such strategies involves various subphases, including
collision avoidance [10–12], collision detection [13,14], collision localization [15,16], collision
identification [17,18], collision classification [19] and collision reaction [20]. In the automatic
charging scenario, the vehicles are usually stationary. In general, estimating the location of
the collision and identifying whether the collision is accidental or intentional can provide
more effective information for subsequent robot response in this scenario. Considering the
mentioned conditions, this paper focuses on the collision localization and classification
(CLC) problems of the end effector of the cable-driven robot, on which a feasibility study
has been carried out in the field of EV automatic charging [6].

Different approaches for the individual component of CLC have been presented in the
literature. Existing localization strategies can be divided into two subclasses [21]: model-
based and model-independent methods. In model-based methods, a reduced model with
respect to the actual system is usually constructed as the observer, which is applied to
monitor the state of the actual system. A joint velocity observer is a typical observer-based
method [9]. The core idea of this method is to construct a virtual model to estimate the joint
velocity dynamically. Additionally, the same scheme is regarded as a disturbance observer,
which can monitor the unknown external joint torque. However, the inverse inertia matrix
is introduced in the construction of the filter equation of the observer, which leads to
dynamic coupling and nonlinearity. This characteristic of the filter will lead to a poor
localization effect. To avoid the inverse of the robot inertia matrix, in [20,22], generalized
momentum observers in the monitoring methods are introduced. This scheme eliminates
the need for an estimate of joint accelerations, which will introduce noise in the final
results, and can decouple the estimation results. In other words, the final filter equation of
the observer is a stable, linear, decoupled, first-order estimation of the external collision
joint torque. Thus, compared with the joint velocity observer, the generalized momentum
observer is more sensitive and effective.

However, model-based methods, to some degree, can achieve the collision localization
of the motor-direct-driven robot effectively, such as localizing a single contact on one link
and localizing multiple contacts on different links [23]. Nevertheless, existing model errors
and disturbances from robot joint actuators may affect the accuracy of these methods in
practice, especially when the contact points are located closely on the same link. Further-
more, for cable-driven robots of which the actuators and joints are separated from each
other by a large distance [6,24], using signals from actuators and joints may introduce
more delay in the collision localization of the end of the robot. Meanwhile, due to the
requirement of commanded torques in model-based methods, for robots with passive joints,
they are generally ineffective.

In model-independent methods, sensitive skins can be used to achieve effective colli-
sion localization [25,26]. This method converts contact forces into electrical signals, which
results in high sensitivity for collision localization. The drawback of this approach is
that the skins are difficult to deploy globally, and in harsh environments, where frequent
contacts are required, the service life of such skins will be reduced. To date, benefiting
from the progress in machine learning (ML), localization algorithms based on a neural
network (NN) [17,21], a support vector machine (SVM) [27] or a fuzzy system [28] have
greatly promoted the development of model-independent methods. However, according
to “no free lunch Theorems” [29], the effectiveness of methods based on machine learning
may be influenced by specific tasks, application scenarios and platforms.
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As another individual component of CLC, collision classification, which is a significant
issue in pVRI, however, lacks sufficient attention in pHRI, compared to the other compo-
nents. Nowadays, there are two kinds of solutions to this task in pHRI, i.e., ML-based [19]
and observer-based methods [30]. These two methods focus on either distinguishing hu-
mans’ intentional contact from accidental collision or differentiating humans from other
items, in which the variation in the external active force inputs of humans can be the crite-
rion. However, this criterion is usually not suitable for pVRI, especially in auto-charging
scenarios, where vehicles remain static. To the best of the authors’ knowledge, few relevant
studies have been conducted in this context.

The rest of this paper is organized as follows: Section 2 summarizes the related work
and clarifies the main contributions of this paper. Section 3 describes the accidental collision
in the auto-charging process and the vibration modeling of the cable-driven manipulator
in the case of collisions occurring on the end effectors. Section 4 introduces the overall
scheme of the collision data collection and labeling. Section 5 presents the architecture of
our proposed CLC method. In Section 6, the proposed method is validated in simulated
experiments with a specific cable-driven manipulator, and the discussion of the results is
also presented. Finally, Section 7 concludes the paper.

2. Related Work

Recently, more work has tended to formulate CLC as a classification problem for
different kinds of time series [17,21]. In the present study, a machine learning method based
on artificial feature extraction proved effective in dealing with some simple collision local-
ization and classification problems where the analyzed signals have obvious differences,
such as identifying which link of the manipulator the collision occurs on, and determining
whether the collision is intentional or accidental in pHRI. However, when the collision
locations to be identified are very close and the analyzed signals are highly similar, the
above method may not be able to perform well. Since deep learning methods based on
automatic feature extraction show promising results in addressing time-series classification
problems, a large amount of related work can also provide inspiration for solving such CLC
problems, such as physical examination using ECG [31–33], EEG pattern analysis [34,35]
and the fault diagnosis of rolling bearings [36,37]. In these applications, the automatic
extractor is usually composed of deep networks such as deep CNN or multilayer LSTM.
As is well known, the depth of the network can influence the performance of the models
to some degree. In general, the deeper the network, the better the classification ability.
However, too many layers usually mean high training time costs.

With the development of transfer learning, using deep networks as extractors com-
bined with traditional machine classifiers has been applied in many fields. In [38], a
pre-trained GoogLeNet is applied as the extractor for brain MRI images, and the SVM and
kNN are used as classifiers. The results show that the effect of the combination is promis-
ing compared with using pre-trained GoogLeNet alone. Similarly, in [39], a pre-trained
VGG-16 combined with the SVM also achieves excellent results on the pulmonary nodule
classification task. Applying a pre-trained model as a feature extractor can reduce the
training time to some extent. However, these schemes do not change the high cost and high
memory footprint characteristics of such models in application. For robots with a lower
cost in general, such methods are not friendly enough. On the other hand, the input form
required by the transfer models should correspond to their own structures. It is usually not
flexible enough for cases where the input form required by the scenario and the input form
required by the transferred model are inconsistent. Although the above methods have some
limitations, it is indeed enlightening that a combined model can achieve better results in
some tasks. Based on this idea, a model combining a simple convolutional neural network
with the SVM is designed for CLC problems in the pVRI scenario, which can use raw data
directly, without additional transformation, and is relatively computation-cost-effective.
The main contributions of this paper are as follows:
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1. Vibration signals of the elastic compensator were first introduced to realize CLC for
the end effector of the cable-driven manipulator in the EV auto-charging process.

2. Unlike other works using torque sensors at the end of the manipulator, our data were
collected using an IMU installed on the end effectors. In more detail, the end effector
of the platform that we used for data collection was connected to the manipulator
using an elastic compensator, and thus, the collected signals mainly contained the
vibration information coming from the compensator when collision occurred.

3. A quantitative description method was first proposed for the contact position in the
collision in the EV auto-charging scenario, which is called the collision point. By
using this description method, the contact position can be clearly described when the
contact surface is irregular, which is useful for collision data labeling.

4. An automatic feature extraction method combining a simple CNN with the SVM was
proposed to realize collision classification and localization at the same time, which is
able to isolate the influence of joint configurations on the prediction. Considering the
input of the model, there is no need to covert time series into images, and raw data
can be directly used.

3. Accidental Collision Illustration and Vibration Modeling

This section addresses accidental collisions during charging processes and the vibra-
tion presentation of the manipulator after contact occurrence. The equipment that we are
concerned with here is a planar 3-DOF cable-driven manipulator with a slide platform at
the bottom [6]. To satisfy the requirement of charging, an elastic compensator, which was
used to connect the charger to the manipulator, was installed at the end of the manipulator.

3.1. Accidental Collision Illustration

As shown in Figure 1, the whole charging process can be divided into four stages:

1. Charging port localization;
2. Movement of the charger to the pre-insertion place;
3. Inserting the charger into the charging port;
4. Pulling out the charger, which is an inverse process relative to Stage 3.
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inserting the charger into the charging port or plugging out the charger.

Due to the fact that abnormal insertion processes may cause fatal destruction, among
these four stages, we focus far more on the second and the third stages. According to our
insertion strategy, in the second stage, the end effector of the manipulator moves close to
the pre-insertion place, which is calculated using the localization system in the first stage.
Generally, in the stable state of the second stage, the charger usually maintains a certain
distance from the charging port. In the third stage, the charger will be inserted into the
charging port in a straight line at a constant speed. However, in these two processes, the
precision of localization system calibration, the positioning accuracy of the localization
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system and the tension of the cables in the motion may seriously affect the final insertion
accuracy. The factors mentioned above usually worsen after long-term service, and then
accidental collisions will occur.

There are multiple possible scenarios of accidental collisions on different parts of
vehicles during charging processes. In this paper, we only focus on the collisions occurring
around the charging port due to a lack of insertion precision. These accidental collisions
can be broadly divided into two cases:

1. The first case is that, when the central axis of the charger and the central axis of the
charging port are not collinear, after the contact between the charger and the charging
port, the charger can still slide into the charging port, and the deflection angle of
the elastic compensator is small, which will not cause plastic deformation of the
elastic compensator;

2. The second case is that, when the deviation between the central axis of the charger and
the central axis of the charging port is too large, after the contact between the charger
and the charging port contact, the charger cannot be inserted into the charging port, or
even if it can be inserted, plastic deformation occurs easily in the elastic compensator,
which will cause permanent damage to the end effector.

In practice, Case 1 is usually acceptable, while Case 2, which may cause permanent
damage to the system, should be avoided. According to the above description, the standard
to distinguish the above two cases is the deviation between the central axis of the charger
and the central axis of the charging port. Different deviations may affect the degree
of the damage of the end effector after collision, and, in general, the acceptable range
of the deviation depends on the current industry standards [40] and the compensation
capability of the compensator. Furthermore, due to the fact that the deviations affect our
data collection scheme, the relative context will be illustrated in detail in Section 4.

3.2. Vibration Modeling of the Manipulator

In this paper, collision analysis was carried out based on the vibration signals of the
compensator. As shown in Figure 2, an Inertial Measurement Unit (IMU) fixed on the
top of the charger was used to collect the vibration signals coming from the compensator
indirectly, which contained 3-axis acceleration and 3-axis angular velocity.
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It is worth noting that the collected vibration signals also contain the vibration infor-
mation from other parts of the manipulator, of which the influence should not be ignored.
In order to consider the above influence on terminal collision signal collection, the vibration
modeling of the manipulator without the end effector should be analyzed. During the
insertion stage, the slide platform is fixed at a certain place. Thus, as shown in Figure 3, the
model of the manipulator can be simplified as a planar 3-DOF cable-driven manipulator.
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Elastodynamic analysis is an effective method for dealing with the vibration of the
kinematic chain mechanism [21,41]. In this method, critical mechanical components can be
simplified with stiffness, viscous and mass parameters. Thus, at the moment of a low-speed
collision, the dominant vibration structures of the N-DOF cable-driven manipulator can be
considered as elastic bodies with certain stiffness and viscous coefficients when the cables
are in tension.

As in the case mentioned above, we consider a planar N-DOF manipulator with n
dominant vibration structures composed of cables and joints. Its axis displacement vector
can be defined as:

q =

[
qD
qJ

]
∈ R2N (1)

where qD = [q1, q2, . . . , qn]
T is the vibration deviation, and qJ = [qn+1, qn+2, . . . , q2n]

T

denotes the joint displacements. In a low-speed process, we assume that the equilibrium
point of the deviation is qJ . The dynamic equation of the manipulator can be written as:

M(q)
..
q + C

(
q,

.
q
) .
q + G(q) =

[
τD

τC + τf

]
(2)

The variables τD, τC and τf denote the joint torque generated by structure defor-
mation, cables and friction, respectively. Meanwhile, joint torque generated by structure
deformation can be represented as follows:

τD = Kp
(
qJ − qD

)
− Kv

.
qD (3)

where the Kp and Kv matrices denote the stiffness and viscous coefficients of the dominant
vibration structures, respectively.

We assume that the feedback control loop can compensate for the gravity and friction,
and the Coriolis and centrifugal effects caused by structure deformation can be ignored.
Furthermore, in low-speed movement, qD is usually much smaller than qJ . Hence, the
inertia matrix M(q) is mainly determined by qJ . Then, the detailed form of the dynamic
function of the manipulator can be expressed as follows:[

τC
τJ

]
=

[
M
(
qJ
)

0
0 M

(
qJ
) ][ ..

qD..
qJ

]
+

 0 CD

(
qJ ,

.
qJ

)
0 CJ

(
qJ ,

.
qJ

) [ .
qD.
qJ

]
+

[
JT
D

JT
J

]
Fext (4)
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where Fext, JT
D and JT

J denote the collision torque vector and the contact Jacobian matrix
to dominant vibration structures and cables, respectively. Then, substituting (1) into (2),
we have[

0
τJ

]
=

[
M
(
qJ
)

0
0 M

(
qJ
) ][ ..

qD..
qJ

]
+

[
Kp
0

]
(qJ − qD) +

 Kv CD

(
qJ ,

.
qJ

)
0 CJ

(
qJ ,

.
qJ

) [ .
qD.
qJ

]
+

[
JT
D

JT
J

]
Fext (5)

Denoting y1 = qD − qJ , x1 =

[ .
qD −

.
qJ

qD − qJ

]
, and y2 =

.
qJ , x2 =

[ .
qJ
qJ

]
, we can then

obtain the state–space equation as follows:
.
x1 = A1x1 + B11y2 + B12Fext.
x2 = A2x2 + B21u + B22Fext

y1 = C1x1
y2 = C2x2

(6)

where u is the active torque generated by cables. In a low-speed movement, when the
system is subjected to external shocks, it is assumed that

.
qD �

.
qJ and

..
qD �

..
qJ . Then, the

related parameter matrix can be expressed as follows:

A1 =

[
−M

(
qJ
)−1Kv −M

(
qJ
)−1Kp

I 0

]
,

A2 =

[
−M

(
qJ
)−1CJ 0

I 0

]
,

B11 =

[
−M

(
qJ
)−1CD

0

]
,

B12 =

[
−M

(
qJ
)−1 JT

D
0

]
,

B21 =

[
−M

(
qJ
)−1

0

]
,

B22 =

[
−M

(
qJ
)−1 JT

J
0

]
,

C1 =

[
0
I

]T

,

C2 =

[
I
0

]T

(7)

Then, the transfer function from Fext to y1 can be expressed as follows:

P(s) =
Y(s)
F(s)

= C1(sI − A1)
−1[B12 + B11C2(sI − A2)

−1B22] (8)

Due to the fact that the inertial matrix is positive definite, we can deduce that
rank(A1) = 2n and rank(A2) = n. Then, according to the conclusion of [21], the nat-
ural frequency of vibration along the manipulator is determined by the eigenvalues of A1
and A2. With regard to the cable-driven manipulator, M

(
qJ
)
, Kv and Kp are related to the

joint displacement. This means that the natural frequency of the system will vary with the
joint displacement. Thus, when collecting vibration signals, the joint configuration should
be considered.

4. Data Collection and Labeling

In this section, we introduce the overall data collection and labeling scheme. To collect
reasonable collision information, collision position description is necessary. When the
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charger and the charging port collide, the contact surface is usually irregular. Thus, it is
difficult to describe collision positions and label collected vibration signals according to
actual contact surfaces. To solve the problem above, we used the collision point, which is
the intersection of the charger central axis and the front of the charging port, to represent
the collision position. In our case, we focused on the situation in which the charger’s central
axis is perpendicular to the front of the charging port before collision occurs.

4.1. Data Collection Scheme

In this paper, collision points were designed by introducing artificial systematic de-
viations into the center axis alignment status, in which the charger’s central axis and the
charging port’s central axis were collinear. Considering the influence of the joint con-
figuration at the moment of collision, we divided the collision points into four groups
based on the differences between the joint configurations. Theoretically, the generalized
joint configuration, among which the displacement of the slide platform is considered,
maps the collision point in a one-to-one way. Thus, the joint configuration of the central
axis alignment status can be regarded as the standard of group division. Meanwhile, in
order to ensure the consistency of group division, we chose the joint configuration of the
pre-insertion state, instead of that at the moment of collision, as the standard of group
division. As shown in Figure 4a, in the experiment, the joint angle was zero when the
two flanges of one joint were parallel. As shown in Figure 4b, the joint angle generated by
clockwise rotation of the joint was defined as positive. According to the above definition,
the joint configurations of the four groups are listed in Table 1.
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Table 1. The joint configurations of different groups.

Group Number Joint Number Joint Angle (◦)

G1
qJ1 −25.1
qJ2 27.1
qJ3 −1.9

G2
qJ1 −16.9
qJ2 13
qJ3 3.8

G3
qJ1 −15
qJ2 0.84
qJ3 14.1

G4
qJ1 −32.6
qJ2 37.7
qJ3 −5.04

To construct a data set for the proposed CLC method, we needed to design a collision
domain for the experiment. Here, the collision domain was set as a 9-mm-diameter circle,
as shown in Figure 5a, of which the center was the center of the front of the charging port.
According to Case 1 and Case 2 mentioned in Section 3, the collision domain can be divided
into two subdomains: the acceptable domain and the vulnerable domain. The sizes of
these two subdomains were both defined based on practical experience. In our design,
the diameter of the acceptable domain was set to be 2 mm and the rest of the collision
domain was the vulnerable domain, as shown in Figure 5a. In the whole collision domain,
53 collision points in each group were designed, as shown in Figure 5b. In the acceptable
domain, 5 points were set, among which four green points were defined as acceptable points.
The red center point here was defined as the normal point, referring to the situation in which
the charger can be plugged into the charging port without any collisions before the charger
comes into contact with the inner cavity of the charging port. To illustrate, center points in
different groups were translated into the same coordinate system here. In the following, we
distinguish them by group numbers. In the vulnerable domain, continuous contact after
impact may cause great damage to the system. In this domain, 48 collision points were set,
which were defined as vulnerable points. The above three cases could also be defined as
contact against the situation called free, where no collisions occurred during the movement.
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4.2. Segment and Labeling Scheme

In the experiment, consecutive collisions were conducted for one collision point in
each group. One sample collected in this way contains information on multiple collisions.
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Thus, the signal in one sample should be split into different segments, among which each
single segment maps one single collision for a collision point. We denote the length of
the segments as l and the effective period as ep, with the unit of ms. Effective period
indicates the time period that could be used to effectively analyze the collision. To be
able to include the information of the transition from the free state to the impact in the
effective period, the effective period should start slightly before the occurrence of contact,
which is defined as the pre-collision period. Considering that there is continuous contact
after an impact, the ending position of the effective period changes corresponding to the
influence of the continuous contact on the validity of the analysis. In general, l determines
how much signal information is included in segments, and it should be long enough so
that a high-quality effective period can be extracted from segments. Here, we obtained
0 ≤ ep ≤ l. Nevertheless, an overlarge length may involve irrelevant signals, which lead
to poor generalization ability and cause higher computing costs. In practice, the lengths
of the segment and the effective period are mainly determined by engineering experience.
Furthermore, in order to explore the influence of data length on the CLC method, a bias b
was introduced to represent the sample length in ep, resulting in 0 ≤ b ≤ ep.

In this paper, the l of the segments was pre-determined as 666.7 ms. With the sample
rate of 1500 Hz, l represents 1000 sample points. To determine the value of ep, we inspected
the waveform of the pVRI signals presented in Figure 6. From Figure 6a, we can see
that obvious vibration was excited by friction between the charger and the charging port
200 ms after the initial impact, especially in the vulnerable case. In order to obtain sufficient
post-collision contact information, ep in the vulnerable point case was set as 333.3 ms, among
which the pre-collision period was designed as approximately 20 ms so that the transient
characteristics of the collisions could be captured without introducing too much irrelevant
information into the system. To ensure the consistency of the length of input data, in cases
of both an acceptable point (Figure 6b) and normal point (Figure 6c), the same strategy as
above was used. For collision classification, as shown in Figure 6d, we also created signal
segments without any collision and labeled them as free.
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Contact and free mentioned above are proposed for collision classification. Based
on the different possible results after collision, contact can also be divided into acceptable
contact and vulnerable contact. The former corresponds to the normal point and acceptable
point, and the latter corresponds to the vulnerable point. It should be noted that in this
scenario, collision classification analysis is based on the deviation, and the estimation of
the deviation is based on collision localization. In other words, collision localization is
the basis of collision classification here. Thus, it is necessary to label collision points in
more detail for collision localization. In order to better explore the collision localization
ability of the proposed method, two cases are discussed here: (1) collision localization in
the circumferential direction; (2) collision localization in the radial direction. To illustrate,
we define the prefix of the label in these two cases as C and R, respectively. The final label
is composed of the prefix mentioned above and the number in Figure 7. According to the
above definition, in Case 1, the vulnerable points were labeled counterclockwise as C1-C8,
as shown in Figure 7a, which means that the points in the same radial direction were
labeled with the same class. As for the acceptable domain, we were more concerned with
the difference between the acceptable domain and the vulnerable domain, so the collision
points in the acceptable domain were not labeled along the circumference. Specifically, the
normal point was labeled as C10, and four acceptable points were labeled as C9. Free was
labeled as C0 in this case. Similarly, in Case 2, vulnerable points were labeled as R3-R8, as
shown in Figure 7b, which means that the points on the same cycle were labeled with the
same class. For the same reason as in Case 2, four acceptable points were labeled as R2, the
normal point was labeled as R1, and free was labeled as R0. At this point, two data sets
based on the different annotation methods were established.
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5. Methodology for CLC
5.1. Theoretical Basis
5.1.1. Convolutional Neural Network

The convolutional neural network was first proposed by Le Cun in 1989 [42] and,
recently, has been widely applied in many fields, such as face recognition [43], path detec-
tion [44] and fault diagnosis [45]. Moreover, due to the excellent feature extraction ability
of CNN, outstanding performances have been shown in all these fields.

The standard convolution operation on the N-dimensional time series is shown in
Figure 8. Assuming that the length of the time series is Ls, the convolutional layer will take
the input as a N × Ls feature map F. Assuming a stride of 1 and ignoring padding, the
output feature map can be expressed as:

Om,n = ∑
i,j,c

Ki,j,c·Fm+i−1,n+j−1 (9)

where Ki,j,c, Om,n and Lk denote the element in the ith row and jth column of the cth
convolution filter, the element in the mth row and nth column of the output matrix and the
size of the convolution filter, respectively, m = 1, . . . , Ls − Lk, n = 1, . . . , N − Lk. Note
that each convolution filter is applied to all the input. The output results of each filter in the
same position are superimposed together to form the new feature. All these new features
are usually taken as the input of the next layer.

In general, learning results tend to become better as the depth of the network increases.
However, stacking more layers usually means higher costs. In industrial applications,
sometimes, a trade-off may be needed between network depth and learning effect according
to the actual situation.
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5.1.2. Support Vector Machine

The support vector machine (SVM) was originally introduced by Vapnik [46]. It is a
very powerful machine learning method that is based on the structural risk minimization
principle. For two-class classification problems, it is applied to find an optimal hyperplane
with the maximum margin between the support hyperplanes of different classes. As
followed by the structural risk minimization principle, it can effectively reduce overfitting
and improve model generalization ability [47].

For convenience, a two-class classification problem is used to illustrate the classifica-
tion process. We assume the following data set:

C = {(x1, y1), (x2, y2), . . . , (xn, yn) } (10)

where (xi, yi) is the ith data point, xi ∈ Rn is the ith feature vector, which is regarded as the
input of the model, and yi ∈ {−1,+1} is the ith class label. Assuming that the above given
data set is linearly separable and addressing the corresponding QP problem by interval
maximization, the separating hyperplane of the SVM can be expressed as follows:

w·x + b = 0 (11)

and the classification decision function can be expressed as follows:

f (x) = sgn((w·x) + b) (12)

where w ∈ Rn is the vector that is normal to the separating hyperplane and b ∈ R is a
bias term.

However, nonlinear signals are generated after robot collisions and these signals
are usually linearly inseparable. To deal with the above problem, the kernel trick was
introduced into the SVM. The idea of the kernel trick is to map linearly inseparable data
into a new space where the transformed data can be linearly separated. Additionally, the
linearly classification method could then be applied to train the data.

Moreover, to address multi-class classification problems, partitioning strategies [48]
were introduced into the SVM, which includes one-verse-one (OVO), one-verse-rest (OVR)
and rest-verse-one (RVO). Among these strategies, OVR is the most commonly used. For
an N-class classification task, OVR converts the task into a series of binary classification
tasks in which the data of any class and the remaining data of (N-1) classes are regarded
as two new classes, respectively. In this way, multi-class classification problems can be
handled by the SVM.
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In recent years, the SVM has already achieved excellent performance in many appli-
cations, such as image classification [49], pedestrian detection [50] and pattern classifica-
tion [51]. However, traditional training processes rely more on manual feature design,
which requires expert experience. Moreover, using similar signals to deal with different
problems often requires different artificial features. This also poses great challenges to the
training process.

5.2. CLC Method Based on CNN and SVM

In this paper, we propose a CLC method composed of a double-convolutional-layer
CNN and SVM (DCNN–SVM). The structure of the DCNN–SVM is shown in Figure 9. The
structure was divided into two parts: a feature extractor and a classifier. In the feature
extraction part, the convolutional layers had 64 3×3 filters. A stride of 1 was set for the
convolutional layers. A 2×2 max pooling layer with the stride of 1 was introduced behind
each convolutional layer to down-sample the input representation. Additionally, this is
helpful in preventing overfitting to some degree. The activation function was applied
on the output of the convolutional layers to introduce nonlinear factors into the model
and improve the ability of the model to process nonlinear data. Here, the ReLU function
was chosen as the activation function. The output of the final max pooling layer was
flattened and then entered into the fully connected layer. The feature extraction part ended
with an M-way fully connected layer and an N-way fully connected layer with softmax.
The optimal parameters of the feature extractor were selected according to the prediction
accuracy of the model on the validation set. In the classification part, the training data
need to be extracted by the trained feature extractor, of which the parameters do not
vary with training. As shown in Figure 9, the part in the yellow box is the final feature
extractor. It is worth noting that the flattened data were not directly used as the extracted
features as an excessive feature dimension will result in a high computation cost of the
SVM. The fully connected layer was applied at the end of the extractor to reduce the feature
dimension. Additionally, the extracted features were then regarded as the input to train the
SVM classifier.
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Since DCNN–SVM is a combination of the DCNN and SVM, the computational
complexity of the DCNN and SVM should be first analyzed separately, and then the
results should be combined to represent the total complexity of DCNN–SVM. The total
computational complexity of all convolutional layers can be expressed as follows [52]:

O

(
d

∑
l=1

nl−1·s2
l ·nl ·m2

l

)
(13)

where d is the number of convolutional layers and l is the index of a convolutional layer.
nl is the number of filters in the lth layer, sl is the spatial size of the filter, and ml is the
spatial size of the output feature map. Considering a fully connected neural network layer
with I input nodes and M output nodes, the computational complexity can be described
as O(IM) [53]. In terms of the SVM, given an input matrix XεRc×h representing the
coordinates of c points in h dimensions, the computational complexity can be expressed as
O(max(c, h)min(c, h)2) [54]. Therefore, the computational complexity of DCNN–SVM can
be expressed as follows:

O

(
2

∑
l=1

nl−1·s2
l ·nl ·m2

l + IM + max(c, h)min(c, h)2

)
(14)

6. Simulated Experiment and Results
6.1. Implementation

As shown in Figure 10, in the experiment, all the data were collected using the IMU
mounted on the top of the charger. The charger was connected with the cable-driven
manipulator using the compensator. Due to the very small deformation of the charger
after collision, the collected data mainly included the vibration information from the
compensator and the cable-driven manipulator. The manipulator was controlled using the
PI scheme designed in [6], which includes two controllers controlling motors and cables,
respectively. In the collision simulation experiment, the end effector of the manipulator
moved in a straight line at a speed of 16.7 mm/s.
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In terms of the quantity of data collection, in order to reduce the impact of repeated
positioning errors of the manipulator on the results, in each group, each normal point was
collected 40 times. For the same reason, each acceptable point and each vulnerable point were
collected 30 times, respectively. Meanwhile, due to the obvious characteristic differences
between contact and free, as shown in Figure 6, not too many free samples were needed. The
ratio of free and contact samples was set as 1:2 in the experiment. The sample distribution in
each group is listed in Table 2. To explore the influence of different joint configurations on
the results, one group was randomly selected as the testing data set, which is never used in
a single training process. The remaining three groups were shuffled and divided into the
training data set and validation data set in a ratio of 8:2.

Table 2. The distribution of the collected data set.

Group Number Normal Acceptable Vulnerable Free

G1 40 120 1440 800
G2 40 120 1440 800
G3 40 120 1440 800
G4 40 120 1440 800

To illustrate the effectiveness of the proposed DCNN–SVM algorithm, we compared
the results with a long short-term memory (LSTM) model [55] and the plain CNN in
DCNN–SVM. These three methods were essentially automatic feature extraction methods,
and the inputs were generated by normalizing the raw signals. For the DCNN–SVM, of
which the structure is illustrated in Figure 9, M was set as 1024, and N was set as equal to
the total number of the classes. For maxpooling layers in DCNN–SVM, the stride was set as
2 and the padding method was set as “same”. For the SVM in DCNN–SVM, by grid search,
the penalty coefficient was set as 6 and the kernel was set as “rbf”. The learning rate was
set as 0.0001, and the optimizer of the extractor part was set as Adam. For the CNN model
design, its parameters were set as consistent with those of the DCNN–SVM. Thus, we refer
to the plain CNN as DCNN here. For the LSTM model design, the structure is composed of
an LSTM layer, three fully connected layers and finally a softmax layer. The LSTM layer
was set as the first layer. The number of the hidden units of the LSTM layer was set as
110. The LSTM layer converted the initial input into the high-dimensional output feature
matrix. The output of the LSTM layer was flattened and then fed into three fully connected
layers whose sizes were 5000-way, 500-way and N-way, respectively. N was equal to the
number of the classes. The learning rate was set as 0.0001, and the optimizer was set as
Adam. All these three models were trained and tested using the Tensorflow 2.0 library.
Other than the above two comparison models, the results of our proposed model were
also compared with SVM and k-nearest neighbors (kNN) models, which are both artificial
feature extraction methods. The features selected in these two models are similar to those
in [17]. In more detail, the features are listed in Table 3. In addition, using the grid search
method, the penalty coefficient of the SVM here was set as 10. Using the same method, for
kNN, the number of neighbors was set as 7, the leaf size was set as 1 and “distance” was
chosen as weights. To test these two models, we used the machine learning library from
scikit-learn. To clearly describe the hyper-parameters of the mentioned methods, relative
settings are listed in Table 4.
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Table 3. Manual features for training kNN and SVM models.

Features in the Time Domain Features in the Frequency Domain

Mean value Mean frequency
Variance Fundamental frequency
Skewness Spectral amplitude corresponding to mean frequency

Kurtosis Spectral amplitude corresponding to fundamental
frequency

Standard deviation Phase angle corresponding to mean frequency
Median value Phase angle corresponding to fundamental frequency
Extreme range Crest factor

Extreme deviation Average signal angle
Energy increasing rate -

Table 4. Settings of the hyper-parameters of the compared models.

Model Hyper-Parameters Settings

DCNN–SVM

Kernel size 3× 3
Striding and padding 2, “same”

Learning rate 0.0001
Mini-batch size for training 32

Optimizer Adam
Loss function Cross-entropy

Maximum epochs 70
Kernel of the SVM RBF

Penalty coefficient of the SVM 6

DCNN

Kernel size 3× 3
Striding and padding 2, “same”

Learning rate 0.0001
Mini-batch size for training 32

Optimizer Adam
Loss function Cross-entropy

Maximum epochs 70

LSTM

Number of hidden units 110
Learning rate 0.0001

Mini-batch size for training 32
Optimizer Adam

Loss function Cross-entropy
Maximum epochs 70

SVM
Kernel of the SVM RBF

Penalty coefficient of the SVM 10

KNN
Number of neighbors 7

Leaf size 3
Weights “distance”

As mentioned in Section 5.2, the computational complexity of the DCNN model can
be expressed as follows:

O

(
2

∑
l=1

nl−1·s2
l ·nl ·m2

l + IM

)
(15)

On the other hand, the computational complexity of LSTM mainly depends on the
number of weights per time step and the length of inputs. Given a number of weights w
and the length of inputs i, the complexity of the LSTM layer can be expressed as O(wi).
Considering the fully connected layers, the complexity of the compared LSTM model can be
expressed as O(wi + IM). Furthermore, given the number of training instances g and the
dimensionality of training space k, the computational complexity of kNN can be expressed
as O(gk) [56].
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In this experiment, we used three cross-validation to train and validate models. Accord-
ing to the accuracy of the validation results, we chose the best models in the DCNN–SVM,
CNN and LSTM methods. For the SVM and the kNN models, we used the grid search
method to obtain the optimal hyper-parameters. For each group, the process was repeated
three times, and the results from each testing set were averaged. To explore the influence of
b on the prediction results, we also created several test sets with various b values, which
represented the segmented vibration signals with different proportions of ep. Here, we set
0.0667 s ≤ b ≤ 0.3333 s and the interval was set as 0.0133 s.

6.2. Results and Discussion

To illustrate, we define the situation shown in Figure 7a and the situation shown in
Figure 7b as Case 1 and Case 2, respectively. The accuracy scores of the testing data sets
with different b values are illustrated in Figure 11. In both cases, the automatic feature
extraction methods performed much better than the artificial feature extraction methods,
including the SVM and the kNN methods. The maximum accuracy scores of the two
artificial feature extraction methods were lower than 85% in Case 1 and lower than 80% in
Case 2. In contrast, the minimum accuracy scores of the three feature extraction methods
were higher than 90% in Case 1 and higher than 80% in Case 2. Among the three automatic
feature extraction methods, the DCNN–SVM worked best with various b values. As shown
in Figure 11a, when b ≤ 0.175 s, the accuracy scores of the three automatic feature extraction
methods increased rapidly with the increase in the b value. When b > 0.175 s, the accuracy
scores tended to be stable. As shown in Figure 11b, when b ≤ 0.25 s, the accuracy scores
of the three automatic feature extraction methods increased rapidly with the increase in
b values. When b > 0.25 s, the accuracy scores tended to be stable. In both cases, in the
stage of rapid growth in accuracy, the LSTM model performed poorly compared with the
DCNN and the DCNN–SVM models, while, in the stage of accuracy tending to be stable,
the LSTM model showed a similar effect to the DCNN and the DCNN–SVM models. To
some extent, this means that the feature extractor that does not pay too much attention
to time features has a better effect when collision information is insufficient. The reason
for the above results is that the vulnerable and acceptable domains were divided based
on spatial location. In the actual collision process, the contact mode of the two domains
in the early stage of the collision was highly similar, so the collision signals of the two
domains were also extremely similar in a very short period after collision, as shown in
Figure 6. Therefore, it is difficult to extract sufficient effective features that can distinguish
this similarity using the artificial feature extraction method, as corroborated by the results.
In contrast, the features extracted by automatic feature extraction methods have higher
dimensions, and therefore the possibility of extracting effective features is greater. However,
it should be noted that at the early stage of collision, vibration signals have a high variation
frequency, and sufficient time-related information may be not able to be obtained at the
current sampling frequency. Thus, excessive attention to time-related features may make
the model more sensitive to the specific features of some samples, resulting in a decrease in
the generalization ability of the model. This is also related to the poorer performance of
LSTM compared with the other two models when there is less collision information. Based
on this point, using DCNN alone is also an alternative choice for this CLC problem.
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Figure 11. (a) Comparison of accuracy scores in Case 1; (b) comparison of accuracy scores in Case 2.

The accuracy scores in different groups achieved by the DCNN–SVM model are shown
in Figure 12. Here, we choose the situation in which b = 0.3333 s and b = 0.0667 s. As
shown in Figure 12a,b, there were significant differences in the accuracy of different groups.
This means that the joint configuration has an impact on our proposed CLC method.
Furthermore, calculating the standard deviation of the accuracy scores of different groups
in both cases, we could deduce that when b = 0.3333 s, the standard deviations were
0.91% and 1.25%, respectively, in Cases 1 and 2, and when b = 0.0667 s, the standard
deviations were 1.3% and 1.42%, respectively, in Cases 1 and 2. This indicates that our
method is robust, to some extent, against the influence of different joint configurations.
Moreover, the smaller the b was, the smaller the standard deviation was, which reveals
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that sufficient collision information reduces the influence of the joint configuration on
the prediction results of the DCNN–SVM model. When b was the same, the standard
deviations were also different in these two cases. This means that the robustness of the
DCNN–SVM model on joint configurations varies in different CLC tasks. Furthermore, we
observed that the model’s performance in Case 1 was better than that in Case 2. This may
be because, when the collision occurred on the collision point in the same radial direction,
the direction of the resultant torque of the elastic compensator was more similar. In contrast,
the collision occurred on the collision point in the same circumferential direction, but could
not contribute the same property to the collision information. From the results, the situation
in which the model had a better CLC effect in the circumferential direction was Case 1,
which is consistent with the actual physical situation.
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Hereinbefore, the prediction results of the collision localization and the collision
classification have been discussed at the same time. Here, we conducted a more specific
analysis of the collision classification and the collision localization, respectively. We chose
the DCNN–SVM model with the best effect compared with other models as the analysis
object. The results above were averaged, and in the process, three models needed to
be trained to obtain each result. To illustrate, we chose one model from the three. The
confusion matrices of the collision localization and the collision classification in Cases 1
and 2 are shown in Figure 13a,b, respectively. In Figure 13a, as illustrated in Section 4,
C1 and C2 represent the situation when contact occurs in the acceptable domain, C3-C10
represent the situation when collision occurs in the vulnerable domain, and C0 represents
the situation when no contact occurs. In Figure 13b, R1 and R2 represent the situation
when contact occurs in the acceptable domain, R3-R8 represent the situation when collision
occurs in the vulnerable domain, and R0 represents the situation when no contact occurs.
The prediction precisions of the DCNN–SVM model for the three situations in both cases
are listed in Table 5. The precisions of free and vulnerable were higher than 99% in both cases.
Low misjudgment rates of free and vulnerable can reduce the possibility of misstopping
the manipulator. In contrast, the prediction precisions of acceptable were lower, and the
minimum precision was as low as 94.94%. From the confusion matrices in Figure 13, we
can also see that the mistake mainly occurred in mispredicting some vulnerable instances as
acceptable instances. The reason for this result is that our vulnerable and acceptable domains
were defined based on their geometry position, and the collision modes in these two
situations were much more similar at the boundary of these two domains, in contrast to
free and normal instances. Thus, the likelihood of misjudgment at the boundary was greater.
This can also be seen from Figure 13b, in which more R3 instances were wrongly judged
as R2 instances than other instances in the rest of the vulnerable domain. This kind of
mistake may cause serious damage to the manipulator. Additionally, how to improve the
prediction precision of acceptable should be the focus of our follow-up research. In collision
localization, we neglected the free instances. The prediction precision in Cases 1 and 2 is,
respectively, listed in Tables 6 and 7. In Case 1, the mean precision of each group was higher
than or equal to 96.82%, and in Case 2, the mean precision of each group was higher than
or equal to 94.12%. This means that, to some extent, our proposed method can effectively
deal with the collision localization problems that occur on the end effector. Note that in
Case 1, the mean precision of each group was higher than that of the same group in Case 2.
This means that the DCNN–SVM model performed better in collision localization along
the circumferential direction than along the radial direction. Additionally, this result is
consistent with the above overall analysis of CLC.

In order to explore the influence of the kernel size of the convolutional layer on our
proposed method, we selected DCNN–SVM with three different convolution kernels to
conduct CLC for collision signals with b = 0.0667 s and b = 0.2666 s. Our experiments
used Windows on the following system: Processor: Intel (R) Core (TM) i7-10700K CPU @
3.80 GHz, Memory: 31.9 GiB, GPU: NVIDIA GeForce RTX 3080. The results in different
cases are listed in Tables 8 and 9, respectively. By comparing the accuracy of CLC with
different models, we can see that the model with the 6× 6 convolution kernel was slightly
better than that with the 3× 3 convolution kernel, while it was significantly better than
the model with the 2× 2 convolution kernel. In terms of run time, to predict a single
sample, the time consumed by models with different convolution kernels was similar. The
above results indicate that an increase in convolution kernel size is helpful to improve the
performance of the model. This may be because the convolution kernel with a large size
can fuse vibration signals from more dimensions together in a single sampling, which is
conducive to the extraction of more effective features.
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Table 5. Prediction precision of DCNN–SVM for collision classification.

Class Case Precision of
G1

Precision of
G2

Precision of
G3

Precision of
G4

Free
1 100% 100% 99.88% 100%
2 99.38% 99.25% 99.75% 99.87%

Vulnerable
1 99.86% 99.5% 100% 99.79%
2 99.93% 99.55% 100% 99.93%

Acceptable 1 97.53% 94.94% 96.97% 95.78%
2 96.27% 97.4% 98.16% 96.36%

Table 6. Prediction precision of DCNN–SVM for collision localization in Case 1.

Class Precision of G1 Precision of G2 Precision of G3 Precision of G4

C1 100% 100% 100% 100%
C2 96% 93.22% 96% 96.75%
C3 98.88% 98.64% 99.42% 97.27%
C4 99.44% 89.95% 100% 99.43%
C5 100% 97.83% 100% 99.44%
C6 98.35% 93.51% 98.33% 96.20%
C7 100% 98.89% 98.9% 99.44%
C8 99.44% 96.74% 98.36% 100%
C9 96.22% 99.44% 100% 100%

C10 100% 100% 97.8% 99.45%
Mean precision 98.83% 96.82% 98.88% 98.80%

Table 7. Prediction precision of DCNN–SVM for collision localization in Case 2.

Class Precision of G1 Precision of G2 Precision of G3 Precision of G4

R1 100% 100% 100% 100%
R2 95.16% 97.35% 97.56% 95.97%
R3 99.12% 95.26% 96.71% 94.74%
R4 97.15% 91.66% 99.57% 95.24%
R5 95.65% 92.86% 97.48% 92.21%
R6 92.09% 93.94% 96.64% 96.88%
R7 97.45% 90.68% 94.63% 95.51%
R8 95.9% 91.27% 96.23% 95.9%

Mean precision 96.57% 94.12% 97.35% 95.81%

Table 8. Prediction accuracy of DCNN–SVM for CLC with different convolution kernels in Case 1.

b Kernel Size Acc. of G1 Acc. of G2 Acc. of G3 Acc. of G4 Mean Acc. Num of
Conv1param 1

Num of
Conv2param 1 Run Time

0.0667 s
2× 2 99.29% 97.29% 98.92% 99.08% 98.65% 320 16,448 2.23 ms
3× 3 99.38% 97.13% 99.33% 99.38% 98.8% 640 36,928 2.26 ms
6× 6 99.38% 97.42% 99.25% 99.29% 98.84% 2368 147,520 2.33 ms

0.2666 s
2× 2 95.38% 93.25% 96.04% 96.21% 95.22% 320 16,448 1.68 ms
3× 3 95.96% 94.71% 96.75% 96.54% 95.99% 640 36,928 1.73 ms
6× 6 96.75% 94.38% 96.58% 96.83% 96.14% 2368 147,520 1.67 ms

1 Conv1param and Conv2param represent parameters of convolutional layers 1 and 2, respectively.

Table 9. Prediction accuracy of DCNN–SVM for CLC with different convolution kernels in Case 2.

b Kernel Size Acc. of G1 Acc. of G2 Acc. of G3 Acc. of G4 Mean Acc. Num of
Conv1param 1

Num of
Conv2param 1 Run Time

0.0667 s
2× 2 95.88% 92.79% 96.96% 95.46% 95.27% 320 16,448 2.42 ms
3× 3 96.5% 94.88% 97.88% 96.29% 96.39% 640 36,928 2.47 ms
6× 6 97.54% 95.33% 97.71% 96.71% 96.82% 2368 147,520 2.49 ms

0.2666 s
2× 2 87.75% 86.21% 89.71% 88.71% 88.1% 320 16,448 2.09 ms
3× 3 89.71% 87.54% 91.63% 90% 89.72% 640 36,928 2.04 ms
6× 6 90.79% 88.5% 91.83% 90.88% 90.5% 2368 147,520 1.97 ms

1 Conv1param and Conv2param represent parameters of convolutional layers 1 and 2, respectively.
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7. Conclusions

In this paper, we propose a model-independent CLC method for the end effectors
of cable-driven manipulators, which is composed of a double-layer CNN and SVM, i.e.,
the DCNN–SVM method. The vibration signals of the compensator were chosen for the
construction and training of the DCNN–SVM model. To collect a reasonable data set, the
dynamic characteristics of the cable-driven manipulators were analyzed. To explore the
influence of the labeling method on DCNN–SVM’s prediction results, two labeling schemes
are proposed. The final test results of the simulation experiment show promising value
in improving the safety of the cable-driven manipulators applied in the auto-charging
scenario, even when the contact surface is irregular during collision. The conclusions may
be summarized in more detail as follows:

1. The DCNN–SVM method, which can extract features automatically, performs better
than the artificial feature extraction methods with various lengths of inputs. The
more sufficient the collision information is, the better the DCNN–SVM’s performance.
Meanwhile, in comparison to LSTM, we can see that at the early stage of the colli-
sion, the automatic feature extraction method, which is less sensitive to time-related
features, works better on this CLC problem.

2. When joint configuration varies, the proposed CLC method is less affected. This
means that using the vibration signals of the compensator to train the proposed
method can isolate the influence of the joint configuration to some degree.

3. For different labeling schemes, the prediction precision of the proposed method is
different. A smaller number of classes does not mean better performance regarding
CLC problems. This may be related to the characteristics of the signal itself. Moreover,
it means that some specific labeling scheme may further improve the prediction level.

It should be noted that the development of the CLC scheme, including data collection,
labeling and model training, was conducted using a specific cable-driven manipulator with
a specific compensator. Thus, the applicability of the proposed CLC method to different
cable-driven manipulators with different compensators requires further investigation.
Since the length of collision information contained in the inputs can affect the prediction
accuracy of the collision localization and classification, an interesting topic is how to
achieve better performance regarding CLC problems with less collision information. In this
paper, the simulated auto-charging scene is that in which the central axis of the charger
is perpendicular to the front of the charging port. However, in practice, the situation may
change with the variation in the parking offset. Thus, we will collect collision data based
on more experimental situations in future work.
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