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Abstract

Motivation: Despite arduous and time-consuming experimental efforts, protein–protein interactions (PPIs) for many
pathogenic microbes with their human host are still unknown, limiting our understanding of the intricate interactions
during infection and the identification of therapeutic targets. Since computational tools offer a promising alternative,
we developed an R/Bioconductor package, HPiP (Host–Pathogen Interaction Prediction) software with a series of
amino acid sequence property descriptors and an ensemble machine learning classifiers to predict the yet un-
mapped interactions between pathogen and host proteins.

Results: Using severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1) or the novel SARS-CoV-2 corona-
virus-human PPI training sets as a case study, we show that HPiP achieves a good performance with PPI predictions
between SARS-CoV-2 and human proteins, which we confirmed experimentally in human monocyte THP-1 cells, and
with several quality control metrics. HPiP also exhibited strong performance in accurately predicting the previously
reported PPIs when tested against the sequences of pathogenic bacteria, Mycobacterium tuberculosis and human pro-
teins. Collectively, our fully documented HPiP software will hasten the exploration of PPIs for a systems-level under-
standing of many understudied pathogens and uncover molecular targets for repurposing existing drugs.

Availability and implementation: HPiP is released as an open-source code under the MIT license that is freely avail-
able on GitHub (https://github.com/BabuLab-UofR/HPiP) as well as on Bioconductor (http://bioconductor.org/pack
ages/devel/bioc/html/HPiP.html).

Contact: mohan.babu@uregina.ca

Supplementary information: Supplementary data are available at Bioinformatics Advances online.

1 Introduction

Changes in the patterns of microbial infections, as well as the emer-
gence of multidrug-resistant strains (superbugs) among pathogens,
have deteriorated the efficacy of existing therapeutics and limited cur-
rent treatment options (Larsson and Flach, 2022). This necessitates
the perpetual identification and refinement of host–pathogen protein–
protein interactions (HP-PPIs), which is vital for understanding the
molecular basis of underlying protein functions, interactions that re-
sult in infection outcomes and how pathogens infect and subvert host
functions by recruiting them for their own cellular activities (Nicod
et al., 2017). Given their importance in disease, detecting HP-PPIs,
both computationally and experimentally, has gained importance as
one of the key contributors for the development of therapeutic inter-
ventions to combat infectious diseases (Jean Beltran et al., 2017;

Rahmatbakhsh et al., 2021). Performing biochemical and genetic ex-
perimental methods to detect PPIs between all proteins of a pathogen
and their host is time-consuming and labor-intensive due to their gen-
omic complexity. Even for well-studied pathogens, experimentally
derived PPIs between the pathogen and host proteins cover only a
fraction of the projected interaction space in the network. This high-
lights the need for less time-consuming and affordable computational
methods such as protein sequence, structure or domain information,
coexpression profiles, genome sequences, functional similarity and
gene neighborhood to predict undetected and biologically relevant
HP-PPIs which can complement experimentally identified datasets to
formulate hypotheses. Yet, these PPI descriptors are not always avail-
able, limiting their application.

While querying protein pairs using 3D structures is limited by
low proteome coverage, computational approaches using protein
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sequence information are more amenable to investigating PPI net-
works due to the advancements in next-generation sequencing data
of pathogens in recent years. However, there are a few shortcom-
ings. First, only a small selection of physicochemical descriptors
such as amino acid composition (i.e. di- or tri-peptide), as well as
k-Spaced amino acid pairs and Conjoint Triad have been consid-
ered, but combining these with other descriptors can detect de novo
PPIs based on the primary sequences of proteins. Second, continu-
ously running iterations by sequence-based computational methods
can become cumbersome due to sizeable run time required to train a
scoring model, and when handling large number of sequences.
Third, while HP-PPI predictions using sequence-based methods are
available through a few web server platforms, such as PredHPI, they
lack programming interfaces and are not designed to analyze a
sizeable number of sequences in a single batch. Also, in such web
applications, it is often unclear the type of reference interactions
used to evaluate HP-PPI predictions, especially when PPIs are
unavailable for many host–pathogen systems.

Conversely, progress in machine learning (ML)-based methods
using supervised learning algorithms such as Support Vector
Machine (SVM), Random Forest (RF) and Logistic Regression (LR)
is emerging as an alternate approach to predict PPIs based on physi-
cochemical properties of amino acid sequences, and discern interact-
ing from non-interacting protein pairs using known interactors as a
training set. Nevertheless, most studies reported only the results of
cross-validation (CV), with no reference to the evaluation of test
prediction results on a new set of data using rigorous experimental
or external validations. While these issues may challenge the inter-
pretability of prediction performance in deciphering genuine interac-
tions, with an ensemble ML methods and experimental evaluation,
prediction accuracy and coverage of PPIs can be enhanced.
However, current ML approaches that predict HP-PPIs are not
automated, and therefore end-user must obtain suitable training or
test datasets, and needs in-depth ML knowledge.

In this study, we address the aforesaid gaps by introducing an
R/Bioconductor software package, HPiP (Host–Pathogen
Interaction Prediction), built on an ensemble approach with three
(SVM, RL and LR) different ML classifiers, and a pipeline to
either automatically or manually upload the training dataset, and
predict PPIs based on more than a dozen amino acid sequence
property descriptors of pathogen and host proteins. As a case
study, using SARS-CoV-1 or the SARS-CoV-2-human PPI training
set, HPiP achieved a good performance with PPI prediction
between SARS-CoV-2 and human proteins using ensemble ML
method. Besides verifying PPIs with 10-fold CV, published data-
sets and quality control metrics, we experimentally confirmed the
predicted PPIs in human THP-1 monocytes by affinity
purification-mass spectrometry (AP/MS). Similar high perform-
ance on the PPI prediction by HPiP was achieved when tested
against the bacterial pathogen, Mycobacterium tuberculosis and
human protein sequences. Source code, standalone executable
programs, usage instructions, illustrative dataset and output for
testing are provided at https://github.com/BabuLab-UofR/HPiP
and in Supplementary Tables S1–S8.

2 HPiP R package software environment

The HPiP software is composed of a five-step automated computa-
tional workflow (Fig. 1a) to predict HP-PPIs. In Step 1, the curated
HP-PPIs were collected from BioGRID database of an organism
under study. These curated host–pathogen interaction protein pairs
were considered for training as positives, and non-interacting
pairs as negatives, displaying distinct distributions as expected
(Supplementary Fig. S1a). Alternately, HPiP allows users to submit
their own curated reference dataset to optimize training. In Step 2,
the amino acid sequences for pathogen and host proteins were con-
verted into numerical variables from each of the 16 selected physico-
chemical descriptors (Supplementary Table S1), and the resulting
values of two individual proteins (i.e. host and pathogen) were con-
catenated. In Step 3, HPiP combines unsupervised (i.e. correlation-
based) and supervised (i.e. RF-based recursive feature elimination)

methods to filter redundant numerical variables based on the user-
defined threshold of Pearson correlation coefficient and weights
given by RF to each variable, respectively. In Step 4, three ML classi-
fiers (i.e. SVM, RF and LR) were independently and collectively
assessed with the training dataset to fine-tune model parameters and
comparative performance evaluation using k-fold CV, but other ML
classifiers can be substituted with parameters supported by the caret
package (https://github.com/topepo/caret/). The best parameters are
defined based on the model prediction, while a model’s predictive
performance was evaluated using precision versus recall, or sensitiv-
ity versus 1-specificity plots. In the final Step 5, either individual or
ensemble (i.e. average of predictions) of tuned ML classifiers is sub-
jected to the test set for scoring putative HP-PPIs. The resulting
interactions are split into complex membership using fast greedy,
walk-trap, label propagation, multilevel community and Markov
clustering algorithms that are available in HPiP package, though
users can define complexes using other clustering methods such as
ClusterONE via an open-source Cytoscape platform. HPiP then uses
scored PPIs or predicted complexes to perform functional enrich-
ment using Gene Ontology (GO; i.e. molecular function, cellular
component and biological processes) or KEGG (Kyoto Encyclopedia
of Genes and Genomes) pathway terms to define bioprocesses
involving host-dependency factor for pathogens.

3 Study cases

To illustrate our approach, we optimized HPiP performance to pre-
dict SARS-CoV-2-human host PPIs in two ways. In the first method
(referred as ‘prediction 1’), 1562 interactions were gathered for
training from the closely related SARS-CoV-1 coronavirus with
human host proteins (Gordon et al., 2020). In the second method
(referred as ‘prediction 2’), 4648 SARS-CoV-2-human PPIs from the
BioGRID database were compiled, and we randomly withheld 70%
of these PPIs for training, while the remaining 30% for testing. In
prediction 1 method, we considered 1562 interactions measured
using MiST (MS interaction statistics) algorithm with a scoring
threshold greater than 0.5 (Gordon et al., 2020) as a positive train-
ing set. For negative set, we generated 40 124 non-interacting pairs
from a random pairing of human and SARS-CoV-1 proteins in the
positive dataset. To avoid prediction bias, we chose an equal num-
ber (i.e. 1562) of positive and negative PPI pairs for training
(Supplementary Table S2).

Evaluation of sequence descriptors by 10-fold CV in training
showed a robust performance of 0.76 area under the receiver operat-
ing characteristic curve (auROC) can be achieved when all the
descriptors were combined compared to 0.75 average training ac-
curacy for each descriptor (Supplementary Fig. S1b). Assessment of
three ML classifiers, individually and collectively, against our train-
ing dataset showed that ensemble classifier outperformed with a
highest composite score (auROC¼0.82; Fig. 1b) than the individual
ML model (average auROC¼0.70) for predicting HP-PPIs. Similar
performance was attained against the test dataset [i.e. amino acid
sequences retrieved from 242 experimentally derived known SARS-
CoV-2-human PPIs (Gordon et al., 2020)] (Supplementary Table
S3), where ensemble classifier achieved the best performance
(auROC¼0.76; Fig. 1c) by capturing 75% (182 of 242) of test
interactions. This suggests that by using physical interactions identi-
fied in a pathogen that share similar protein sequences in other spe-
cies with unmapped interactions, our ensemble classifier can provide
higher PPI prediction accuracy.

Next, we examined whether our ensemble classifier can pre-
dict new human protein associations with SARS-CoV-2 proteins
that were previously undetected by experimental approaches. To
do so, we followed Steps 2–5 of the HPiP workflow and chose an
ensemble classifier cutoff score �0.6 (Fig. 1d), which is signifi-
cant (P-value � 10�3) by random sampling. These filtered associ-
ations tend to decrease gradually as ensemble classifier score was
elevated (Fig. 1d), suggesting interactions passing the chosen
threshold might be reliable with adequate specificity. In total, the
selected score threshold led us to predict 27 411 high-confidence
HP-PPIs among 3599 humans and 15 SARS-CoV-2 proteins
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(Supplementary Table S4). Nearly one-tenth (�8%, 2108 of
27 411) of these PPIs were confirmed by several independent ex-
perimental assessments (Supplementary Table S4). This includes:
(i) 1138 host factors interacting with SARS-CoV-2 protein in
THP-1 monocytes by AP/MS (Supplementary Methods), (ii) 841
host protein interactions with SARS-CoV-2 proteins were cap-
tured in BioGRID based on AP/MS and BioID/MS (i.e. proximity-
dependent biotinylation-MS) and (iii) 129 were detected in both
BioGRID and AP/MS datasets (Fig. 1e). Confirmed high-
confidence protein interaction pairs by AP/MS in THP-1 include
SARS-CoV-2 non-structural (NSP2/5/12), structural (nucleocap-
sid, N) and accessory (ORF3A) proteins with Ras superfamily of
small GTPases (Supplementary Fig. S1c) such as Rabs (RAB1B,
4A, 8B, 11B, 35) and class II ADP-ribosylation (ARF4, 5) human
factors that are crucial for virus replication, including SARS-
CoV-2 (Daniloski et al., 2021; Wang et al., 2021). Also, SARS-
CoV-2 proteins bridged human mitochondrial proteins
(TIMM13, COX5A, NDUFV1; Supplementary Fig. S1c), imply-
ing the virus may evade mitochondrial-mediated immune re-
sponse to proliferate (Burtscher et al., 2020).

One-fifth (21%; 5373 of 25 303) of the remaining interacting
proteins colocalized to the same cellular compartment (Fig. 1f),
while 198 human host factors (Fig. 1g) that were physically

interacting with SARS-CoV-2 were vital for infections by SARS-
CoV-2 or common cold coronaviruses (Daniloski et al., 2021;
Gordon et al., 2020; Wang et al., 2021). However, the reliability of
the left-over predicted interactions increased as Ensemble score was
decreased, indicating these faithfully recapitulated associations
failed to pass through because of the set stringent score threshold
(Fig. 1h). Assessment on the 27 411 putative SARS-CoV-2-human
protein assemblies further revealed significant (Q-value � 0.01) en-
richment for a number of cellular process or pathways important for
SARS-CoV-2 (Supplementary Fig. S1d and Table S5). This includes
neutrophil activation, autophagy, inflammatory immune responses,
NF-jB signaling and innate immunity, among others, suggesting
that our prediction 1 strategy provides candidate host factors for
ensuing validation or host-direction inhibition of viral infection.

Given the possibility that interspecies protein interactions for
model training may not be optimal for less conserved understudied
pathogens, we employed our prediction 2 approach by making use
of the aforesaid known SARS-CoV-2-human PPIs for training and
the holdout set for testing (Supplementary Tables S6 and S7) to
evaluate ML classifiers. In contrast to other models, the ensemble
classifier performed well with our training set based on 10-fold CV
(auROC¼0.71, Supplementary Fig. S1e) with 78% (703 of 903;
auROC¼0.75; Supplementary Fig. S1f) accuracy to correctly

Fig. 1. HPiP workflow, parameter evaluation and validation of predicted interactions. (a) Five-step computational pipeline to predict HP-PPIs: (i) Building literature-curated

training set; (ii) Converting amino acid sequences to numerical values using physicochemical descriptors; (iii) Selecting protein sequence-based numerical variables from differ-

ent descriptors as input for ML; (iv) Fine-tuning ML model parameters using the training set, followed by CV and model performance evaluation; as well as (v) Scoring HP-

PPIs in test set, and predicting multiprotein complexes from HP-PPI network using fast greedy (FG), walk-trap (WT), label propagation (LP), multilevel community (ML) and

Markov clustering (MCL) methods. Putative interacting protein pairs were subjected to functional enrichment analysis for associations to biological functions using GO and

KEGG pathway terms. For acronyms on physicochemical descriptors, see Supplementary Table S1. RFE, recursive feature elimination; SVM, support vector machine; LR, lo-

gistic regression. (b, c) auROC showing the performance measures of ensemble versus other ML classifiers evaluated using 10-fold CV in a training (b) and test (c) sets. (d)

Histogram (left) and distribution (right) of SARS-CoV-2–human protein interaction pairs at various ensemble score; arrow with ensemble cutoff score �0.6 imply statistically

significant (P-value � 10�3) interactions; P-value computed by permutation test. (e) Overlap of SARS-CoV-2-human PPIs predicted from this study versus literature-curated

interactions from BioGRID database and experimentally derived PPIs from THP-1 cells using AP/MS method. (f, g) Evidence supporting sequence-based prediction of SARS-

CoV-2-human PPIs by colocalization to same cellular compartment (f) criteria, and human host factors interacting with SARS-CoV-2 proteins that were vital for coronavirus

infections based on published genetic screens (g). The number in parenthesis indicates total number of interactions (e, f) or host factors (g) used for comparison. (h) Overlap of

sequence-based prediction of SARS-CoV-2-human PPIs versus associations detected by AP/MS in THP-1 cells or in the BioGRID database at varying ensemble score cutoffs
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capture the test interactions. Using a similar cutoff strategy as in pre-
diction 1 method (Fig. 1d), we found one-tenth (30%, 8937 of
30 094) of the newly predicted SARS-CoV-2-human protein associa-
tions that have not been reported previously was supported by our
AP/MS method in THP-1 cells, and/or reported in BioGRID data-
base (Supplementary Fig. S1g and Table S8), and colocalize to the
same compartment (Fig. 1f). However, as with prediction 1 method,
the number of interactions from prediction 2 markedly increased
below the stringent threshold, but agreeing favorably with AP/MS
and/or BioGRID datasets (Supplementary Fig. S1h). Conversely, we
found poor overlap (6.3%, 12 of 192) of PPIs predicted from
PredHPI tool against THP-1 cells by AP/MS, and/or reported associ-
ations from BioGRID database (Supplementary Fig. S2a), emphasiz-
ing the need for developing new software toolkit such as HPiP to
predict HP-PPIs with improved performance. In fact, this was the
case, where HPiP maximized the coverage and accuracy for half of
the interactions (52%; 17 879 of 34 497) from both prediction
methods and/or experimental data (Supplementary Fig. S1i and j),
underscoring the reproducibility for native physical associations.
The remaining high-confidence SARS-CoV-2-human protein assem-
blies not detected in other studies represent a rich source of poten-
tially undiscovered PPIs to spur further exploration and for gaining
new mechanistic insights.

Since SARS-CoV-1 is related to SARS-CoV-2, we inquired
whether HPiP can uncover human host protein interactions with
low sequence similarity between these coronaviruses. We thus exam-
ined the similarity between sequences of the trained SARS-COV-1
and the predicted SARS-COV-2 interacting human host proteins
using a pairwise sequence alignment. Strikingly, HPiP detected the
human interacting proteins at both high and low sequence similarity
(i.e. Supplementary Fig. S2b). This suggests that HP-PPIs can be pre-
dicted by HPiP even for pairs of genomes belonging to phylogenetic-
ally distant genera with low sequence identity.

Lastly, to showcase that HPiP can predict PPIs for other patho-
gens at similar precision and accuracy as coronaviruses, we com-
piled 1118 M. tuberculosis-human PPIs involving 45 secreted M.
tuberculosis proteins using MiST score �0.5 (Penn et al., 2018). As
with our prediction methods for SARS-CoV-2-human PPIs, for
training, we withheld randomly 70% (767 of 1118; 390 as positive
and 377 as negative set) of the PPIs, while the other 30% (351 of
1118; 161 as positive and 190 as negative) for testing. In compari-
son to other ML classifiers, ensemble classifier performed well with
the training set based on 10-fold CV (auROC¼0.78) and with 83%
(135 of 161; auROC¼0.82) accuracy to capture the test PPIs
(Supplementary Fig. S2c and d) akin to other metrics used to meas-
ure the performance of ensemble classifier (Supplementary Fig. S2e
and f).

4 Conclusion

We have developed an open-source HPiP software to facilitate pre-
diction of PPIs from the sequences of host and pathogen proteins
using several amino acid sequence descriptors and an ensemble ML
classifier to address the current gap of the unmapped physical inter-
actions that remains limited for many understudied or emerging
pathogens. HPiP is interfaced with an optimized computational
workflow and does not require programming skills to run the auto-
mated data analysis pipeline. While HPiP allows users to train ML
models using their own curated dataset, as a case study, we show

that using known SARS-CoV-1 (prediction 1) or SARS-CoV-2 (pre-
diction 2)-human protein interaction training set, an ensemble learn-
ing approach can predict previously unreported SARS-CoV-2-
human PPIs with high accuracy from protein sequences, which we
confirmed by orthogonal methods. Yet, HPiP performance depends
largely on the sequence similarity between host and pathogens, and
thus the quality of experimental training dataset is vital to train ML
classifier. In summary, we expect HPiP to interrogate changes in
HP-PPIs which is vital for understanding complex infectious dis-
eases, as well as prompt new testable hypotheses about the function
of interacting proteins and their role in disease mechanisms.
Extending HPiP to residue–residue coevolution (Cong et al., 2019)
across host–pathogen protein interfaces to predict HP-PPIs can fur-
ther be beneficial to build structural models of protein interactions,
and uncover new HP-PPIs that existing computational methods
might fail to predict.
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