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A B S T R A C T

Background: Despite toxic side effects and limited durable response, the current standard-of-care treatment
for high grade serous ovarian cancer (HGSOC) remains platinum/taxane-based chemotherapy. Given that the
overall prognosis has not improved drastically over the past several decades, there is a critical need to under-
stand the underlying mechanisms that lead to tumour development and progression.
Methods: We utilized an integrative proteogenomic analysis of HGSOC tumours applying a poor prognosis
gene expression signature (PPS) as a conceptual framework to analyse orthogonal genomic and proteomic
data from the TCGA (n = 488) and CPTAC (n = 169) studies. Genes identified through in silico analyses were
assessed in vitro studies to demonstrate their impact on proliferation and cell cycle progression.
Findings: These analyses identified DNA amplification and overexpression of the transcription factor ADNP
(Activity Dependent Neuroprotector Homeobox) in poorly prognostic tumours. Validation studies confirmed
the prognostic capacity of ADNP and suggested an oncogenic role for this protein given the association
between ADNP expression and pro-proliferative signalling. In vitro studies confirmed ADNP as a novel and
essential mediator of cell proliferation through dysregulation of cell cycle checkpoints.
Interpretation: We identified ADNP as being amplified and overexpressed in poor prognosis HGSOC in silico
analyses and demonstrated that ADNP is a novel and essential oncogene in HGSOC which mediates prolifera-
tion through dysregulation of cell cycle checkpoints in vitro.
Funding: The National Cancer Institute of the National Institutes of Health, the V Foundation for Cancer
Research and the New Jersey Commission for Cancer Research.
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1. Introduction

Ovarian cancer is the fifth leading cause of cancer-related deaths
among women in the United States in 2019 [1]. The most common his-
tological subtype of epithelial ovarian cancer is high-grade serous
ovarian cancer (HGSOC). Although most patients initially respond to
platinum�taxane based chemotherapy and surgical resection, most
tumours recur and become increasingly resistant to chemotherapy [2].

HGSOC tumours express a relatively homogenous somatic or
germline mutation profile and are characterized by TP53 mutations
in >90% of tumours as well as frequent BRCA1 and BRCA2 mutations
[3]. Although these mutations occur at a high frequency, HGSOC
tumors have been shown to be C class tumors characterized by recur-
rent DNA copy number alterations and few other common mutations.
[4]. As was shown by the Cancer Genome Atlas (TCGA) project [3],
these alterations manifest as dysregulated Rb/E2F, Ras/PI3K, FoxM1
and Notch signalling; however clinical trials have generally demon-
strated a lack of response in these tumours to inhibition of these
pathways [5,6]. A number of previous studies, including those from
the TCGA and Clinical Proteomic Tumour Analysis Consortium
(CPTAC) projects have demonstrated that HGSOC can be classified
into multiple transcriptome or proteome-based classes [3,7,8]. While
these subtypes do exhibit unique genomic and/or proteomic patterns,
the prognostic capacity of these groups remains unclear as several
conflicting studies have been reported [3]. While the TCGA initially
demonstrated no significant prognostic difference between these
groups, more recent studies have suggested that the proliferative and
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Research in context

Evidence before this study

Ovarian cancer is the fifth-leading cause of cancer death among
women in the United States. Despite extensive multi-omics
characterization of high grade serous ovarian cancer (HGSOC)
and improved treatment strategies, the overall 5-year survival
rate continues to trail most other malignancies. Thus, it is
urgent to identify novel therapeutic targets and biomarkers.

Added value of this study

In this study, integrative proteogenomic analyses of HGSOC
tumours identified ADNP as a potential novel driver of HGSOC.
We confirmed the prognostic capacity of ADNP in multiple inde-
pendent datasets and in vitro studies showed the essentiality of
this protein in regulating cell proliferation and survival. Our anal-
yses demonstrate that ADNP regulates HGSOC tumorigenesis by
promoting dysregulation of cell cycle checkpoints.

Implications of all the available evidence

Our findings indicated that ADNP is poor prognostic marker in
multiple datasets. Importantly, we validated that ADNP medi-
ates cell proliferation through dysregulation of cell cycle check-
points in ovarian cancer. Our findings supported ADNP as a
novel oncogenic driver of HGSOC growth and survival.
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mesenchymal subtypes may have a worse prognosis when compared
to the immunoreactive subtype [9,10]. Interestingly, a recent study
has suggested that these subtypes may benefit from addition of beva-
cizumab [9]. Regardless, the general lack of drug-able targets
expressed in HGSOC tumours and the reality that the overall progno-
sis for HGSOC has not improved drastically over the past several dec-
ades, despite the recent inclusion of PARP inhibitors [11], suggests
that there is a critical need to understand the mechanisms that lead
to tumour development and progression.

To identify genes responsible for regulating specific signalling path-
ways and/or tumorigenic properties that contribute to poor clinical
outcome, we utilized a previously published Poor Prognosis Signature
(PPS) [3] as a conceptual framework to perform integrative proteoge-
nomic analyses of human HGSOC tumours. Our analyses identified
increased DNA copy number gains and higher mRNA and protein
expression of the transcription factor ADNP (Activity Dependent Neu-
roprotector Homeobox) in poorly prognostic HGSOC tumours.

ADNP is a Homeobox transcription regulator which includes nine
zinc-fingers that plays a role in neuroprotective responses to cellular
growth, chromatin remodelling, microtubule/autophagy regulation
and cell proliferation [12�15] While ADNP is localized to 20q12, a
chromosomal region that is frequently amplified and/or overex-
pressed in many human malignancies including HGSOC, breast, pan-
creatic, and colon cancers [16], the majority of published studies
have focused on the role of ADNP in neurological development and
disease including autism spectrum disorders and Alzheimer's disease
[17]. As a result, the role of ADNP in cancer, or HGSOC specifically, has
not been extensively studied. Aberrant expression of ADNP has been
reported to mediate intestinal cell growth, proliferation in specific
types of sarcomas and neuronal tissue and to modulate expression of
E2F-regulated genes as well as PI3K/ AKT signalling [15,18�20] sug-
gesting that it may play an oncogenic role in specific tumour types or
cellular environments. Consistent with this premise, our analyses
determined that ADNP expression is prognostic in multiple HGSOC
datasets and in vitro studies demonstrate the ADNP mediates the
expression of key cell cycle genes and is required for HGSOC cell
growth and survival thereby supporting a role for ADNP in HGSOC
tumorigenesis.

2. Materials and methods

2.1. Human tumour and cell line multi-omics data

Affymetrix HT-HG-U133A microarray data for HGSOC samples was
obtained from the Firehose data portal (https://gdac.broadinstitute.
org/). Affymetrix U133Plus2.0 microarray data for the 285 patients
Tothill (GSE9891) [7] and 260 patients Yoshihara [21] (GSE32062)
datasets as well as 29 ovarian cancer cell lines (GSE36139) [22] were
acquired from the Gene Expression Omnibus (GEO). RNASeq data of
HCT116 colorectal cancer cells treated with siControl or siADNP (n = 6)
were obtained from GEO (GSE79395) [23].

GISTIC 2.0 [24] segmentation scores as well as threshold copy
number calls (i.e. �2, �1, 0, 1, or 2) for the 488 TCGA samples with
corresponding mRNA expression data were acquired (April 2015)
from the Firehose data portal. Reverse Phase Protein Array (RPPA)
data for 190 proteins and phosphoproteins from 338 HGSOC samples
in the TCGA cohort were acquired (June 2015) from the Firehose data
portal. In addition, we acquired mass spectrometry data (n = 3586
proteins) for 169 samples from the CPTAC study [8].

2.2. Gene expression signatures

A panel of 62 previously published gene expression signatures
was used to examine patterns of pathway activity and/or microenvi-
ronmental states (Table S1). To implement each signature, the meth-
ods detailed in the original studies were followed as closely as
possible. The list of signatures is shown in Table S1 and the scores for
the TCGA data set (Table S2), Tothill (Table S3) and Yoshihira (Table
S4) are reported.

2.3. Statistical analyses of signature scores

To quantify differences in patterns of signature scores across
subtypes, a two-way ANOVA followed by Tukey's post-test for
pairwise comparisons was used (Fig. 1b and Table S5). Principal
component analysis (PCA) was performed to assess the distribution
of TCGA tumour samples across transcriptomic subtypes [3] using
pathway activity scores. A Pearson correlation was used to deter-
mine the correlation coefficient (R-value) for each pairwise relation-
ship between each signature and the Poor Prognosis Signature (PPS)
for samples in the TGCA (Table S6), Tothill (Table S7) and Yoshihara
(Table S8) studies. The top 10 most consistently positively corre-
lated signatures associated with the PPS score are reported in Fig. 1
and Fig. S1.

2.4. Identification of genomic and proteomic alterations associated with
poor prognosis

Pathway�specific copy number alterations (CNA), were identi-
fied using a previously described strategy [25,26] by using a Spear-
man rank correlation and Fisher's exact test. For each analysis, the
Benjamin-Hochberg (BH) adjusted P values are reported and a
threshold of P < 0.05 (BH corrected) was set (Table S9). A Spearman
rank correlation was used to evaluate the association between
poor prognosis and mRNA and protein; these data are reported in
Table S10-11.

2.5. Analysis of genome-wide RNAi proliferation screen data

To assess the essentiality of ADNP relative to the PPS signature
score, ovarian cancer cell line shRNA abundance data was acquired
from the Broad Institute Project Achilles dataset [27]. These data
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Fig. 1. Patterns of pathway activity in HGSOC. (a) Patterns of pathway activity (n = 62) were determined for each sample (n = 488) in the TCGA high-grade serous ovarian cancer
cohort and plotted relative to the previously described molecular subtypes. Expression signatures (y-axis) are median centered and clustered by complete linkage hierarchical clus-
tering (b) ANOVA test followed by Tukey pairwise comparison was used to demonstrate statistically significant difference in signature score across the molecular subtypes. (c) Prin-
cipal Component Analysis (PCA) was used to demonstrate the spatial distribution of subtypes based on the expression patterns of the 62 signature scores. Subtype colouring is the
same as in (a). (d) Pearson Correlation coefficient (r-values) for the top 10 most strongly and consistently correlated pathways are shown relative to the Poor Prognosis Signature
(PPS) for the TCGA cohort.
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were filtered to include only those 29 cell lines for which gene
expression data (GSE36139) were also available [22]. A Spearman
rank correlation was used to calculate the negative correlation
between ADNP shRNA abundance and PPS score.

2.6. Survival analyses

To confirm the prognostic capacity of the PPS signature, samples
from the TCGA (n = 564), Tothill (n = 256) and Yoshihara (n = 260)
studies were assessed. Clinical data from each study was acquired as
detailed above. Overall survival (OS) in each dataset was assessed by
comparing patients with high (PPSHigh; top quartile) and low PPS
score (PPSLow; bottom quartile) by log-rank test; p-value and hazard
ratio are reported in Fig. S1. To demonstrate the relationship between
ADNP copy number status or mRNA expression level and overall sur-
vival (OS), three datasets were assessed. For copy number-based
analyses, OS was determined for TCGA samples with a low level copy
number gain or amplification as compared to all other samples (i.e.
diploid, LOH or deletion). To assess difference in OS based on ADNP
mRNA level, samples were dichotomized into ADNPHigh (top quartile)
and ADNPLow (bottom quartile) in the Tothill and Yoshihara datasets.
For each analysis, significance was calculated by a log-rank test and
the hazard ratio (HR) is reported.

2.7. Cell culture and shRNA knockdown

Ovarian cancer cell lines were purchased from the American Tis-
sue Culture Collection (Manassas, VA, USA) and cultured according to
the suggested guidelines. OVCAR3 or OVCAR5 cell lines expressing
one of two tetracycline (tet)-inducible shRNA expressing cell lines
were created using the pTRIPZ Inducible Lentiviral shRNA system (GE
Dharmacon). The catalogue number for shRNA(1) is: V3THS_313782
and for shRNA(2) is: V3THS_313783. The shRNA expression was
induced using 1.0mg/mL of doxycycline and ADNP silencing was veri-
fied by qRT-PCR and/or western blot analyses.

2.8. Western blot analysis

50mg of protein was loaded on 4�20% Mini-protean TGX gradient
gel (BioRad). Proteins were separated at 100 V for 2 h at room tem-
perature and then transferred onto nitrocellulose membrane at 100 V
for 1 h at 4 °C. The membranes were blocked using 5% milk solution,
incubated with primary antibody against total ADNP or beta-actin
(Cell Signalling Technology) overnight at 4 °C followed by incubation
with HRP-conjugated secondary antibodies (Cell Signalling Technol-
ogy) for 1 h at room temperature. The signal was developed using
SuperSignal West Pico Chemiluminescent Substrate (ThermoFisher
Scientific), digitally imaged using the ChemiDoc Touch Imagining
System (BioRad).

2.9. Quantitative real-time PCR

Total RNA was isolated using RNeasy plus Mini Kit (Qiagen) and
cDNA was synthesized using the QuantiTect Reverse Transcription kit
(Qiagen). Quantitative PCR (qPCR) was performed and analysed using
the Applied Biosystems QuantStudio3 real time thermal cycler system.
Primer utilized for human genes are as follow ADNP Forward:
50-GGATTTTGGCGTCTTCTCAG-30, ADNP Reverse: 50-AGC GGTGCAGA-
CAAAGGA-30, GAPDH Forward: 50-TCTGACTTCAACAGCGACAC-30,
GAPDH Reverse: 50-CCAGCCACATACCAGGAAAT-30, CDC25A Forward: 50-
GAGGAGTCTCACCTGGAAGTACA-30, CDC25A Reverse: 50-GCCATTCAA
AACCAGATGCCATAA-30, WEE1 Forward: 50- GCGTGGTAGCACACAT-
CATT-30, WEE1 Reverse: 50-GTGCAATCACGGCTCTGTAG-30, CCNB1 For-
ward: 50- ATGACATGGTGCACTTTCCTCC-30, CCNB1 Reverse:
50-GCCAGGTGCTGCATAACTGG-30, CCNB2 Forward: 50-GATAACGAA-
GATTGGGAGAACCC-30, CCNB2 Reverse: 50-CCACTAGGATGGCACGCATG-
30, CCNE1 Forward: 50-CAAACTCAACGTGCAAGCCTC-30, CCNE1
Reverse: 50-GCCCAGCTCAGTACAGGCAG-30, CCNE2 Forward:
50-AATTACATAAACACCTTCAGAAAAGGG30, and CCNE2 Reverse:
50-GTGCTCTTCGGTGGTGTCATAA-30.

2.10. Cell proliferation assay and colony formation assay

For cell proliferation assay, OVCAR3 and OVCAR5 cells were mock
treated or treated with doxycycline (1mg/mL) for 96 h. Cell prolifera-
tion was assessed by the CellTiter 96 AQueous One Cell proliferation
assay (Promega BioSciences) according to the manufacture’s protocol.
For colony formation assay, OVCAR3 and OVCAR5 cells were mock
treated or treated with doxycycline (1mg/mL) and grown for 14 days
for OVCAR3 or 7 days for OVCAR5. The cells were stained with 0.2%
crystal violet in 95% ethanol and photographed; colonies were manu-
ally quantified for each experimental replicate and normalized to the
untreated control.

2.11. Cell cycle assay

OVCAR3 and OVCAR5 cells were treated either mock or doxycy-
cline treated for 96 h. DNA content was assessed by Sytox Green
staining (50mg/mL) for 30min in the dark. The cell cycle distribution
was analysed by Beckman-Coulter Cytomics FC500 Flow Cytometer.
The percentage of cells in G0/G1 and G2/M were determined for a
minimum of 3 independent experiments.

2.12. Apoptosis assay

OVCAR3 and OVCAR5 cells were either mock treated or treated
with doxycycline for 96 h before apoptosis assays. After 96 h of treat-
ment, the percentage of apoptotic cells were determined by Annexin
V-FITC/Hoechst 33342 staining using the Dead Cell Apoptosis Kit
with Annexin V-FITC and Hoechst 33342 (Invitrogen) according to
the manufacturer's instructions.

3. Results

3.1. Identification of subtype-specific patterns of oncogenic activity

In order to identify genetic drivers of HGSOC that contribute to
tumour aggressiveness and are associated with poor overall survival,
we first examined patterns of oncogenic signalling, the tumour
microenvironment, immune infiltration, and other essential tumori-
genic characteristics in human ovarian tumours. A panel of 62 previ-
ously published gene expression signatures (Tables S1 and S2),
including a Poor Prognosis Signature (PPS) [3], was applied to HGSOC
gene expression microarray data (n = 488) from the TCGA study
(Table S3) for which the molecular subtype had been determined [3]
(Fig. 1a). While the PPS signature was only modestly enriched in the
proliferative subgroup, patterns of pathway activity were able to
recapitulate some known features of each molecular subtype. For
instance, immune signatures including T cells [28], B cells [28]), mac-
rophage [28], HCK [29], LCK [29], and other immune-related signa-
tures were shown to be consistently up-regulated in the
immunoreactive (IR) subtype (Fig. 1a). Likewise, signatures associ-
ated with epithelial-to-mesenchymal transition including the cancer
stem cell [30], stroma-associated signalling [31]) and TGFb [25,32]
signatures were found to be activated in the mesenchymal subtype.
Finally, several proliferation-associated signatures were found to be
modestly up-regulated in the proliferative subtype.

In contrast to previous studies in breast cancer [25] which showed
robust and uniform subtype-specific patterns of pathway activity,
with the above noted exceptions, consistent patterns of oncogenic
pathway activity, including MYC, RAS, AKT and RB/E2F1 were not
observed across HGSOC subtypes. This observation is more readily
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apparent when differences in patterns of pathway activity are quanti-
tatively assessed by an analysis of variance (ANOVA) test followed by
Tukey’s test for pairwise comparison (Fig. 1b and Table S4). Further
analysis of subtype-specific patterns of pathway activity by Principal
Component Analysis (PCA) indicated that while molecular subtypes
could be distinguished amongst the entire dataset based on pathway
patterns, HGSOC tumours appear to be largely homogeneous in
nature with respect to these specific molecular characteristics
(Fig. 1c). This observation is consistent with previous studies indicat-
ing a higher degree of homogeneity between HGSOC tumours rela-
tive to the diversity observed in other tumour types [3].

Given the lack of subtype-specific oncogenic signalling, we next
sought to identify oncogenic signalling or other tumour features
associated with prognosis. To do so, we took advantage of the previ-
ously published Poor Prognosis Signature (PPS) [3]. We first validated
the prognostic capacity of this signature in three independent data-
sets. As illustrated in Fig S1, the PPS signature was applied to the
TCGA (Fig. S1a), Tothill [7] (Fig. S1b) and Yoshihara [21] (Fig. S1c)
datasets. Patients were then dichotomized into PPSHigh (top quartile)
and PPSLow (bottom quartile) subgroups (Fig. S1d�f) to examine dif-
ferences in overall survival. As expected, the PPSHigh subgroup of
patients consistently showed an overall worse prognosis (Fig. S1g�i)
thereby validating the prognostic capacity of the PPS signature.

A Pearson Correlation was next used to calculate the concordance
between the PPS signature and all other signatures in the TCGA, Tot-
hill [7] and Yoshihara [21] datasets (Tables S5-S6). As illustrated in
Fig. 1d (and Fig. S1j�l) the top 10 most consistent and strongly con-
cordant signalling pathways across each dataset associated with the
PPS signature were identified. These analyses demonstrated that
poor prognosis may be associated with altered cell cycle progression,
chromosome instability and proliferation as illustrated by the
observed correlation between PPS signature and RB LOH [33], RB Loss
[34], CMYB [35], bMYB [36], and Chromosome Instability 70 gene sig-
nature (CIN70) [37] signatures as well as two independent prolifera-
tion signatures [38,39]. Although these associations are statistically
significant (p < 0.05), modest correlation coefficients (r = 0.1 to 0.6)
suggest that other genomic events or altered genes not directly iden-
tified by these analyses may also contribute to HGSOC development
and poor prognosis.

3.2. Identification of genomic and proteomic alterations associated with
PPS activity

We next identified genomic and proteomic alterations directly
associated with poor prognosis in HGSOC, including potential novel
drivers of HGSOC oncogenesis. To do so, we utilized an integrated
proteogenomics strategy based on the use of the previously discussed
PPS signature as a conceptual framework to interrogate orthogonal
genomic and proteomic data from the TCGA [3] (n = 488) and CPTAC
[8] (n = 169) studies. We have outlined the scheme used for our anal-
ysis to identify DNA copy number alterations as well as altered
mRNA expression and protein expression associated with the PPS sig-
nature in Fig. 2a.

Given the high level of chromosomal instability in HGSOC, we first
identified DNA copy number alterations that were unique to tumours
with a high PPS score using a previously published approach [25]. To
identify PPS-specific copy number gains or losses, we used two
approaches to minimize potential biases that might be associated
with either strategy alone. First, using DNA copy number (CN) data
from TCGA samples (n = 488), we identified those genes that showed
an increased in CN gains (either a low level gain or high-level amplifi-
cation) or losses (either loss of heterozygosity or deletion) in the
PPSHigh (top quartile) tumours compared to PPSLow (all other sam-
ples) tumours using an FDR-corrected (Benjamini�Hockberg) Fisher’s
Exact test (Fig. 2b). To confirm the association between CN frequency
and PPS score, an FDR-corrected Spearman rank correlation
(Benjamini�Hockberg) between DNA segment score and PPS score
was used as a secondary analysis. Genes that demonstrated an
increase in CN gains in PPSHigh samples and had a positive Spearman
rank correlation were considered PPS-specific gains whereas those
genes that showed increased CN losses in PPSHigh samples and a neg-
ative correlation were considered PPS-specific losses. Requiring that
PPS-specific copy number alterations meet each of these criterion
(q < 0.05) reduces potential false-positives associated with either
strategy alone; chromosomal regions that met these thresholds are
illustrated in Fig. 2c and summarized in Table S7.

Consistent with previous studies reporting that HGSOC tumours
often exhibited alterations in one or more components of the RAS/
PI3K/AKT signalling cascade, these analyses identified increased CN
gains in multiple members of this pathway including: EGFR
(qFisher = 4.6£ 10�3, qSpearman = 1.7£ 10�3), KRAS (qFisher = 1.7£ 10�2,
qSpearman = 6.1£ 10�3), PIK3R2 (qFisher = 2.1£ 10�2, qSpear-
man = 2.4£ 10�2), and AKT2 (qFisher = 5.9£ 10�4, qSpearman = 2.1£ 10�10)
(Fig. 2b). In addition to identify oncogenic genes that are known to
promote HGSOC tumorigenesis, our analyses also identified a number
of chromosomal regions that are frequently amplified in HGSOC,
including chromosome 20q12 and 1q22 but do not contain genes that
have been reported to drive tumour development or progression.

To further prioritize potential candidate oncogenes in each ampli-
con, we postulated that amplified oncogenic genes must also be over-
expressed at the mRNA and protein levels in PPSHigh tumours to be
functionally significant. Therefore, we employed a Spearman rank
correlation to identify positively (or inversely) correlated genes
(Fig. 2d) and proteins (Fig. 2d) associated with poor prognosis (Table
S10 and S11). By integrating these analyses, we identified 131 genes
which were characterized as PPS-specific CN gains and which were
overexpressed at the transcript and protein levels in PPSHigh tumours.
By assessing individual genes, we identified a number of known
oncogenes including: BCLAF1 [40], YWHAB [41,42], NDRG2 [43], NFYB
[44], PAX8 [45,46], PSMD14 [47]. A number of other genes that repre-
sent FDA approved drug targets including TOP1, PARP1, HDAC2, and
BRD4 were also included on this list of genes. Moreover, GSEA analy-
sis [48] determined that these genes are associated with Myc or E2F
activated genes, Insulin Receptor signalling, mitotic regulation, DNA
replication and mRNA processing (Fig. 2f).

To confirm the association between the 131 identified candidate
genes and PPS, we next examined this relationship in both the Tothill
[7] and Yoshihira [21] validation datasets to identify the subset of
genes that were consistently associated with PPS score (Fig. 3a). Our
analyses confirmed that a subset of 39 genes were consistently asso-
ciated with PPS score (Fig. 3b, Figs. S2a, S2b). In order to further prior-
itize genes for functional analyses, we assessed the essentiality of
each of the 39 genes by analysing data from a genome-wide RNA-
mediated interference (RNAi) screen (»9 k genes) performed in a
panel of 29 ovarian cancer cell lines for which mRNA expression data
was matched [22]. For these analyses, we compared cell line PPS
score with RNAi data using a negative Spearman rank correlation to
identify genes required for cell proliferation. Our analyses identified
ADNP (p = 0.019) (Fig. 3c) and AKAP8L (Fig. 3d) (p = 0.017) as being
amplified, overexpressed at the transcript and protein level, and
essential for cell viability in context of the PPS signature. Importantly,
we will note that neither ADNP nor AKAP8L are part of the PPS signa-
ture gene list. Finally, we determined that amplification of ADNP
(p = 0.02 HR = 1.2) (Fig. 3e) but not AKAP8L (p = 0.77, HR = 0.96)
(Fig. 3f) was prognostic in HGSOC patients, therefore ADNP was
selected for further investigation.

3.3. ADNP is a putative oncogene associated with PPS score

As noted above, among the candidate genes associated with PPS,
the transcription factor ADNP (Activity Dependent Neuroprotector
Homeobox) was selected as being of particular interest. Our analyses
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identified ADNP DNA copy number gains (q = 2.8£ 10�15), increased
mRNA expression (p = 6.9£ 10�22), and increased protein expression
(p = 4.3£ 10�04) relative to PPS score (Fig. 4a). Importantly, ADNP
mRNA expression was strongly associated with both DNA CN status
(p = 4.1£ 10�36) and protein expression (p = 5.1£ 10�16) indicating
that this is not a silent amplification and that ADNP over-expression
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may be functionally relevant in this subset of tumours. Consistent
with this argument, analyses of clinical data in both the Tothill
(Fig. 4b, p = 0.02; HR:1.9) and Yoshihara (Fig. 4c, p = 0.04; HR:1.7)
datasets demonstrated that patients whose tumours have high levels
of ADNPmRNA expression have a worse prognosis.

Given these associations, we next interrogated the relationship
between ADNP mRNA expression and oncogenic signalling as measured
by gene expression signatures (Fig. 1). As illustrated in Fig. 4d for the
TGCA dataset and Fig. S3a and b for the Tothill and Yoshihara datasets,
ADNPmRNA expression is consistently and strongly correlated with pro-
liferation signatures (UNC, p = 4.4£ 10�07 and Wirapati, p = 1.2£ 10�11)
[38,39], bMYB (p = 1.8£ 10�06) [36], cMYB (p = 6.4£ 10�22) [35] as well
as RB loss (p = 8.2£ 10�08) [34], PI3K (p = 1.8£ 10�7) [25], MYC
(p = 7.3£ 10�16) [25], and HER1 (p = 2.0£ 10�16) [49]. As would be
expected from analysis of the TCGA samples, ADNP mRNA levels were
strongly correlated with PPS score in the Tothill and Yoshihara datasets
(Fig. S2). Further analysis of proteomic data from 338 TCGA samples
demonstrated that ADNP mRNA levels are strongly correlated with the
expression of a cell cycle proteins including Cyclin D1 (p = 1.2£ 10�3),
Chk1(p = 2.6£ 10�3), Chk2(p = 4.7£ 10�2), pChk2(p = 7.4£ 10�4), pRb1
(p = 6.5£ 10�3) and FoxM1(p = 3.8£ 10�2) (Fig. 4e). Collectively, these
analyses suggest that ADNP is associated with cell cycle progression and
proliferation in HGSOC tumours.

3.4. ADNP is essential for cell proliferation

Given that ADNP was found to be an essential gene for cancer cell
line viability specifically in those cell lines with a gene expression
profile associated with poor prognosis as illustrated in Fig. 3c
(p = 0.02, r =�0.4) we next examined the effect of ADNP on tumour
cell proliferation and growth in order to begin to investigate the
mechanisms by which ADNP affects HGSOC genesis and progression.
To confirm the essential role of ADNP in ovarian cancer proliferation,
we next identified HGSOC cell lines that are characterized by high
ADNP protein expression; OVCAR5 and OVCAR3 were selected for
further in vitro experiments (Fig. S4a). We engineered OVCAR3 and
OVCAR5 cell lines to express one of two tetracycline (tet)-inducible
shRNA against ADNP. Validation studies demonstrate a consistent
60�80% reduction in ADNP mRNA and protein expression in OVCAR3
and OVCAR5 (Fig. S4b and c) cells following doxycycline (dox) treat-
ment (1mg/ml; 48 h); dox had no effect on ADNP expression in the
parental cell line.

We next performed MTT and colony formation assays to determine
the effect of ADNP on cell proliferation and survival. We determined
that shRNA-mediated silencing of ADNP following dox treatment
(1mg/ml; 96 h) resulted in a 18.8% or 25.4% reduction in cell prolifera-
tion as measured by Cell T1itre Glow Assay in OVCAR3 cells expressing
either shRNA(1) (p = 0.0004) or shRNA(2) (p<0.0001), respectively
(Fig. 5a). Likewise, OVCAR5 cell lines expressing either shRNA(1)
(p<0.0001) or shRNA(2) (p = 0.0005) treated with dox (1mg/ml; 48 h)
showed similar 16.9% and 26.0% reduction in cell proliferation relative
to untreated control cells (Fig. 5e); neither OVCAR3 nor OVCAR5
parental cell line growth was affected by dox.

We extended these studies to assess the impact of ADNP silencing
on long-term colony forming capabilities of these cells. While a mod-
est increase in OVCAR3 (p = 0.0105) and OVCAR5 (p = 0.1215) paren-
tal cell colony formation was observed in response to dox treatment
(1mg/ml), we determined that OVCAR3 (Fig. 5b) or OVCAR5 (Fig. 5f)
cells expressing either shRNA demonstrated a significant decrease in
colony formation over a 14-day time course relative to the untreated
control cells. Quantification of colonies relative to untreated control
cells determined that shRNA(1) and shRNA(2) expressing OVCAR3
(Fig. 5c) cells showed a significant 40.5% (p = 0.0012) and 57.5%
(p = 0.0019) reduction in colony formation relative to untreated
shRNA expressing cells, respectively. Similarly, OVCAR5 cells (Fig. 5g)
expressing shRNA(1) had a 26.5% reduction (p = 0.0032) in colonies
while shRNA(2) expressing cells had a 37.5% reduction (p = 0.0044) in
colony formation relative to untreated cells. A more significant
decrease in colony formation was observed when comparing dox-
treated shRNA expressing cells to the dox treated parental cells sug-
gesting that these data may underestimate the effect of ADNP silenc-
ing on colony formation.

Finally, since our data indicate that ADNP silencing results in
reduced cell growth and colony formation, we examined the impact
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of ADNP silencing on induction of apoptosis. We determined that
OVCAR3 cells demonstrated a significant 5.8 fold (p = 0.0017) and
3.3-fold (p = 0.0019) increase in the combined percentage of early
and late apoptotic cells following shRNA mediated silencing of ADNP
for 96 h (Fig. 5d). This corresponded with an increase from 4.6% of
apoptotic cells (combining early and late apoptosis) to 25.8% in
shRNA(1) expressing cells (Fig. S5b and S5e) and from 5.9% to 18.8%
in shRNA(2) expressing cells (Figs. S5c and S5f); no change in the per-
centage of apoptotic cells was observed in dox-treated parental cells
(Fig. 5d, S5a and S5d). Interestingly, when these studies were
repeated in OVCAR5 cells, we observed a modest decrease in apopto-
sis levels following ADNP silencing. OVCAR5 cells expressing shRNA
(1) showed a 1.1-fold reduction (p < 0.0001) while shRNA(2)
expressing cells showed 1.42-fold reduction (p = 0.021) (Fig. 5h and
Fig. S5g�l). This corresponded with a 1.9% decrease apoptotic cells in
shRNA(1) expressing cells and a 5.5% decrease in shRNA(2)
expressing OVCAR5 cells. Collectively, these data indicate that ADNP
is essential for cell proliferation and survival.

3.5. ADNP regulates cell cycle gene expression and ADNP loss induces
cell cycle arrest

Finally, analyses of publicly available gene expression data [23]
demonstrated that siRNA-mediated silencing of ADNP results in
down-regulation of 432 genes (p< 0.05) (Fig. S6a). Functional enrich-
ment analysis through GSEA [48] showed that these genes play a pre-
dominant role in cell cycle checkpoints and cell cycle related
pathways (Fig. S6b). As expected, further analyses of these genes
identified multiple key cell cycle regulators including CDC25A,
CDC25B, CCNDE1, CCNB1, CCND1, CDK6, and WEE1 among others
(Fig. 6a). Thus, we next validated the impact of shRNA mediated
silencing of ADNP on the expression of a subset of these cell cycle
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genes in ovarian cancer cell lines. Our analyses demonstrated that
shRNA-mediated silencing of ADNP (1mg/ml, 96 h) resulted in a sig-
nificant and reproducible reduction in CDC25A, WEE1, CCNE1 and
CCNE2, as well as CCNB1 and CCNB2 expression in OVCAR3 (Fig. 6b)
and OVCAR5 (Fig. 6c) cells. Consistent with these findings, we con-
firmed that Cdc25a, a key regulator of both CDK2/Cyclin E activity at
the G1/S transition and CDK1/Cyclin B activity at the G2/M check-
point is significantly reduced at the protein level following ADNP
silencing in both OVCAR3 and OVCAR5 cell lines (Fig. 6d).

Given the effect of ADNP on these key regulators of cell cycle pro-
gression, as well as our previous data (Fig. 4) which suggests an asso-
ciation between ADNP expression and cell cycle-related proteins and
signalling pathways, we determined the impact of ADNP silencing on
the cell cycle. As illustrated in Fig. 6e, OVCAR3 cells, including paren-
tal and shRNA(1) or shRNA(2) expressing cells, have a normal cell
cycle distribution. To assess changes in the cell cycle, cells were
treated with dox (1mg/ml) for 48 h to obtain optimal silencing of
ADNP, dox (1mg/ml) containing medium was replaced and the effect
on the cell cycle examined 48 h later. We determined that ADNP
silencing in shRNA(1) (p = 0.0005) or shRNA(2) (p = 0.0018) express-
ing cells resulted in a significant arrest at the G1/S checkpoint as
shown by the 28.3% and 26.0% increase in cells in G0/G1 (Fig. 6e and
f). This corresponded with a similar 32.7% and 27.3% reduction of cells
in the G2/M phase (Fig. 6e and g).

To confirm these observations, we examined the impact of ADNP
silencing on the cell cycle in OVCAR5 cells. Similar to OVCAR3 cells,
OVCAR5 cells showed a normal cell cycle distribution in the parental
as well as shRNA(1) and shRNA(2) expressing cells (Fig. 6h). However,
while silencing of ADNP in OVCAR5 cells had no effect on the G1/S
checkpoint (Fig. 6h and i), we observed a significant 24.7% and 21.3%
increase in cells in the G2/M phase in shRNA(1) (p = 0.0061) and
shRNA(2) (p = 0.0014) expressing cells. These data indicate that ADNP
is a key regulator of cell cycle genes, including CDC25A which has
been shown to mediate both G1/S and G2/M checkpoints as well as
CCNE, which mediates the G1/S transition and CCNBwhich is required
for progression through the G2/M checkpoint.

4. Discussion

Although recent advances in ovarian cancer research have resulted
in improved treatment strategies leading to increased overall survival
of HGSOC patients, the 5-year survival rate of this disease still trails
those of the vast majority of other malignancies. This highlights the
need to develop approaches to identify novel, essential genes that reg-
ulate signalling networks and tumour characteristics that are required
for tumour development and progression, and to develop strategies to
identify the subsets of patients who will best respond to a given treat-
ment. In this study, we undertook an integrative proteogenomic analy-
sis of HGSOC tumours utilizing a previously published prognostic gene
expression signature [3] as a conceptual framework to identify novel
and essential regulators of ovarian cancer.

Our integrative in silico analyses of HGSOC tumour DNA copy
number, mRNA and proteomic data identified ADNP as a potential
novel driver of HGSOC tumorigenesis based on the association
between poor prognosis and the expression of this gene/protein. Fur-
ther analyses confirmed the prognostic capacity of ADNP in multiple
independent datasets and suggested that ADNP expression is not
only required for cell viability but is strongly associated with prolifer-
ation and cell cycle related signalling pathways. Indeed, in vitro stud-
ies confirmed the essentiality of this protein in regulating cell
proliferation and survival and demonstrate a role for this gene in
modulating cell cycle progression through altered expression of key
cell cycle genes including CDC25A.

ADNP is a Homeobox transcription regulator which includes nine
zinc-fingers that play a role in neuroprotective responses to cellular
growth, chromatin remodelling, microtubule/autophagy regulation
and cancer cell proliferation [9,13�15]. The vast majority of studies
have focused on the role of ADNP in neurological diseases including
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autism spectrum disorder and Alzheimer's disease [17]. Interestingly
however, it was recently reported that patients with autism-related
ADNP-mutation syndrome, which results as a consequence of a loss
of function mutation in ADNP, and ADNP haplo-insufficient mice
exhibit decreased dermal thickness and wound healing due to
impaired cell cycle progression [50]. More importantly, re-activation
of ADNP in these models increased dermal thickness and activated
cell cycle progression. These results are consistent with our findings
that loss of ADNP leads to decreased expression of cell cycle genes
and results in repressed cell cycle progression.

While ADNP has not been extensively studied in cancer, or in
ovarian cancer specifically, it is localized to chromosome 20q12, a
region that is frequently amplified in many malignancies including
HGSOC, breast, pancreatic, and colon cancers. More recent studies
from the TCGA pan-cancer project reported that while ADNP is rarely
mutated in these tumours, it is part of a subnetwork which includes
members of the SWI/SNF complex that have been shown to contrib-
ute to tumorigenesis [14]. Consistent with these observations, a num-
ber of studies have reported that ADNP plays a role in regulating
intestinal cell growth, proliferation in specific types of sarcomas and
neuronal tissue as well as modulating PI3K/ AKT signalling pathway
and expression of E2F-regulated genes [15,19,24,51]. These data are
consistent with our studies that show a strong correlation, in three
independent datasets, between ADNP expression and activation of
these pathways.
ADNP expression in HGSOC tumours is strongly associated with
altered cell cycle progression and altered cell cycle checkpoints and
these relationships are confirmed by analyses of down-regulated
genes following ADNP silencing. Interestingly however, while
shRNA-induced silencing of ADNP in either OVCAR3 or OVCAR5 cells
results in loss of CDC25A, WEE1, CCNE1 and CCNE2, and CCNB1 and
CCNB2, loss of ADNP results in G1/S checkpoint arrest in OVCAR3 cells
and G2/M checkpoint arrest in OVCAR5 cells. While it is unclear why
these cells arrest at different phases of the cell cycle, it is clear that
loss of ADNP expression results in decreased CDC25A expression, at
both the mRNA and protein levels, which has been shown to directly
regulate CDK2/Cyclin E signalling at the G1/S checkpoint and CDK1/
Cyclin B activity at the G2/M checkpoint [52,53]. These data would
lead us to speculate that CDC25A activation may play a significant
role in ADNP regulation of the cell cycle and that additional co-factors
and/or cell-specific genomic alterations, including differences in p53
mutational status, may contribute to the differential response
observed in OVCAR3 and OVCAR5 cells. Clearly additional studies
will be required to fully delineate the mechanisms by which ADNP
mediates the cell cycle in HGSOC.

Finally, ADNP mRNA expression was found to be predictive of poor
overall survival in multiple independent HGSOC datasets [7,21]. While
these results are contradictory to recent observations in colorectal can-
cer and triple negative breast cancer [23,54], which indicate that ADNP
may play a tumour suppressive role in these cancers, they are
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supported by more recent studies that indicate that ADNP is oncogenic
in colorectal cancer [51], pan-cancer analyses which demonstrate that
ADNP is part of a SWI/SNF containing oncogenic sub-network in
human cancers [44] as well as previously discussed published mecha-
nistic studies in multiple tissue types indicating that ADNP mediates
aspects of cell proliferation and growth [13,40,41,44,47]. As such our
data also suggest a tissue specific or dichotomous role may exist for
ADNP in tumorigenesis.

Collectively, our cross-platform analyses of proteogenomic data,
together with in vitro experiments, have identified and validated
ADNP as a novel mediator of cell proliferation in HGSOC. Although
the exact mechanisms by which ADNP modulates ovarian cancer
tumorigenesis remains to be determined, our data, in combination
with previous studies, demonstrate that ADNP mediates its effects on
HGSOC tumorigenesis, in part, by promoting dysregulation of cell
cycle checkpoints. How ADNP abrogates this process, the identifica-
tion of co-factors required for ADNP activity, the down-stream signal-
ling network activated by ADNP in HGSOC as well as other tumour
characteristics impacted by ADNP overexpression remain unclear. As
such, defining these mechanisms will be paramount for determining
the therapeutic and/or biomarker potential of ADNP in high-grade
serous ovarian cancer as well as for other tumour types.
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