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Abstract

Microbial communities are ubiquitous and often influence macroscopic properties of the

ecosystems they inhabit. However, deciphering the functional relationship between specific

microbes and ecosystem properties is an ongoing challenge owing to the complexity of the

communities. This challenge can be addressed, in part, by integrating the advances in DNA

sequencing technology with computational approaches like machine learning. Although

machine learning techniques have been applied to microbiome data, use of these tech-

niques remains rare, and user-friendly platforms to implement such techniques are not

widely available. We developed a tool that implements neural network and random forest

models to perform regression and feature selection tasks on microbiome data. In this study,

we applied the tool to analyze soil microbiome (16S rRNA gene profiles) and dissolved

organic carbon (DOC) data from a 44-day plant litter decomposition experiment. The micro-

biome data includes 1709 total bacterial operational taxonomic units (OTU) from 300+

microcosms. Regression analysis of predicted and actual DOC for a held-out test set of 51

samples yield Pearson’s correlation coefficients of.636 and.676 for neural network and ran-

dom forest approaches, respectively. Important taxa identified by the machine learning tech-

niques are compared to results from a standard tool (indicator species analysis) widely used

by microbial ecologists. Of 1709 bacterial taxa, indicator species analysis identified 285 taxa

as significant determinants of DOC concentration. Of the top 285 ranked features deter-

mined by machine learning methods, a subset of 86 taxa are common to all feature selection

techniques. Using this subset of features, prediction results for random permutations of the

data set are at least equally accurate compared to predictions determined using the entire

feature set. Our results suggest that integration of multiple methods can aid identification of

a robust subset of taxa within complex communities that may drive specific functional out-

comes of interest.
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Introduction

Microbial communities mediate essential functions in diverse ecosystems. While the micro-

biome controls many interesting macroscopic properties, elucidating the relationship between

specific microbes and ecosystem functions remains a complex problem in ecology. Recent

advances in DNA sequencing technology make it easy to acquire metagenomic data represent-

ing the taxonomic profile of bacteria and fungi in microbial communities. This opens the door

to deciphering which components of the microbiome can drive changes in macroscopic prop-

erties. However, analysis of metagenomic microbial data poses several difficulties. The data

are typically high dimensional (many taxa) with a small number of samples collected in each

study. Additionally, sequencing results are noisy and yield sparse data sets [1].

Machine learning techniques provide a means to analyze high-dimensional data [2, 3] and

could be used to elucidate relationships between microbial taxa (or other metagenomic fea-

tures such as gene families or metabolic pathways) and environmental attributes. The random

forest model is reportedly one of the most effective machine learning models for analyzing

microbiome data; high classification accuracy has been demonstrated with a variety of 16S

rRNA data sets for identification of body habitat, host, and disease states [4]. In another study,

artificial neural networks were used to map complex relationships between microbial commu-

nities and environmental variables, enabling predictions of the abundance of microbial taxa

across the English Channel, for example [5].

While most existing machine learning software packages focus on binary classification of

microbial data sets [6–8], random forest and neural network models can also be used to iden-

tify the subset of microbial taxa whose relative abundances best predict a continuous target

variable [9, 10]. The combination of random forest and neural network models can evaluate

feature importance and reveal which microbial taxa are most positively or negatively correlated

with target variables. To provide helpful perspective for microbial ecologists, we compare

results from these machine learning techniques to indicator species analysis, a commonly used

tool in ecology that is typically used for classification, though similar techniques have been

adapted for regression problems [11]. We also show how our tool can be applied to study the

effect of experimental sample size on model performance by evaluating prediction error over

increasing subsets of training data. In this study, we apply the proposed random forest and

neural network regression models to predict the abundance of dissolved organic carbon

(DOC) from plant litter decomposition, where bacterial taxa abundances are treated as model

features/variables. Recent studies have shown that microbial communities play an important

role in carbon cycling and can potentially be manipulated to increase the abundance of DOC

for transport and sequestration in deeper soil layers [12–16]. We use DOC and bacterial com-

munity data from a study that examined the role of soil microbial community composition in

controlling carbon flow from plant litter decomposition [17]. Feature selection results deter-

mined by machine learning methods are compared to indicator analyses [18, 19] in which

high and low DOC are used as classification category labels. The ultimate goal of this study

is to present a powerful set of tools for prediction and feature selection tasks designed specifi-

cally for elucidating the relationship between microbial communities and the ecosystems they

inhabit.

Materials and methods

Random forest and neural network regression models are examples of supervised machine

learning algorithms. In contrast to unsupervised machine learning algorithms, these methods

require a subset of the data called a training set to develop a mathematical relationship between

features and target variables. A feature represents a model variable and the target is the variable
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the model predicts. For regression problems, the target variable is a continuous scalar, and for

classification problems, the target is a discrete label. A sample is a single set of features paired

with a target variable, which, in the context of the present case study, represents a bacterial

community profile paired with DOC. To assess model performance, predicted target variables

using features from a held-out set of test data are compared to known target variables. In this

study, prediction performance is measured using Pearson’s correlation coefficient, which

quantifies the linear correlation between predicted and true target variables, and for which a

value of one indicates a perfect positive linear correlation. In general, our regression model

assumes that targets and features are related to one another by

y ¼Mðθ; xÞ þ ε; ð1Þ

where x 2 RM is a vector M features, y 2 R is the corresponding true value of the target vari-

able, Mðθ; xÞ is some mathematical operation (or model) from RM
toR, θ 2 RNθ are model

parameters, and ε is the prediction error.

We denote the set of M features with N samples as the N ×M feature matrix X 2 RN�M
,

which can be mapped to a vector of N target variables y 2 RN
according to

y ¼Mðθ;XÞ þ ε; ð2Þ

where ε 2 RN
is the vector of prediction errors. While Eq 2 describes the general regression

problem common to most machine learning algorithms, the actual form of Mðθ;XÞ varies

according to the specific approach. We introduce a few of these machine learning approaches

as follows.

Neural network regression model

A feed-forward neural network regression model applies a series of parameterized activation

functions organized in layers to map features in a sample to a continuous target variable. Each

layer of a feed-forward neural network is composed of a set of nodes which apply a nonlinear

transformation to the sum of the product of inputs from the previous layer and weight param-

eters plus an additional bias parameter. A stochastic gradient descent algorithm minimizes the

cost function by adjusting model parameters (weights and bias values for each layer) via a pro-

cess called error back-propagation, which updates model parameters in each layer based on

the gradient of the cost function with respect to model parameters. The rate at which model

parameters change during training can be adjusted by a learning rate hyper-parameter, and

the cost function can be adjusted with a regularization hyper-parameter, which ensures that

model parameters do not reach disproportionate values [2]. We built a feed-forward neural

network regression model using THEANO [20] and PYTHON 3.7 with a randomized search algo-

rithm for determining model hyper-parameters implemented with SCIKIT-LEARN [21]. As a

default, the model includes a single hidden layer with 15 nodes with sigmoid activation func-

tions and a single output layer with a linear activation function. A randomized hyper-parame-

ter search uses the training data set to find the optimum hidden layer size, learning rate, and

regularization coefficient. Our model applies the mean squared error between predicted and

true values as a cost function for use with the training and validation analyses. Training the

neural network model is an iterative process, where each iteration is called a training epoch. In

each training epoch, the total set of training data is divided and trained over randomly chosen

mini-batches. Once the cost function applied to the validation data set fails to decrease over a

default of ten training epochs, training stops. For this study, the model was trained with 257

training samples and tested with a held-out set of test data with 51 samples. To assess the

Machine learning to predict microbial community functions

PLOS ONE | https://doi.org/10.1371/journal.pone.0215502 July 1, 2019 3 / 16

https://doi.org/10.1371/journal.pone.0215502


correlation between true DOC and predicted DOC for each sample, Pearson’s correlation

coefficient was computed for training and testing results.

Neural network feature selection

Methods for evaluating feature importance using a neural network model often focus on

weights assigned to individual features after training of the model [22, 23]. Our proposed fea-

ture selection tool employs a similar approach, where the gradient of the model output with

respect to weights associated with each feature is used to determine the feature importance

vector. Each element of the feature importance vector corresponds to an individual feature,

where the magnitude of each element is indicative of feature importance for predicting the tar-

get variable, and the sign indicates whether the feature has a positive or negative impact on the

predicted variable.

For a feed-forward neural network model with M features as inputs that connect to J nodes

in the first hidden layer, we can denote the M × J matrix of weights connecting each feature to

each node as θIn
2 RM�J

, where θIn is a subset of the full parameter set θ. The gradient of the

model output with respect to θIn provides the M × J feature importance matrix,

Fðθ; xÞ 2 RM�J , which we define as

Fmjðθ; xÞ ¼
@

@y
In
mj

Mðθ; xÞ: ð3Þ

Marginalizing the feature importance matrix over all nodes in the first hidden layer pro-

duces a M-dimensional vector, which we will call the feature importance vector f(θ, x), whose

elements are

fmðθ; xÞ ¼
1

J

XJ

j¼1

Fmjðθ; xÞ: ð4Þ

After training the model, we determine the sensitivity of the model to each feature, denoted

as the M-dimensional vector s 2 RM , by calculating the average value of the feature importance

vector over the set of training data with K samples

sm ¼< fm > ¼
1

K

XK

k¼1

fmðθ; xkÞ: ð5Þ

To gain confidence in the importance assigned to features, feature importance is deter-

mined using a bootstrap method, which randomly samples 80% of the training data set over a

default of 50 iterations. The average feature ranking values determined over all iterations rep-

resents the most confident set of ranked features.

Random forest regression model

Decision tree based machine learning methods map features to target variables by splitting the

set of possible target variables based on the values of individual features [2, 24]. An internal
node is a point at which the value of a feature determines a split in the set of possible target var-

iables, and the nodes that follow an internal node are called leaf nodes [2]. The random forest

method constructs a set of decision trees constructed from randomly selected subsets of the

feature space and computes the model output by averaging the predictions from individual

decision trees [25]. Using the random forest regressor from SCIKIT-LEARN [21], a random forest

regression model is instantiated with a mean squared cost function, two samples required to
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split an internal node, and one sample required to be at a leaf node as the default. Hyper-

parameters for the model include the number of samples required to split an internal node,

the number of samples required to be at a leaf node, and the number of features to consider

in each decision tree. These hyper-parameters can be optimized with the training set using

SCIKIT-LEARN’s randomized search algorithm. During training, the random forest regressor

model fits an ensemble of 1000 decision trees trained on randomly selected sub-samples of

the data set. All random forest results from this study use identical training and testing data to

allow direct comparison to the neural network model.

Random forest feature selection

The random forest regressor made available by SCIKIT-LEARN [21] returns an array of feature

importance values of length equal to the array of input features. Decision tree algorithms, such

as random forest, assess feature importance by examining how well a feature (often referred to

as variable in literature [24]) can split the potential output labels. In other words, a highly sig-

nificant feature provides the greatest reduction of potential labels for a given sample. Addition-

ally, feature importance is determined as part of the boot-strap method used for assembling

random decision trees, where feature importance is greater for variables that result in greater

prediction performance when included in the decision trees [24]. To gain confidence in the

rank assigned to features, feature ranking is determined using a bootstrap method that ran-

domly samples 80% of the training data set over a default of 50 iterations. The highest average

feature ranking values determined over all iterations represent the most confident ranked

features.

Indicator species analysis for feature selection

Indicator species analysis [18, 19] is used for comparison with the feature selection results

determined by the above machine learning methods. Indicator species (hereafter we use ‘taxa’,

not ‘species’, for accuracy) are defined as the features that are most indicative of changes in

DOC across different samples. To determine indicator taxa, a correlation value is calculated

for each feature as the product of specificity and fidelity for a particular taxon in association

with either high or low DOC samples [18]. Specificity measures how much a taxon associates

with a single label (e.g., high or low DOC), and fidelity measures how frequently a taxon asso-

ciates with that label. Specificity would be maximized if a taxon were only present in sites with

a particular label, and fidelity would be maximized if a taxon were present at all sites associated

with a particular label. A confidence score is assigned to each feature using a boot-strap algo-

rithm that compares the correlation value for each feature determined using correct labels

with correlations determined using randomly assigned labels. If the correlation statistic

between features and site labels determined using random labels is not consistently lower

than the correlation statistic using correct labels, then the confidence score for that feature-site

correlation is low. Only taxa with at least a 95% confidence (features with correlation values

greater than 95% of correlations determined with random labels) are considered in this study.

Indicator taxa analysis was implemented in Python 3.7 with the methods described in Dufrene

and Legendre, 1997 [18].

Data acquisition and data pre-processing

Microbiome data (16S rRNA gene profiles) were obtained from a prior study of pine needle

litter decomposition in laboratory microcosms [17] (supporting information S1 Dataset). In

brief, the microbial community in each of 206 soil samples was suspended in water, inoculated

into three replicate microcosms containing sterile sand and pine litter, and incubated 44 days
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at 25C. At 44 days, the amount of DOC in the microcosms was measured, DNA was extracted

from a subset of microcosms, and 16S rRNA gene amplicons were sequenced on an Illumina

MiSeq. Details of sequence processing are described in [17]. Sequence data has been deposited

in the NCBI sequence read archive (SRP151768). Because the composition of bacterial com-

munities among replicate microcosms diverged over the 44-day incubation period, the repli-

cates were treated as independent samples. For machine learning analysis, however, the

training and testing data were prohibited from sharing replicate samples to ensure indepen-

dence between training and testing data sets (supporting information S2 and S3 Datasets). The

bacterial community profiles from 308 samples were rarefied to 1023 sequences, which yielded

a matrix with a total of 1709 bacterial taxa. By default, our tool standardizes features such that

each feature is zero mean with unit variance over the training data set. The test data is similarly

scaled but only using the sample statistics determined from the training data set.

Results

Our feed forward neural network regression model was trained with 257 community samples

to predict level of DOC (Fig 1A). Our model was tested with a held out set of 51 test samples

which yielded a Pearson’s correlation coefficient of .636 between true and predicted DOC (Fig

1B) and a mean squared error of .565. The random forest regression model was trained and

tested with identical sets of data used with the neural network model. Test results using the

random forest regression model yielded a Pearson’s correlation coefficient of .676 (Fig 1D)

and a mean squared error of .516. A scatter plot of the prediction error using the neural net-

work model versus the prediction error with identical test samples using the the random forest

model are positively correlated with a Pearson’s correlation coefficient of 0.781 (Fig 1E).

To illustrate the degree of agreement of feature importance for predicting DOC between

random forest, neural network, and indicator species approaches, Fig 2A shows a Venn dia-

gram comparing feature selections. Feature selection was performed on the same training set

used to produce Fig 1. Out of a feature set with 1709 taxa, 285 taxa were significant indicator

taxa. Of the top 285 ranked features from the machine learning methods, 112 bacterial taxa

were shared between random forest and neural network feature selections, and of these, 86

bacterial taxa overlapped with the set of indicator taxa. To further investigate agreement of fea-

ture importance between methods, Fig 2B shows how the shared set of ranked features deter-

mined by the neural network, random forest, and indicator taxa analysis varies as a function

of feature rank. To investigate the significance of our feature selection results, we compared

the number of features in the consensus set to the number of shared features that would

occur if features were selected from three randomly organized sets. We applied a Monte

Carlo approach that sampled features from three randomly organized sets of 1709 features

and counted the number of features that were commonly selected in a pair of sets or within the

intersection of all three sets. We plotted the mean and 99% confidence interval from 1,000 sim-

ulations as a function of the number of sampled features (a separate plot with just the Monte

Carlo simulation curve is included in the supporting information S1 Fig). The number of fea-

tures in the consensus set is consistently greater than the number of shared features expected

from random sampling, suggesting that each feature selection approach exploited similar,

non-random trends in the data. Fig 2A and 2B show that feature importance determined by

the neural network has greater agreement with indicator taxa compared to feature importance

determined by random forest.

Indicator species analysis not only provides a feature importance metric, but also identifies

which features are correlated with different labels, such as high DOC samples or low DOC

samples. Feature importance determined by the neural network can be interpreted in the same
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Fig 1. DOC prediction with neural network and random forest regression models. (A) Scatter plot of fitted DOC

versus true DOC from training data samples (n = 257) using neural network model. (B) Scatter plot of predicted DOC

versus true DOC from test data samples (n = 51) using neural network model. (C-D) Same as above but using random

forest model. Training and testing data are identical for both methods. (E) A scatter plot of the prediction errors using

the neural network model versus the prediction errors with identical test samples using the random forest model.

https://doi.org/10.1371/journal.pone.0215502.g001
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Fig 2. Feature ranking determined by neural network, random forest, and indicator species analysis. (A) Venn

diagram demonstrates agreement of 86 bacterial taxa out of the top 285 ranked taxa from machine learning methods.

(B) Plots of the number of shared features between NN and IS (blue), RF and IS (orange), RF and NN (green), and all

methods (red) as a function feature rank over 285 features. Monte Carlo simulation of the number of shared features

expected by randomly sampling from 3 sets of 1709 features is plotted with a 99% confidence interval (black line,

Machine learning to predict microbial community functions
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way, where positive feature importance values imply a direct relationship with DOC, and nega-

tive values imply an inverse relationship. All 180 features shared by the neural network and the

indicator species methods exhibit the same feature-label correlations. Fig 2C shows how pre-

diction performance of the neural network and random forest models change as the number

of features included in the model increases from a minimum of 10 features to a maximum of

86 features. The order in which features were included in each subsequent prediction corre-

sponds to the rank determined by each feature selection method, such that the highest ranked

features were included first. Both models reach close to peak prediction performance with

only 86 features.

One might expect that the most informative features for DOC prediction would be those

with highest or lowest abundances within communities. To examine this expectation, Fig 3A

shows a histogram of bacterial abundance of the consensus set for selected features compared

to the histogram of bacterial abundance for the entire data set. This shows that feature selec-

tion techniques are not biased towards selection of taxa with low or high abundance, but rather

the consensus set of taxa selected by random forest, neural network, and indicator species anal-

ysis had abundance levels mostly in the moderate range. Abundance values in the figure were

determined for each taxon by taking the average number of reads over the entire set of sam-

ples. Fig 3B shows the distribution of prevalence of bacterial species of the consensus set of

selected features, where prevalence was calculated as the frequency in which taxa were present

in each sample. The distribution of prevalence of selected taxa shows that prevalence was not a

crucial factor in selecting features for prediction of DOC.

To test generality of the above results, we determined the Pearson’s correlation coefficient

for testing data under 50 randomly generated permutations of training and testing data with

roughly 260 training samples and 50 test samples (exact sample sizes varied between 254 and

262 samples for training data and between 46 and 54 samples for test data due to variations

in the number of replicates per experimental condition). Fig 4 shows histograms of test

purple confidence inteval). The black dotted line indicates perfect agreement between the three sets of ranked features.

(C) Plot of prediction performance on test data as measured by Pearson’s correlation coefficient versus number of

features included in machine learning models. The data are binned such that each point represents the average

prediction over 5 trials, where each subsequent trial includes an additional feature.

https://doi.org/10.1371/journal.pone.0215502.g002

Fig 3. Distributions of bacterial abundance and prevalence of all taxa and the consensus set of taxa selected by all

methods. (A) Histogram of abundance of taxa in the consensus set plotted over a histogram of abundance of all taxa in

the data set. Abundance was calculated as the average number of taxa over the entire sample set. (B) Histogram of

prevalence of taxa in the consensus set plotted over a histogram of prevalence of all taxa in the data set. Prevalence was

calculated based on how frequently taxa were present in each sample.

https://doi.org/10.1371/journal.pone.0215502.g003
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performance of the neural network model and the random forest model using the full feature

set (Fig 4A and 4C) and the reduced feature set (Fig 4B and 4D). While the neural network

model performed better using the reduced set of 86 features (two tailed t-test, P = .047), the

distribution of prediction errors using the random forest model with the reduced feature

set was not significantly different (two tailed t-test, P = .98). The neural network model pro-

duced greater prediction accuracy using the reduced feature set on 70% of test samples, and

the random forest model yielded greater prediction accuracy on 48% of test samples. The

random forest model significantly outperformed the neural network model with the full fea-

ture set (two tailed t-test, P< 0.001) but only marginally so with the reduced feature set (two

tailed t-test, P = 0.11).

To investigate how sample size affects model performance, prediction performance of

the neural network and random forest regression models was measured with an increasing

number of samples included in the training set (Fig 5). The random forest model consis-

tently outperformed the neural network over the range of training data sample sizes,

with more accurate predictions and less variability in prediction performance. Model

performance of either method reaches near optimal levels after inclusion of only half of

the training set or 150 training samples. Although variability in prediction performance

continued to decrease as the fraction of training data increased, these results suggest that

future experiments could be conducted with lower sample sizes without sacrificing model

performance.

Fig 4. Distribution of prediction errors for 50 different permutations of training and testing data. (A) Distribution

of Pearson’s correlation coefficients on test data performance using the neural network model without feature

reduction. Mean R value = .627, standard deviation = .097. (B) Distribution of Pearson’s correlation coefficients on test

data performance using the neural network model with the reduced feature set. Mean R value = .668, standard

deviation = .103. (C) Distribution of Pearson’s correlation coefficients on test data performance using the random

forest model without feature reduction. Mean R value = .699, standard deviation = .100. (D) Distribution of Pearson’s

correlation coefficients on test data performance using the random forest model with the reduced feature set. Mean R

value = .700, standard deviation = .095. For these permutations, feature reduction improved neural network prediction

performance (two tailed t-test, P = 0.047), and random forest outperformed neural network with the full feature set

(two tailed t-test, P< 0.001) and with the reduced feature set (two tailed t-test, P = 0.11).

https://doi.org/10.1371/journal.pone.0215502.g004
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Discussion

While random forest outperformed the neural network for prediction tasks in this study, both

methods can be used to predict DOC entirely from microbial community profiles and to pro-

vide measures of feature importance. The random forest method is relatively easy to imple-

ment, and performs well with little adjustment to model hyper-parameters. Sensitivity analyses

with the data set in this study (Fig 5) shows that the random forest model is less sensitive to

sample size of the training data set, which makes random forest an attractive machine learning

model for analysis of microbiome data. A benefit of the neural network model is that it pro-

vides more easily interpreted results for feature selection, which include the direction in which

taxa affect environmental variables. The site correlations determined by the neural network

and indicator taxa analysis show perfect agreement in sign among the entire set of taxa. Fur-

thermore, because ground truth for which taxa drive changes in environmental variables is not

known, the joint set of selected features from random forest, neural network, and indicator

taxa approaches provides greater confidence than the set from one method alone (feature

selection results are included in the supporting information S4 Dataset).

Machine learning approaches for analyzing microbiome data have proven successful in

applications such as forensics, medicine, and agroecology [26–28]. Recently, machine learning

algorithms such as random forest and K-means clustering have successfully determined the

postmortem interval (PMI) using postmortem skin microbiome [26]. In medicine, machine

learning models such as random forest have been used for identification of gut microbiomes

associated with irritable bowel syndrome in pediatric patients [27]. In another study focusing

on soil microbiomes, a random forest model was applied to predict crop yields from soil

microbiome composition [28]. With increasing access to machine learning software and high-

dimensional microbiome data, machine learning is emerging as a powerful tool for under-

standing how microbial communities affect their environment.

Although there are several examples of platforms that facilitate use of machine learning

techniques with microbial community data, our platform provides several unique options

that make it more accessible and useful for microbial ecologists. QIIME [29] includes the

“sample classifier” plugin [9], which provides access to a host of SCIKIT-LEARN [21] implemented

machine learning classification and regression models for use with microbiome data. Although

the sample classifier QIIME plugin includes hyper-parameter optimization and feature selec-

tion of important bacterial taxa, it does not provide insight into directional relationships

Fig 5. Sensitivity analysis of model prediction performance as the fraction of the total training data set (n = 257)

increases. Performance was measured using the average Pearson’s correlation coefficient after training over 10

random samplings of a fraction of the data set, with error bars representing 1 standard deviation from the mean. (A)

Prediction performance on fixed testing data by the neural network model. (B) Prediction performance on fixed

testing data by the random forest model.

https://doi.org/10.1371/journal.pone.0215502.g005
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between bacterial taxa and target variables. Moreover, the sample classifier plugin is not set

up to provide combined feature selection results determined from different machine learning

methods, and feature selection is not determined using different permutations of the training

data. METAML [6] is another available software for implementing machine learning methods

with microbiome data, but the methods are implemented exclusively for classification prob-

lems. For implementation of a neural network regression model with microbial abundance

data, NEUROET [10] provides a simple GUI that can be used to train and test a single-layer,

feed-forward neural network. NEUROET includes a procedure to optimize neural network archi-

tecture and identify important features for predicting model output, though optimization

of hyper-parameters such as learning rate and the regularization coefficient is not available.

While these platforms achieve a similar goal of applying machine learning techniques to

microbiome data, no existing software packages include both neural network and random

forest models and most do not provide insight into correlations between features and target

variables. To provide the most confident set of important taxa, our tool produces the joint

set of selected features from indicator species analysis, random forest, and neural network

approaches. To aid in experimental design, our tool also provides a built-in tool for analyzing

model sensitivity to experiment sample sizes.

Machine learning models offer the ability to determine hypothetical microbial communities

that could promote increased levels of DOC. Enhancing carbon sequestration in soil is a strat-

egy to combat climate change, as sequestration has the potential to offset fossil-fuel emissions

by 0.4 to 1.3 gigatons (5 to 15 percent) of atmospheric carbon per year [14]. Under the assump-

tion that a trained machine learning model has learned a general relationship between micro-

bial abundance and DOC, we can use the model to determine a hypothetical microbial

community that could potentially maximize DOC. In consideration of this task, the random

forest and neural network models are markedly different. Although the random forest model

has been at least as good as the neural network model to predict DOC levels that lie within the

range of the previous training data, the random forest model is restricted by its formulation to

a finite set of values corresponding to leaf nodes of decision trees. As a result, the random for-

est model is incapable of predicting values outside of the range presented in the training data.

Conversely, the neural network model could in principle extrapolate to make predictions out-

side of the range present in the training data, which would enable specification of hypothetical

microbial communities predicted to increase DOC beyond empirically observed levels. Fur-

thermore, because the feature importance vector, s, produced by the neural network model is

calculated as the gradient of the model output with respect to weights applied to features, s

provides a potential direction in which features could be adjusted to increase levels of soluble

carbon.

Fig 6A shows how the trained neural network model predicts responses to changes in

microbial communities. In this simulation, communities (a) and (b) were initialized as the

specific communities xa and xb that had the highest and lowest DOC and then adjusted in the

direction defined by the feature importance vector according to xnew = x + αs, where α denotes

the magnitude of the perturbation made to the community. The dashed trajectories represent

DOC predictions made from simulated communities also initialized at the highest and lowest

DOC, but with perturbations in random directions generated from a zero mean multivariate

Gaussian distribution scaled by magnitude α. As the microbial community profiles were

adjusted in the direction of the gradient determined by the neural network, the level of pre-

dicted DOC increased (see communities (a) and (b) in Fig 6A). When the same initial commu-

nities were adjusted randomly, predicted DOC never exceeded DOC predictions determined

from communities xa and xb (see dashed blue and orange lines stemming from the same initial

values as in communities xa and xb). For the neural network model, community (a) results in

Machine learning to predict microbial community functions

PLOS ONE | https://doi.org/10.1371/journal.pone.0215502 July 1, 2019 12 / 16

https://doi.org/10.1371/journal.pone.0215502


predicted DOC levels that exceed the greatest DOC prediction from the training set, thus gen-

erating testable hypotheses to supplement communities to increase dissolved organic carbon.

When the same simulated microbial communities were analyzed on a trained random forest

model (Fig 6B), the model predicted a similar trend towards increasing DOC for community

(b). Due to the nature of the algorithm, however, the level of DOC predicted by the random

forest model could never exceed that of community (a). Simulation results using either model

suggest that simulated communities informed by the trained neural network model are not

random and produce theoretical microbiomes that could promote greater levels of carbon in

soil, though future experiments are needed to test these designs and verify these predictions.

Machine learning methods presented in this paper are intended to be easily applied to any

data set that relates microbial communities to a scalar variable. To make this readily accessible,

we have implemented all methods as a user-friendly platform available at https://github.com/

MunskyGroup/thompson_et_al_plos_one_2019. For users without substantial knowledge

of machine learning techniques, our tool enables application of machine learning regression

models with optimized model parameters in a few lines of code. Tutorials for installing depen-

dencies and using our machine learning tool can also be found on the GITHUB repository. In

this study, we applied machine learning approaches to elucidate the relationship between bac-

terial communities and carbon flow from plant litter decomposition by developing regression

models to predict dissolved organic carbon (DOC) concentrations. For the dataset we analyzed

from [17], a strong relationship exists between bacterial community composition and DOC

abundance. Moreover, we found a consistent set of bacterial taxa identified by multiple meth-

ods—in this case neural network, random forest, and indicator species approaches.

With our platform, a table of feature selection results from random forest, neural network,

and indicator species analysis is easily produced with a built-in feature selection function.

Model sensitivity to sample sizes is also easily visualized using a built-in sensitivity analysis

that plots prediction performance on testing data as the size of the training data set increases.

The combination of machine learning tools and indicator species analysis reduced the feature

set of 1709 taxa to 86 taxa, which is a critical step towards elucidating mechanistic relationships

between microbial communities and environmental factors. Sensitivity analysis performed

with the neural network and random forest models suggests that future studies could be

Fig 6. DOC predictions of trained machine learning models with synthesized microbial communities. Simulated

communities (a) and (b) were specified by the training data communities with the highest and lowest DOC values,

respectively. Each was then adjusted in the direction of the average gradient of maximum DOC increase determined by

the neural network model, and each perturbation was scaled by magnitude α. Dashed lines stemming from the initial

values of communities (a) and (b) represent DOC predictions from communities adjusted by a random vector with

similar magnitude. (A) DOC prediction from hypothetical bacterial communities made by the neural network. (B)

DOC prediction made by the random forest model with identical communities used in panel A.

https://doi.org/10.1371/journal.pone.0215502.g006
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performed with smaller sets of samples. Feature importance determined by the neural network

could direct future studies by proposing microbial communities that enhance a functional out-

come of interest, such as increased carbon flow into soil. In this context, the proposed machine

learning tools provide a framework for designing experiments to further investigate how

microbial communities function together to affect their environment.
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S1 Dataset. OTU table. The bacteria OTU table used for all results in the paper organized
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models to produce Fig 1.
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