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Abstract
Among the deadliest pandemics in history, coronavirus disease 2019 (COVID-19) has wreaked havoc on human lives, 
economies and public health systems worldwide. To temper its effects, diagnostic methods that are simple, rapid, inexpen-
sive, accurate, selective and sensitive continue to be necessary. In our study, we developed an electrochemical biosensing 
platform based on gold clusters, mercaptoethanol, the spike protein of severe acute respiratory syndrome-coronavirus-2 
(SARS-CoV-2) antigen and bovine serum albumin-modified glassy carbon electrode able to detect the SARS-CoV-2 spike 
antibody. Moreover, during the detection of the SARS-CoV-2 spike antibody in spiked-real samples, the anodic signal of 
the produced biosensor at 0.85 V decreased as the amount of the SARS-CoV-2 spike antibody increased. Meanwhile, the 
recovery and relative standard deviation values for saliva and oropharyngeal swab samples were 97.73% and 3.35% and 
102.43% and 4.63%, respectively. In 35 min, the biosensing platform could detect 0.03 fg/mL of the SARS-CoV-2 spike 
antibody in synthetic media and spiked-saliva or -oropharyngeal swab samples. The method thus issues a linear response to 
the SARS-CoV-2 spike antibody from 0.1 fg/mL to 10 pg/mL. The cross-reactivity studies with spike antigens of Middle East 
respiratory syndrome-coronavirus and influenza A and the antigen of pneumonia confirmed the excellent selectivity of the 
proposed method. The developed method was compared with the lateral flow immunoassay method in terms of sensitivity 
and it was found to be approximately 109 times more sensitive.
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Introduction

Among the deadliest pandemics in history, novel coronavi-
rus disease 2019 (COVID-19), caused by severe acute respir-
atory syndrome-coronavirus-2 (SARS-CoV-2) and spreading 
from the capital of China’s Hubei Province, has posed severe 
risks for human lives, public health systems and economies 
around the world [1–3]. To counter the pandemic’s effects, 
countries with advanced economies, countries with emerg-
ing markets and low-income developing countries have 
respectively spent $9021, $1387 and $37 billion combined 
as of April 2021. For example, Macao, the United States 
and New Zealand, as the three countries with the highest 

gross domestic product expenditures (GDP) in 2020, have 
respectively allocated 27.4%, 25.5% and 19.4% of GDP to 
combatting COVID-19 [4]. Despite the world’s collective 
efforts, as of 18 August 2021, more than 208 million cumu-
lative cases of COVID-19 and 4.3 million deaths have been 
reported worldwide [5].

Coronaviruses have been divided into four subgenus: 
Alphacoronavirus, Betacoronavirus, Gammacoronavi-
rus and Deltacoronavirus. Alpha- and betacoronaviruses 
are estimated to originate from mammals, especially bats, 
whereas gamma- and deltacoronaviruses are suspected to 
be transmitted by birds and pigs. Although only mild symp-
toms, if any, are associated with alphacoronaviruses, the 
effects of betacoronaviruses can be fatal [6]. Less than a 
week after infection, clinical signs of COVID-19 typically 
manifest including coughing, fever, fatigue, nasal congestion 
and other symptoms common to upper respiratory system 
infections. As observed by computed tomography, the infec-
tion can worsen with symptoms similar to pneumonia such 
as dyspnoea and severe chest abnormality [6, 7] and even 
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lead to death [8, 9]. Asymptomatic individuals have also 
spread COVID-19 and led to the underestimation of cases 
[10–12]. In response, 18 vaccines with human trials and effi-
cacy tests have shown promise for controlling COVID-19 
[12, 13]. Even though effective vaccination is indeed one 
step to ensure efficient control of the pandemic, the need for 
rapid, selective and accurate methods of diagnosing COVID-
19 will persist [13–15].

Although real-time polymerase chain reaction (RT-PCR) 
[16–23] is the most prominent technique among the many 
methods of diagnosing COVID-19 to date, the methods 
based on enzyme-linked immunosorbent assay (ELISA) 
[24], lateral flow assay (LFA) [25], lateral flow immunoassay 
(LFIA) [26–32], UV–visible spectroscopy [33], clustered 
regularly interspaced short palindromic repeats (CRISPR) 
[34–36], loop-mediated isothermal amplification (LAMP) 
[37–40], haematological parameters [41], computed tomog-
raphy (CT) imaging [42], plasmonic sensors [43, 44] and 
electrochemical biosensors [45–60] stand at the fore given 
their advantages such as simplicity, rapidity, sensitivity and 
accuracy. Among those techniques, RT-PCR is the one most 
commonly used due to its standardisation, good sensitivity 
and selectivity. Even so, RT-PCR is also expensive, labour-
intensive and time-consuming, as well as requires experi-
enced personnel, remains exclusive to laboratory-based 
medical institutions [3, 17, 45, 47, 48] and, even worse, has 
a high false-negative ratio (i.e. 20–67%) depending on the 
time since infection [61, 62]. Indeed, Wang et al. [63] inves-
tigated the performance of six commercial RT-PCR diagnos-
tic kits for COVID-19 and found that all six kits could detect 
a large amount of the RNA of SARS-CoV-2 and thus, some-
times issued false-negative results. Meanwhile, ELISA-, 
LFA-, LFIA- and UV–visible spectroscopy-based methods 
[24–33] are simple, inexpensive, user-friendly and rapid, 
despite their low sensitivity and thus frequent false-negative 
results. Methods based on plasmonic sensors, CRISPR and 
LAMP techniques [34–40, 43, 44] are also affordable and 
highly sensitive; however, they too require experienced per-
sonnel and entail labour-intensive experimental procedures. 
Beyond those methods, haematological investigation and CT 
imaging are not appropriate for on-site analysis or the early 
and certain diagnosis of COVID-19 [43, 64].

By contrast, electrochemical biosensing methods are not 
only simple, rapid, cost-effective, robust and highly sensitive 
and selective for diagnosing COVID-19, as demonstrated 
in various strategies, but also detect the whole virus, the 
antibody produced in the body and their specific fragments 
and proteins [65–69]. Antigen-based electrochemical meth-
ods based on viral detection (i.e. RNA) requiring 7 h and 
29 h for sensor preparation and 40 min and 3 h for measure-
ment provide LODs of 6900 copy/mL [45] and 200 copy/mL 
[50], respectively. Both antigen- [47–49, 51–56, 59, 60] and 
antibody-based electrochemical methods [3, 46, 48, 58] use 

either a spike protein [3, 46, 47, 49, 51, 52, 55, 56, 58–60] 
or nucleocapsid protein [46, 48, 53, 54] to diagnose COVID-
19. Whereas antigen-based methods using proteins offer sen-
sor preparation times ranging from 5 to 73 h and measure-
ment times between 30 s and 45 min, antibody-based ones 
require between 3 and 72 h to prepare and offer measurement 
times between 15 min and 1 h.

Using those methods, Seo et  al. [47], Rahmati et  al. 
[51], Mavrikou et al. [55], Eissa et al. [53], Hashemi et al. 
[59] and Liv et al. [60] were able to detect (LODs) 1 fg/
mL and 100 fg/mL of the spike protein in synthetic and 
clinical media, 0.04 fg/mL and 1 fg/mL of the spike protein, 
0.8 pg/mL of the nucleocapsid protein in synthetic media, 
1.68 × 10−22 μg/mL in biological media and 1 ag/mL of the 
spike protein in synthetic media, saliva and oropharyngeal 
swab samples. By comparison, Raziq et al. [54] and Mahari 
et al. [56] detected 15 fM of the nucleocapsid protein in 
nasopharyngeal swab samples and 90 fM of the spike protein 
in saliva samples, respectively. Vadlamani et al. [49] and 
Mojsoska et al. [52], however, calculated LODs of 0.1 μg/
mL and 20 μg/mL for the spike protein in synthetic media, 
respectively, and the latter found an LOD of 5.5 × 105 PFU/
mL in plaque assay media. Although Rashed et al. [58], 
who studied the spike antibody, and Torrente-Rodríguez 
et al. [48], who developed a method to detect the spike and 
nucleocapsid antibodies as well as antigen nucleocapsid 
protein, did not provide results regarding LODs or dynamic 
range, Fabiani et al. [46] studied both the spike and nucle-
ocapsid antibodies in synthetic media and found LODs of 
19 ng/mL and 8 ng/mL, respectively. Last, in our previous 
work [3], using gold clusters, cysteamine, glutaraldehyde 
and the SARS-CoV-2 spike antigen-modified glassy carbon 
electrode (GCE), we found an LOD of 0.01 ag/mL for the 
spike antibody in synthetic media.

Against that background, we here report a novel biosen-
sor platform based on gold clusters (Au), mercaptoethanol 
(CysOH), the SARS-CoV-2 spike antigen protein (S-gene) 
and bovine serum albumin (BSA)-modified GCE (BSA/S-
gene/CysOH/Au/GCE) for determining the SARS-CoV-2 
spike antibody in synthetic and spiked-real samples.

Materials and methods

Chemicals and equipment

The spike proteins of SARS-CoV-2 (2019-nCoV) (spike 
S1-his recombinant protein, verified by HPLC, Cat: 40591-
V08H), Middle East respiratory syndrome-coronavirus 
(MERS-CoV) (S1 Subunit, aa 1–725, His Tag, Cat: 40069-
V08B1), Influenza A (H1N1 Hemagglutinin/H0A protein, 
Cat: 11055-VNAB) and the spike antibody protein of SARS-
CoV-2 (Chimeric MAb Cat: 40150-D00) were purchased 
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from Sino Biological Inc. and the native extract of Strepto-
coccus Pneumoniae antigen was supplied from Native Anti-
gen Company. Gold solution (1000 mg/L Au in 2 M HCl, 
traceable to NIST SRM, Merck 170216), 2-mercaptoethanol 
(≥ 99.0%, Sigma-Aldrich M6250), bovine serum albumin 
(BSA, ≥ 98%, Sigma-Aldrich 05470), phosphate-buffered 
saline (Tablet, Sigma-Aldrich P4417, 0.01 M phosphate 
buffer, 0.0027 M potassium chloride and 0.137 M sodium 
chloride, pH 7.2–7.6, at 25 °C) and all the other chemicals 
were used as analytical reagent grade.

Vitrosens RapidFor™ SARS-CoV-2 Rapid IgG/IgM test 
kits were used for comparative study.

Eppendorf protein LoBind tubes were used for the prepa-
ration and storage of all spike antigen and antibody solutions 
in 0.01 M (pH 7.5) of PBS solution to prevent sticking of 
proteins to the walls of their containers, while high-density 
polyethylene bottles or falcon tubes were used to store the 
other solutions prepared in ultrapure water.

Milli-Q Direct 8 system was used to produce ultrapure 
water. A Metrohm Autolab PGSTAT 128 N potentiostat–gal-
vanostat system consisting of chemically modified glassy 
carbon electrode (Au clusters capped with CysOH, S-gene 
and BSA modified GCE–BSA/S-gene/CysOH/Au/GCE, 
GCE: BASi MF-2012, 3.0 mm diameter) as the working 
electrode, Ag/AgCl/3 M NaCl (BASi MF-2052 RE-5B) as 
a reference electrode and platinum wire (BASi MW-1032, 
7.5 cm) as a counter electrode was used for voltammetrically 
determining the SARS-CoV-2 spike antibody in synthetic 
and spiked-real samples.

A Mettler Toledo Seven Easy pH meter with InLab Rou-
tine Pro-ISM combined pH electrode and a thermostatic 
circulator (Thermo Haake DC 10 K20) was used for the 
preparation of buffer solutions.

A FEI Quanta FEG 250 environmental scanning electron 
microscope (SEM) and a FEI Quanta 250 XFLASH 5030 
energy-dispersive X-ray spectroscopy (EDX) were used for 
the characterisation of the prepared electrodes.

Preparation of the biosensing platform

First, we sequentially polished the surface of the GCE with 
6.0 µm and 1.0 µm of diamond and 0.05 µm of aluminium 
oxide suspension on velvet felt, washed it with ultrapure 
water and thereafter exposed it to ultrasonic waves in an 
ethanol–ultrapure water mixture (1:1, v/v) and in ultrapure 
water for 3 min each. The gold clusters formed on the GCE’s 
surface in the same way as in our previous study [3]. Onto 
Au/GCE’s surface was deposited 25 μL of 20 mM CysOH 
for 60 min to prepare CysOH/Au/GCE, after which the thiol 
sites of CysOH were chemisorbed and hydroxyl terminals 
were placed facing the outside of the electrode. Next, 10 μL 
of 10 μg/mL S-gene was dropped on the surface of CysOH/
Au/GCE for 45 min to provide an interaction between –OH 

groups of CysOH and –C = O and –H groups of S-gene, 
as shown in Fig. 1. Free spaces of the obtained electrode, 
namely S-gene/CysOH/Au/GCE, were blocked with 2% 
BSA for 20 min to obtain BSA/S-gene/CysOH/Au/GCE. 
All incubations were performed at room temperature, and 
the biosensing platform was stored at 4 °C until further use.

The procedures for preparing BSA/S-gene/CysOH/Au/
GCE and voltammetric measurement for the detection of the 
SARS-CoV-2 spike antibody also appear in Fig. 1.

Voltammetric measurement procedure

Measurements using square wave voltammetry (SWV) and 
cyclic voltammetry (CV) were applied as in our previous 
work [3]. Briefly, SWV was performed with a potential 
range of 0.1–1.4 V with 10 Hz of frequency, 20 mV of pulse 
amplitude, 5 mV of step potential and an interval time of 
0.1 s. Meanwhile, CV scans had the same potential range, 
with 3 mV of step amplitude and a scan rate of 100 mV/s. 
An appropriate amount of the SARS-CoV-2 spike antibody 
or real spiked-sample in 0.01 M (pH 7.5) of PBS solution 
with a final volume of 10 mL was used. The oxidation 
peak belonging to BSA/S-gene/CysOH/Au/GCE at 0.85 V 
decreased with the proportional amount of the SARS-CoV-2 
spike antibody, and that signal was used for determining the 
SARS-CoV-2 spike antibody. Measurements were carried 
out at 21 ± 3 °C and in 45 ± 15% relative humidity.

LFIA measurement procedure

Measurements were performed according to the manufactur-
er’s instructions. Briefly, 10 μL of the spiked-saliva sample 
was dropped onto the sample well of the test card using the 
plastic dropper and thereafter added 80 μL of sample dilu-
ent to the sample well. Finally, the images were interpreted 
for IgG.

Sample preparation

Saliva and oropharyngeal swab samples were collected from 
six healthy individuals and treated by following a far easier 
approach than in our previous work [3]. After 10 fg of the 
SARS-CoV-2 spike antibody was added to half of the sam-
ples for each 5 μL, the spiked- and nonspiked-samples (i.e. 
the other half of the samples) were analysed to determine 
the SARS-CoV-2 spike antibody via external calibration 
by depositing 5 μL of the spiked- or nonspiked-sample on 
the surface of BSA/S-gene/CysOH/Au/GCE without any 
preprocessing.

1 ng/mL, 10 ng/mL, 100 ng/mL, 1 μg/mL, 10 μg/mL and 
100 μg/mL of the SARS-CoV-2 spike antibody (as a final 
concentration for each) were added to the saliva samples and 
analysed by LFIA.

1315Electrochemical biosensing platform based on hydrogen bonding for detection of the SARS CoV 2…- -



1 3

Results and discussion

Characterisation of the electrodes

We examined the surfaces of the electrodes after each modi-
fication with CV, scanning electron microscopy (SEM) and 
energy-dispersive X-ray spectroscopy (EDX). At first, CV 
measurements for the GCE, Au/GCE, CysOH/Au/GCE, 
S-gene/CysOH/Au/GCE and BSA/S-gene/CysOH/Au/GCE 
electrodes were recorded in 1 mM of K3[Fe(CN)6], 1 mM of 
K4[Fe(CN)6] and 0.1 M of KCl, as shown in Fig. 2. The peak 
heights of [Fe(CN)6]3− and [Fe(CN)6]4− couple significantly 
increased due to the improved electron transfer rate result-
ing from the conductivity of Au after the modification of 
gold clusters on the bare GCE (Fig. 2b). The peak heights 
belonging to the redox couple decreased after the incubation 
of CysOH on the surface of Au/GCE (Fig. 2c) due to the 
electrostatic repulsion forces between the [Fe(CN)6]3− and 
[Fe(CN)6]4− and the unpaired electrons of oxygen from 
CysOH. With S-gene attached on CysOH/Au/GCE, the 
peak heights increased (Fig. 2d), which could be attrib-
uted to both/either the interaction and attraction between 
the hydrogen atoms of the amine form in the structure of 
S-gene and the redox couple and/or the increasing effective 
surface area. Because BSA is a kind of protein, the peak 
heights of [Fe(CN)6]3− and [Fe(CN)6]4− couple continued 
to increase after BSA’s modification on S-gene/CysOH/Au/

GCE (Fig. 2e). BSA’s immobilisation was pivotal to deter-
mining the SARS-CoV-2 spike antibody, because the non-
use of BSA reduced the peak intensities and distorted their 
symmetry.

SEM images and EDX spectra for the electrodes (i.e. 
Au/GCE, CysOH/Au/GCE, S-gene/CysOH/Au/GCE and 
BSA/S-gene/CysOH/Au/GCE) were recorded to identify 

Fig. 1   Procedures for preparing 
BSA/S-gene/CysOH/Au/GCE 
and voltammetric measurement 
for the detection of the SARS-
CoV-2 spike antibody

Fig. 2   Cyclic voltammograms of (a) GCE, (b) Au/GCE, (c) CysOH/
Au/GCE, (d) S-gene/CysOH/Au/GCE and (e) BSA/S-gene/CysOH/
Au/GCE in 1 mM of K3[Fe(CN)6], 1 mM of K4[Fe(CN)6] and 0.1 M 
of KCl with a scan rate of 50 mV/s
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the surface state and the elemental composition, as shown 
in Fig. 3 and Fig. S1, respectively. With a surface of car-
bon and oxygen, GCEs are known to appear smooth in 
SEM images [3]. In our study, gold clusters formed on the 
surface of the GCE with roundish structures, and nearly 
half of the electrode surface was covered by Au clusters 
(51.60%), as illustrated in Fig. 3A and Fig. S1A, respec-
tively. As immobilisation occurred on the surface of the 
gold clusters, the size of the clusters increased with each 
subsequent modification, as depicted in Fig. 3A–D, which 
resulted in lowering the Au content on the surface of the 
electrodes (Fig. S1A–D). Moreover, the colour of the gold 
clusters turned from white to grey, which we attributed to 
reduced conductivity. CysOH was chemisorbed from sul-
phur sites by gold clusters, and oxygen content increased 
from 0.74 to 4.56% in the EDX spectrum due to hydroxyl 
terminals on the surface of CysOH/Au/GCE (Fig. S1B). 
After S-gene had interacted with the hydroxyl terminals 
of CysOH, the amount of oxygen at the surface of CysOH/
Au/GCE decreased from 4.56 to 2.11%, and the nitrogen 
peaks originating from S-gene appeared as shown in 
Fig. S1C. Upon BSA’s immobilisation on S-gene/CysOH/
Au/GCE, the increasing amount of nitrogen and oxy-
gen added to a trace amount of sulphur on the surface 

suggested that the protein-like structures had attached to 
the surface (Fig. S1D).

CV, SEM and EDX measurements, agreeing with each 
other and the literature [3, 69], demonstrated that the various 
electrode modifications had been effectively performed for 
the voltammetric determination of the SARS-CoV-2 spike 
antibody in synthetic and spiked-real samples.

Cyclic voltammetric characteristics of the system

The cyclic voltammetric behaviour of the biosensor and 
the added SARS-CoV-2 spike antibody were examined in 
0.01 M (pH 7.5) of PBS solution. The oxidation peak of 
the biosensor at 0.85 V decreased with the addition of the 
SARS-CoV-2 spike antibody (Fig. S2), and the irreversibil-
ity of the oxidation reaction could have resulted from the 
partly negative sites on the biosensor’s surface after anodic 
scan and the repulsion forces between these negative sites 
and the phosphate buffer species (i.e. H2PO4

− and HPO4
2−), 

hence the diminished electron transfer rate [3]. Because the 
cathodic peak at 0.35 V had not changed with the propor-
tional amount of the SARS-CoV-2 spike antibody, that peak 
was not taken into account for determining the SARS-CoV-2 
spike antibody.

Fig. 3   SEM images of a Au/
GCE, b CysOH/Au/GCE, c 
S-gene/CysOH/Au/GCE and d 
BSA/S-gene/CysOH/Au/GCE 
(SEM analysis: 20 kV voltage, 
4.0 spot value, ETD detector)
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Optimisation studies

Significant parameters affecting the biosensor’s perfor-
mance, including the concentration of CysOH and S-gene, 
and the binding time of CysOH, S-gene, BSA and the SARS-
CoV-2 spike antibody, were optimised to 20 mM, 10 μg/
mL, 60 min, 45 min, 20 min and 30 min, respectively, in 
the presence of 1 fg/mL of the SARS-CoV-2 spike antibody 
(Fig. S3). The measurements were taken in 0.01 M (pH 7.5) 
of PBS solution because the pH of bodily fluids is generally 
neutral.

Method validation

The electrochemical oxidation reaction of the biosensor and 
the signal’s decrease after the SARS-CoV-2 spike antibody 
was added are associated with the oxidation of heteroatoms, 
including hydroxyl, on the surface of the SARS-CoV-2 spike 
antigen and the formation of a large immuno-complex that 
hinders electron transfer, respectively [3, 67]. Figure 4 shows 
the related SWV voltammograms and calibration curve for 
determining the SARS-CoV-2 spike antibody. ΔIp, the y-axis 
of the calibration curve, was calculated by subtracting the 
signal of the added SARS-CoV-2 spike antibody from the 
signal of the produced biosensor, BSA/S-gene/CysOH/Au/
GCE. The method has an LOD (i.e. from blank signal) of 
0.03 fg/mL of the SARS-CoV-2 spike antibody and has an 
analytical range of 0.1 fg/mL to 10 pg/mL in 0.01 M (pH 
7.5) of PBS solution.

The MERS-CoV spike protein (i.e. M-S-gene), influenza 
A spike protein (i.e. InfA-S-gene) and the Streptococcus 
pneumoniae antigen (i.e. Pneu) were used to examine the 

produced biosensor’s selectivity by separately immobilis-
ing them on CysOH/Au/GCE and blocking them with BSA. 
The produced platforms were denoted as BSA/M-S-gene/
CysOH/Au/GCE, BSA/InfA-S-gene/CysOH/Au/GCE and 
BSA/Pneu/CysOH/Au/GCE, respectively. As a consequence, 
the fabricated platforms showed no significant response to 
1 fg/mL of the SARS-CoV-2 spike antibody (Fig. S4). The 
interference effects of various anions, enzymes and com-
pounds that could be present in saliva were investigated in 
the presence of 1 fg/mL of the SARS-CoV-2 spike antibody 
with a criterion to mark a 5% variation in the peak height for 
evaluation (Table 1). Those results suggest the good selectiv-
ity of the proposed method.

RSD% values were calculated to be 7.55%, 3.79% and 
5.23% for 1 fg/mL, 100 fg/mL and 10 pg/mL of the SARS-
CoV-2 spike antibody, respectively. Those results indicate 
that the method also has good reproducibility. The stabil-
ity and robustness studies were performed by storing the 
biosensor in an argon atmosphere by measuring the peak 
height at the end of six consecutive 5 day periods at 4 °C, 
25 °C and 37 °C, respectively (Figs. S5 and S6). No sig-
nificant difference emerged between the results when the 
sensor was stored at 4 °C versus 25 °C. By contrast, on day 
30, the signal had preserved at least 84.5% of the signal from 
day 1 even when stored at 37 °C. Those results indicate the 
exceptional stability and robustness of BSA/S-gene/CysOH/
Au/GCE as well.

LFIA method was compared with the proposed method 
in terms of sensitivity with different amount of the SARS-
CoV-2 spike antibody as shown in Fig. 5. It was crucial to 
indicate that the LFIA method responded as a faint line at 
100 ng/mL of the SARS-CoV-2 spike antibody and gave a 
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Fig. 4   (a) The obtained square wave voltammograms and (b) the cali-
bration curve using BSA/S-gene/CysOH/Au/GCE in 0.01 M (pH 7.5) 
of PBS solution. (a) 0.01 M (pH 7.5) of PBS solution, (b) + 0.1  fg/

mL, (c) + 1 fg/mL, (d) + 10 fg/mL, (e) + 100 fg/mL, (f) + 1000 fg/mL 
and (g) + 10 pg/mL of the SARS-CoV-2 spike antibody. n = 3 for each 
concentration
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negative response at lower concentrations (i.e. 1 and 10 ng/
mL). The results clearly depicted that the developed biosen-
sor was 109 times more sensitive than the LFIA method. 
Since patient individuals may have different virus levels and 
therefore different antibody levels, it was concluded that the 
developed method could be successfully used after the onset 
of symptoms and early diagnosis of COVID-19.

Sample application

The method was used to determine the amount of the SARS-
CoV-2 spike antibody in spiked-saliva and -oropharyngeal 
swab samples, and the recovery and relative standard devia-
tion values obtained were 97.73% and 3.35% and 102.43% 
and 4.63%, respectively. The voltammograms and the results 
for those samples appear in Fig. S7, Fig. S8 and Table 2. The 
results thus show that the method additionally provides good 
accuracy. These results obtained with the external calibra-
tion also depict that the developed method is not affected by 
the sample matrix.

Conclusion

In our study, a rapid (approx. ~ 35 min), inexpensive, sensi-
tive, selective biosensing platform was developed for the 
voltammetric determination of the SARS-CoV-2 spike anti-
body in spiked-saliva and -oropharyngeal swab samples. The 
developed biosensor has the shortest preparation time among 
prominent electrochemical biosensing methods based on anti-
gen- or antibody-protein reported in the literature [3, 46–49, 
51–56, 58–60] and an analysis time comparable to that of other 
antibody protein-based electrochemical methods [3, 46, 58], 

Table 1   The interference studies for the detection of the SARS-
CoV-2 spike antibody using BSA/S-gene/CysOH/Au/GCE. Condi-
tions: 1 fg/mL of the SARS-CoV-2 spike antibody, 0.01 M (pH 7.5) 
of PBS solution

a Tolerable amount is the enzyme concentration directly in the assay 
medium. bTolerable ratio is how many times more than 1  fg/mL 
(SARS-CoV-2 spike antibody) of the interference does not change the 
peak height by more than 5%

Interference Tolerable amounta 
(unit/mL)

Tolerable ratiob

α-amylase 200 -
Lipase 30 -
Na+, K+, Mg2+ - 750
Ca2+ - 600
H2PO4

−, HPO4
2−, HCO3

− - 350
Urea, ammonia - 250

Fig. 5   Image obtained from 
LFIA cassettes at different con-
centration levels of the SARS-
CoV-2 spike antibody. (a) 1 ng/
mL, (b) 10 ng/mL, (c) 100 ng/
mL, (d) 1 μg/mL, (e) 10 μg/mL 
and (f) 100 μg/mL of the SARS-
CoV-2 spike antibody

Table 2   The results of spiked-
saliva and -oropharyngeal swab 
samples (n = 6)

Sample Added amount of SARS-
CoV-2 spike antibody
(fg/mL)

SARS-CoV-2 spike 
antibody found
(mean ± standard 
deviation; fg/mL)

Recovery (%)
(mean ± standard 
deviation)

Relative stand-
ard deviation 
(%)

Saliva 1 0.98 ± 0.03 97.73 ± 3.27 3.35
Oropharyn-

geal swab
1 1.02 ± 0.05 102.43 ± 4.74 4.63
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albeit far shorter than RT-PCR methods [16–23] as well as 
less expensive. Using saliva and oropharyngeal swab samples 
without any preprocessing instead of time-consuming blood 
and serum samples requiring different processes affords the 
proposed method relative simplicity. At the same time, the 
results of cross-reactivity and interference studies revealed its 
good selectivity, while the results of spiked-saliva and -oro-
pharyngeal swab samples revealed its relative accuracy. In 
addition, the proposed method has much better sensitivity than 
LFIA-based antibody tests. Moving forward, BSA/S-gene/
CysOH/Au/GCE could be easily fabricated and provided as 
a ready-to-use kit on a commercial scale by using disposable 
screen-printed electrodes.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00216-​021-​03752-3.
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