
Comparison of the Long-term Efficacy and Safety of  
Gamma Knife Radiosurgery for Arteriovenous  
Malformations in Pediatric and Adult Patients

Hirotaka HASEGAWA,1 Shunya HANAKITA,1 Masahiro SHIN,1  
Mariko KAWASHIMA,1 Wataru TAKAHASHI,2 Osamu ISHIKAWA,1  
Satoshi KOIZUMI,1 Hirofumi NAKATOMI,1 and Nobuhito SAITO1

1Department of Neurosurgery, University of Tokyo Hospital, Tokyo, Japan;
2Department of Radiology, University of Tokyo Hospital, Tokyo, Japan

Abstract 

It is debated whether the efficacy and long-term safety of gamma knife radiosurgery (GKRS) for arte-
riovenous malformations (AVMs) differs between adult and pediatric patients. We aimed to clarify the 
long-term outcomes of GKRS in pediatric patients and how they compare to those in adult patients. We 
collected data for 736 consecutive patients with AVMs treated with GKRS between 1990 and 2014 and 
divided the patients into pediatric (age < 20 years, n = 144) and adult (age ≥ 20 years, n = 592) cohorts.  
The mean follow-up period in the pediatric cohort was 130 months. Compared to the adult patients, the 
pediatric patients were significantly more likely to have a history of hemorrhage (P < 0.001). The  actuarial 
rates of post-GKRS nidus obliteration in the pediatric cohort were 36%, 60%, and 87% at 2, 3, and 6 
years, respectively. Nidus obliteration occurred earlier in the pediatric cohort than in the adult cohort  
(P = 0.015). The actuarial rates of post-GKRS hemorrhage in the pediatric cohort were 0.7%, 2.5%, 
and 2.5% at 1, 5, and 10 years, respectively. Post-GKRS hemorrhage was marginally less common in 
the  pediatric cohort than in the adult cohort (P = 0.056). Cyst formation/encapsulated hematoma were 
 detected in seven pediatric patients (4.9%) at a median post-GKRS timepoint of 111 months, which was 
not significantly different from the rate in the adult cohort. Compared to adult patients, pediatric patients 
experience earlier therapeutic effects from GKRS for AVMs, and this improves  long-term outcomes.
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Introduction

Most arteriovenous malformations (AVMs) became 
symptomatic when patients are 30–40 years old,1–4) 
but AVMs are also an important cause of hemorrhagic 
stroke in younger patients, accounting for approximately 
half of spontaneous intracranial hemorrhagic strokes 
in patients younger than 18 years.5) Previous reports 
have suggested that the characteristics and biological 
behaviors of AVMs differ somewhat between pediatric 
and adult patients. Briefly, pediatric patients reportedly 
have stronger hemorrhage tendencies and smaller nidus 
sizes, are more likely to exhibit deep locations and 
deep venous drainage, and are less likely to exhibit 
dangerous angioarchitectural features, such as venous 
ectasia and feeding artery aneurysms.6–9)

Gamma knife radiosurgery (GKRS) is a standard 
AVM treatment and generally provides a 70–85% 
obliteration rate after 3–5 years and a low morbidity 
rate.10–38) Some researchers insist that AVMs in pediatric 
patients are especially sensitive to radiation, which 
increases the chances of nidus obliteration,10,14,39–41) 
though not all studies have observed this trend.20,42–46) 
However, improved understanding of late radiation-
induced complications47–64) has illuminated the need 
to clarify the long-term safety of GKRS, especially 
in pediatric patients who have much longer residual 
life expectancies than adult patients do. Given these 
concerns, we aimed to determine how the long-term 
outcomes of GKRS for AVMs in pediatric patients 
compared to those in adult patients.

Materials and Methods

Participants
We collected clinical and radiographic data for 

consecutive patients who were treated with GKRS 
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between 1990 and 2014 and divided the patients 
into pediatric (age < 20 years) and adult (age ≥ 20 
years) cohorts. After we excluded patients who 
(i) underwent staged GKRS (n = 21) or (ii) other 
radiotherapies (n = 13) before the first GKRS in 
our institution, (iii) received suboptimal (<15 Gy) 
treatment (n = 4), or (iv) received no follow-up 
care (n = 17), 736 patients remained. This sample 
included 144 pediatric patients (mean follow-up 
period: 130 months; median follow-up period: 105 
months; range: 5–316 months) and 592 adult patients 
(mean follow-up period: 110 months; median follow-
up period: 92 months; range: 1–320 months). The 
study protocol was approved by our institutional 
review board and conformed to the principles of 
the Declaration of Helsinki. All patients provided 
written informed consent for the use of their data.

Radiosurgical techniques
Details of our hospital’s radiosurgical techniques 

have been previously described.27,65,66) In brief, a Leksell 
stereotactic frame (Elekta Instruments, Stockholm, 
Sweden) was fixed on the patient’s head, and stereo-
tactic imaging was then performed to obtain precise 
data on the shape, volume, and three-dimensional 
coordinates of the patient’s head. Digital subtraction 
angiography (DSA) was used before February 1991, 
computed tomography was used from March 1991 
to July 1996, and magnetic resonance imaging (MRI) 
was used from August 1996 onward. Treatments were 
planned by dedicated neurosurgeons and radiation 
oncologists using KULA software until 1998 and 
the Leksell Gamma Plan thereafter (both software 
packages are from Elekta Instruments). Radiosurgical 
dose determinations were mainly based on nidus 
sizes and proximity to eloquent structures, and the 
prescribed doses mostly ranged between 18 and 20 
Gy. We performed all procedures without general 
anesthesia. Instead, intravenous sedative agents 
(i.e., midazolam, thiopental, and/or pentazocine) 
were used before frame fixation, with support from 
pediatricians for patients younger than 13–15 years. 
The procedure was performed with the patient either 
fully conscious or under sedation, as considered 
appropriate.

Post-treatment course
Patients were evaluated at regular intervals after 

GKRS. MRI scans were performed at 6-month inter-
vals for the first 3 years, with confirmatory DSA 
being performed if the MRI results suggested nidus 
obliteration. Secondary GKRS was recommended 
for patients who did not exhibit nidus obliteration 
within approximately 5 years. Annual MRI check-
ups were continued after nidus obliteration to screen 

for possible long-term complications.We defined 
event-free survival (EFS) as survival free from any 
permanent symptomatic complications that were 
caused by AVMs themselves or AVM treatments 
(including surgery, embolization, and radiotherapy) 
and that were associated with a >1-point deteriora-
tion in the patient’s modified Rankin Scale (mRS)67) 
score relative to baseline. We also searched for 
late cyst formation and/or encapsulated hematoma 
(CF/EH), which was typically characterized by a 
radiographically-evident enhanced nodular lesion 
with or without cyst formation with perifocal 
edema.47,49–51,58,59)

Statistical analyses
The examined baseline characteristics included 

age, biological sex, maximal nidus diameter, nidus 
volume, radiosurgical dose, depth of location, pres-
ence of a deep drainer, eloquent location, history of 
hemorrhage, surgery, and embolization, the Modified 
Pittsburgh Radiosurgery-based AVM Grading Scale,68) 
the Spetzler–Martin Grade,69) and the Virginia radio-
surgical AVM Grading Scale.70) Baseline characteris-
tics between the two cohorts were compared using 
the chi-square test for categorical variables and the 
Wilcoxon rank sum test for continuous variables. We 
calculated the actuarial rates of nidus obliteration, 
post-GKRS hemorrhage, and perifocal edema and 
the EFS rate with the Kaplan–Meier method and 
compared the cohorts’ curves with the Wilcoxon 
test. All analyses were performed with JMP Pro 13 
software (SAS Institute, Cary, NC, USA). We defined 
statistical significance as P < 0.05.

Results

Baseline characteristics
The patients’ baseline characteristics are summa-

rized in Table 1. The median ages were 14.5 years 
(range: 4–19 years) and 38 years (range: 20–80 years) 
in the pediatric and adult cohort, respectively. 
Histories of AVM embolization and hemorrhage 
were present in 24 (17%) and 102 (71%) pedi-
atric patients, respectively, and 63 (11%) and 311 
(53%) adult patients, respectively. Compared to the 
adult patients, the pediatric patients were signifi-
cantly more likely to have a history of hemorrhage  
(P < 0.001) or a history of prior embolization  
(P = 0.045). The statistical analysis also revealed the 
margin dose in pediatric patients which was signifi-
cantly higher than in adult patients (P = 0.020), but 
the difference was so slight and the median values 
were the same that no virtual difference was present. 
There were no observed complications associated 
with sedation, frame fixation, or GKRS itself.
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Nidus obliteration
Nidus obliteration was confirmed in 105 pedi-

atric patients (73%) at a median timepoint of  
24 months after initial GKRS. The actuarial oblitera-
tion rates were 36, 60, 74, and 87% at 2–4, and 6 
years, respectively. Secondary GKRS was performed 
in 16 pediatric patients, with subsequent nidus 
 obliteration confirmed in nine patients. In total, 
nidus obliteration was confirmed in 114 pediatric 

patients (79%). Nidus obliteration was confirmed in 
391 adult patients (66%) at a median timepoint of 30 
months after initial GKRS. The actuarial obliteration 
rates were 23, 53, 73, and 85% at 2–4, and 6 years, 
respectively. A Kaplan–Meier analysis revealed that 
nidus obliteration occurred significantly earlier in 
the pediatric cohort (P = 0.015, Fig. 1A).

Post-GKRS hemorrhage
Post-GKRS hemorrhage was observed in five 

pediatric patients (4.0%) at a median timepoint of 
59 months after GKRS. All were from unobliterated 
niduses, except for in one patient who developed 
a hemorrhage from a recurrent nidus 240 months 
after the initial GKRS. The actuarial post-GKRS 
hemorrhage rates were 0.7, 0.7, 2.5, and 2.5% at 1, 
2, 5, and 10 years, respectively. Post-GKRS hemor-
rhage was observed in 38 adult patients (6.4%) at 
a median timepoint of 13 months after GKRS. The 
actuarial post-GKRS hemorrhage rates were 2.9, 4.9, 
5.5, and 6.4% at 1, 2, 5, and 10 years, respectively. 
A Kaplan–Meier analysis revealed a tendency toward 
a lower post-GKRS hemorrhage frequency in the 
pediatric cohort (P = 0.056, Fig. 1B).

Perifocal edema
Post-GKRS perifocal edema was observed in 41 

pediatric patients (28%) at a median post-GKRS 
timepoint of 11 months. The actuarial perifocal 
edema rates were 23, 30, and 30% at 1–3 years, 
respectively, which were not significantly different 
from the adult cohort’s actuarial rates of 15, 30, and 
32% at 1–3 years, respectively (P = 0.560, Fig. 1C).

EFS
Neurological deteriorations (i.e., >1-point mRS 

score decreases) were observed in four pediatric 
patients (2.8%). Two of them with niduses located 
in the thalamus and internal capsule experienced 
incomplete right hemiparesis 11 months after GKRS, 
and one of these patients later developed a fatal 
encapsulated hematoma, as previously reported.47)  
A third patient died due to massive cerebellar 
hemorrhage at 6 years, and the fourth patient devel-
oped diplopia due to an encapsulated hematoma 
at 75 months, which required surgical resection. 
The overall pediatric EFS rates were 99, 98, 96, 
and 96% at 2, 5, 10, and 15 years, respectively. 
These rates were not significantly different from 
the adult EFS rates of 97, 96, 96, and 93% at 2, 5, 
10, and 15 years, respectively (P = 0.349, Fig. 1D).

CF/EH
Cyst formation and/or encapsulated hematoma 

was detected in seven pediatric patients (4.9%) at 

Table 1 Baseline characteristics and dosimetry data of 
the two cohorts

Variables
Underage 

cohort Adult cohort
P-value

Value, median (range)

Follow-up, 
months  105 (5–316) 92 (1–320) /

Age (year) 14.5 (4–19) 38 (20–80) /†

Maximal 
diameter (mm) 22 (3–68) 22 (5–60) 0.729

Nidus volume 
(cm3) 2.1 (0.1–21.5) 2.7 (0.1–44.5) 0.375

Margin dose 
(Gy) 20 (17–28) 20 (15–28) 0.020*

Central dose 
(Gy) 40 (27–60) 40 (25–50) 0.946

mPRAS 0.6 (0.2–2.5) 1.2 (0.5–5.5) /†

Variables Value, n (%) P-value

Male sex 71 (49) 344 (58) 0.056

Eloquent 
location 92 (64) 338 (57) 0.138

Deep 
location** 61 (42) 217 (37) 0.205

Presence of 
deep drainage 86 (60) 308 (52) 0.097

Previous 
hemorrhage 102 (71) 311 (53) <0.001*

Prior 
embolization 24 (17) 63 (11) 0.045*

Prior surgical 
intervention 20 (14) 52 (9) 0.084

VRAS ≤ 2 96 (67) 397 (67) 0.928

SMG I–II 72 (50) 328 (55) 0.243

mPRAS, modified Pittsburgh radiosurgery-based arteriovenous 
malformation Grading Scale; SMG, Spetzler-Martin grade; 
VRAS, Virginia radiosurgical arteriovenous malformation 
Grading Scale. *A P-value >0.050 was considered significant. 
**Deep location includes basal ganglia, thalamus, brainstem, 
cerebellum, interventricular regions, and corpus callosum. 
†Not tested because the variable is directly associated 
with age.
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a median timepoint of 111 months (range: 23–243 
months) after initial GKRS. These caused mild deficits 
or no clinical outcomes in six patients but killed 
the remaining one patient. No radiation-induced 
tumor was observed in the pediatric patients. On 
the other hand, CF/EH were detected in 35 adult 
patients (5.9%) at a median timepoint of 135 months 
after initial GKRS. No significance between-cohort 
differences were observed in the CF/EH incidence 
rates (P = 0.626) or the post-GKRS timepoint of CF/
EH development (P = 0.532).

Discussion

In this study, we compared the outcomes of GKRS 
for AVMs in pediatric and adult cohorts. Our first 
major finding was that although the two cohorts’ final 
obliteration rates were almost equal, nidus oblitera-
tion occurred earlier in the pediatric cohort than 
in the adult cohort. Second, post-GKRS hemorrhage 
occurred less frequently and later in the pediatric 
cohort than in the adult cohort. These results are 

especially impressive given that the pediatric cohort 
had a significantly higher proportion of hemorrhagic 
AVMs than the adult cohort did, and that previous 
hemorrhages are a major risk factor for post-GKRS 
hemorrhage.4,8,71–73) It can obviously be speculated that 
shorter times to nidus obliteration in the pediatric 
cohort could have contributed to a reduced frequency 
of latency-phase hemorrhage. Several previous studies 
have also confirmed earlier response to radiation 
in pediatric patients than in adult patients.10,14,39–41) 
One possible explanation for this is that vessels in 
adult and pediatric patients may differ in sensitivity 
to radiation-induced damage.16) For example, AVMs 
in pediatric patients may have a higher endothelial 
cell turnover rate in the nidus than AVMs in adults 
do. The major pieces of evidence for this hypothesis 
are that AVM recurrence both after radiotherapy 
and surgery is more commonly observed in young 
patients74–79) and that AVM-affected vessels in pediatric 
patients tend to have a high Ki-67 index and high 
vascular endothelial growth factor expression.80,81) 
 Interestingly, some previous studies reported that 

Fig. 1 Kaplan–Meier curves for rates of (A) nidus obliteration, (B) post-treatment hemorrhage, (C) perifocal 
edema, and (D) event-free survival. EFS, event-free survival; GKRS, gamma knife radiosurgery.

A B

DC
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elderly and non-elderly populations differ in the 
rate70) and timing82) of nidus obliteration, which 
suggests that radiation sensitivity may depend on 
age. Further research is necessary.

In this study, we did not observe any complica-
tions associated with treatment procedures such 
as frame fixation; stereotactic imaging studies, 
including angiography; or irradiation. Nevertheless, 
meticulous care should be taken to maintain an 
ideal sedative state, especially in younger children, 
and effective collaboration with pediatricians is 
essential. We performed all procedures with the 
patients under local anesthesia with sedative 
agents, but the need of general anesthesia should 
be argued individually.

Cyst formation and/or encapsulated hematoma are 
rare but possible late radiation-induced complications 
following GKRS for AVMs.51,52,57,60,83–85) We observed 
a CF/EH incidence rate of approximately 5% in 
both the pediatric and adult cohorts. Although 
fatal outcomes are possible if CF/EH develops 
in deep brain regions, most CF/EHs developed 
slowly and caused only mild deficits or even no 
adverse outcomes. We therefore recommend annual 
regular imaging follow-up for all treated patients. 
It remains controversial when follow-up should 
cease. Because we found that some CF/EHs devel-
oped more than 20 years after the initial GKRS, 
we suggest that follow-up should continue for 
at least 20 years, but we should conduct further 
research to stratify the CF/EH risk in different 
patients and examine whether the follow-up period 
can be safely shortened.

This study has some limitations. First, its retro-
spective nature might have introduced selection 
biases in terms of participants and treatments. 
Nevertheless, our results are consistent with those 
of recent studies of pediatric patients,19,25,86–92) 
which suggests that they are robust and applicable 
to clinical practice. Second, there was a sample 
size imbalance between the pediatric and adult 
cohorts. Sample size uniformity between cohorts is 
ideal for statistical comparisons, but it is usually 
an unattainable goal for clinical studies. Hence, 
we conducted this study in the best available 
way. Third, we defined EFS as any neurological 
event that caused a >1-point decrease in mRS 
scores, which in turn means that subtle complica-
tions or controllable epilepsies were not counted. 
However, because many surgical cohort studies 
define significant complications as events causing 
>1 to 2-point decreases in mRS scores or their 
equivalent,93–98) our EFS definition is acceptable.

Overall, GKRS for AVMs in pediatric patients can 
provide a favorable nidus obliteration rate within a 

shorter timeframe than achieved in adult patients.  
It also provides a favorable EFS even ≥10 years after 
treatment. Therefore, GKRS is an optimal treatment 
for pediatric AVMs. However, additional studies are 
necessary to further evaluate long-term outcomes, 
because pediatric patients have long residual life 
expectancies.
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