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ABSTRACT

The agro-industrial production of genetically modified organisms uses great amounts of pesticides, close to cities,
which generates growing concern due to the numerous evidence of their negative effects on health and the
environment. In a context of the lack, or inaccessibility, of official data on crop dynamics and pesticide use,
environmental indicators using satellite data are needed for the proper monitoring of peri-urban areas. The
objective of this research is to make a crop proximity index using satellite information to assess and monitor peri-
urban agro-industrial activity. Twenty cities in Argentina and ten in the United States were selected. The CPI
index is designed to evaluate a city and its peri-urban areas as a whole by taking account of the land uses and
factors that can potentially influence the proximity to agro-industrial activity to the population living in those
cities. Agriculture factor was weighted by proximity or remoteness using perimeter rings from the urban edge. All
the necessary data for the calculation of the CPI index were obtained through the classification and processing of
Sentinel 2 satellite images with software and the Google Earth Engine platform. The results show a worrying
situation, 90% of cities in Argentina and 80% in the United States have a negative CPI. Most of the cities examined
are extremely close to extensive areas of crops, that use a high amount of pesticides and which do not have the

Agriculture

protection of trees or buffer zones.

1. Introduction

United States, Brazil and Argentina are the three main crop-producing
countries using genetically modified organisms (GMOs) in the world,
with over 139 million hectares planted annually in recent years (Slater
and Holtslander, 2015). For this type of crop the ever-increasing use of
the amount of pesticides generates growing concern among the popula-
tion and governments in different parts of the world due to the numerous
evidence of their negative effects on health (Aiassa et al., 2009; Benite-
z-Leite et al., 2009; Bernardi et al., 2015; Gémez-Barroso et al., 2016;
Guyton et al., 2015; Loomis et al., 2015; Lopez et al., 2012; Mendez et al.,
2017; Singh et al., 2018; Swanson et al., 2014; Tsatsakis et al., 2017) and
the environment (Aizen et al., 2009; Alonso et al., 2018; Guida-Johnson
and Zuleta, 2013; Piquer-Rodriguez et al., 2018; Primost et al., 2017;
Singh et al., 2018; Tsatsakis et al., 2017; Zaady et al., 2018).

The agro-industrial model, in many instances, takes place very close
to densely populated cities, exposing the people who live in these areas to
the possible pesticide contamination (Aiassa et al., 2009; Etiennot and
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Piazza, 2010; Lopez et al., 2012; Primost et al., 2017; Singh et al., 2018;
Soo-Jeong et al., 2011; Trajkovska et al., 2009; Vida and Moretto, 2007).
This exposure occurs because there are multiple pathways of contact with
pesticides or their residues: off-target spray drift, volatilization, drag by
wind or rain, soil erosion, leaching, runoff and atmospheric drift (Alonso
et al., 2018; Deziel Nicole et al., 2015; Garcera et al., 2017; Mendez et al.,
2017; Mugni et al., 2011; Primost et al., 2017; Singh et al., 2018; Zaady
et al., 2018). In addition, there are numerous factors that should be taken
into account to avoid or minimize the pesticides off-target spray drift: the
droplet size, nozzle types, spray pressure, formulation adjuvants, wind
direction, wind speed, air stability, relative humidity, temperature, the
height of released spray relative to the target crop, volumes per area
sprayed and fumigation equipment speed (Felsot et al., 2010). This
complexity of factors, combined with the high frequency of spraying in
large territories, makes it very difficult to monitor and control exposure
to pesticides caused by this type of productive model. Another phe-
nomenon to consider is the secondary drifts are those that can occur days,
weeks or months after pesticide application, exposing the people that live
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Figure 1. Argentine study area. Detail of the tile location of satellite image Sentinel 2 and an analyzed city, with their respective perimeter rings, representation of
supervised classification and data for CPI index calculations. CPI = Crop proximity index; IRECI = Inverted Red-Edge Chlorophyll Index.

in cities adjacent to the crop fields in the long term (Alonso et al., 2018;
Mendez et al., 2017; Soo-Jeong et al., 2011; Ward et al., 2006; Zivan
et al., 2016). This kind of drift is uncontrollable since it is produced by
interaction between the climatic factors and the pesticides applied
(Alonso et al., 2018; Coronado et al., 2011; Epple et al., 2002; Etiennot
and Piazza, 2010; Peck and Hornbuckle, 2005; Singh et al., 2018; Soo--
Jeong et al., 2011; Trajkovska et al., 2009; Zivan et al., 2016).

In this context, numerous investigations in Argentina have shown that
pesticides used by the agro-industrial model of GMO are transported long
distances, are found in urban areas, do not degrade easily (they are
pseudo-persistent), contaminate water, soil and air (Alonso et al., 2018;
Aparicio et al., 2013; Bonansea et al., 2018; De Gerénimo et al., 2014;
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Etchegoyen et al., 2017; Hunt et al., 2017; Lopez et al., 2012; Mendez
et al., 2017; Mugni et al., 2011; Peluso et al., 2014; Primost et al., 2017;
Solis et al., 2017).

In these areas of contact between human populations and agro-
industrial activity, there is great social conflict. For instance, in
Argentina numerous cities have established more restrictive regulations
than the national or provincial jurisdictions for the use of pesticides near
to urbanizations (Tittonell and Giobellina, 2018). Therefore, environ-
mental indicators are needed for the proper assessment of the location of
crops and pesticide use in order to minimize the risks of contamination
from peri-urban areas (Feola et al., 2011; Reus et al., 2002; Zivan et al.,
2016). Although there are numerous indicators and indices of
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Figure 2. United States study area. Detail of location of ten cities in Iowa state and an analyzed city, with their respective perimeter rings, representation of data for
CPI index calculations and Crop Data Layer soybean and corn fields for 2017. Source: Crop Data Layer, National Agricultural Statistics Service (USDA, 2019). CPI =

Crop proximity index; IRECI = Inverted Red-Edge Chlorophyll Index.
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contamination and exposure to pesticides (Alister and Kogan, 2006;
Damalas and Eleftherohorinos, 2011; Dubny et al., 2018; Feola et al.,
2011; Ferraro et al., 2003; Hunt et al., 2017; Kookana et al., 2005; Kudsk
et al., 2018; Peluso et al., 2014; Reus et al., 2002; Sanchez-Bayo et al.,
2002; Strassemeyer et al., 2017; Tsaboula et al., 2016; Vercruysse and
Steurbaut, 2002), it is difficult to apply them in countries such as
Argentina due to the lack of data on the use of pesticides required for
their calculation, or due to the inaccessibility of such data. These con-
ditions highlight the need to develop methodologies that allow the
determination of primary data on the degree of proximity of crops to
cities to serve as input to investigate possible cases of exposure on the
populations living there. One methodological approach to solving this
problem is the development of an index for assessing the proximity of
agro-industrial crops to cities with satellite data. Currently, satellite data
can be obtained and processed directly from the Internet on cloud plat-
forms, such as the Google Earth Engine, that provide access to informa-
tion from various sources which enables the development of
environmental quality indicators without any major economic costs.

The objective of this research is to make a crop proximity index using
satellite information to assess and monitor peri-urban agro-industrial
activity.

2. Materials and methods
2.1. Study areas

The study area where the index was tested corresponds to the area of
greatest agricultural production in Argentina, called the Pampean region
(Figure 1), where almost one hundred percent of soybean and corn crops
are transgenic (Trigo, 2016). Twenty cities in this region were selected
for calculating the proposed index, considering population sizes greater
than 1000 inhabitants (INDEC, 2010) and which are found within the
limits of 100 x 100 km of the Sentinel 2 satellite images used to obtain
land cover information (Figure 1).

In addition to the study area in Argentina, ten cities in one state of the
United States with the greatest agro-industrial production were selected:
Iowa with more than 9.3 million hectares of soybeans and corn planted in
2018 (National Agricultural Statistics Service, 2019) (Figure 2). In this
country, the percentage implementation of GMO crops it is close to
maximum adoption, more than 90% for both crops (Economic Research
Service, 2019). This will allow us to corroborate the databases and
comparative tests of the proposed index.

2.2. Peri-urban crop proximity index (CPI)

The CPI index is designed to evaluate a city and its peri-urban areas as
a whole by taking account of the land uses and factors that can potentially
influence the proximity to agro-industrial activity to the population
living in those cities. With this objective we proposed to evaluate the
proximity of peri-urban crops to cities, taking account of the factors
developed in the linear equation below:

CPI = (Tree Cover Factor + Buffer Zones Factor + S Factor) — Crops Factor
(€Y

Each factor will be developed extensively below. In general, these
factors allowed us to introduce the spatial quantification occupied by
agriculture, presence of tree cover and buffer zones surrounding urban-
izations. The S factor provides structural variables of each urbanization:
area of the city and its perimeter.

The term peri-urban in our research is defined as the interface be-
tween the land surfaces occupied by urbanizations and those used for
agriculture. Specifically, we studied what happens from the edge of each
city to a peripheral distance of 2000 m. We take this distance as a
parameter since most of the laws regulating peri-urban spraying in
Argentina have implications within the 2000 m of the periphery.
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Therefore, as a research objective it is interesting to study the dynamics
of crops within this radius.

In order to collect information on the entire peri-urban area of each
city analyzed, we proceeded to work on perimeter rings, divided into
sections (like buffers). In order to carry this out, the area occupied by
each urbanization was calculated using cadastral data and high-
resolution satellite images. Perimeter rings were calculated from 0 to
100, 100 to 250, 250 to 500, 500 to 1000 and 1000-2000 m away from
the urban edge (Figure 1), in order to be able to weight each factor by
proximity or remoteness.

2.3. Tree cover, buffer zones, crops and S factor

The peri-urban surface of trees and buffer zones are considered pro-
tective factors in Eq. (1) since, together, these two classes would act as
barriers to the drift of pesticides, being one of the most effective forms of
mitigation according to scientific research (Brown et al., 2004; Ucar and
Hall, 2001). In addition, recent research shows that tree barriers not only
act to stop the primary drift of pesticides, they also prevent the spread of
crop dust containing agrochemicals and other pollutants from this ac-
tivity such as heavy metals (Zaady et al., 2018). Windbreaks mitigate
pesticide drift by entrapment of spray droplets on the structure of the
windbreak and pattern modification of the wind velocity profile as air
passes over and through it (Brown et al., 2004; Wenneker and van de
Zande, 2008).

In our project we define buffer zones as areas that fulfil a function of
protection from agro-industrial activity, but that cannot be framed within
the tree class. These buffer zones will be established from the sum of
those peri-urban areas that are not occupied by tree cover or crops in the
whole range of data analyzed. These zones may include areas occupied
by: shrubs and pastures, bare ground and flooded areas, among others.
The crop factor in the Eq. (1), quantifies the area destined for agriculture.
These are summer crops in the urban periphery, corresponding to
transgenic soybean and corn, in a ratio of 70-30 soybean-corn, for the
study areas and temporal periods selected (Ministerio de Agroindustria,
2018).

In order to obtain all the information for each factor needed to
calculate Eq. (1), two different methodologies were used. First, for the
calculation on peri-urban land cover and land use data for the Argentine
study area, a supervised classification of Sentinel 2 satellite image
(location tile 20HNJ, February 2017) was carried out. These satellites
images were corrected atmospherically and processed using SNAP 6.0.0
and QGis 2.18 software. The classification was made with the QGis SCP
plugin (Congedo, 2016), in order to obtain information on the arable
land surfaces, tree cover (native or exotic woody plants), constructions,
water, rivers, shrubs and pastures, bare ground, roads and flooded areas.
To corroborate the concordance of this classification, 400 random points
were sampled (obtained by observation of high-resolution images from
Google Earth), to be evaluated in a confusion matrix and to calculate the
Kappa index.

Secondly, for both study areas, the Google Earth Engine platform was
used to analyze and elaborate information on the peri-urban cover of
active crops (crops in Eq. (1)) to a peripheral distance of 2000 m. In
particular, we used the satellite classification index IRECI (Inverted Red-
Edge Chlorophyll Index) to determine the active crops by the presence of
chlorophyll (Frampton et al., 2013; Korhonen et al., 2017). This index
shows good results in the determination of crops, as it has a strong linear
relationship with the chlorophyll content of leaves, without saturation at
high values (Frampton et al., 2013). A script (programming code) was
developed on this platform that allows the selection of cloud-free,
Sentinel 2 satellite images, making all processes and analyses in
peri-urban areas defined by polygons that represent peripheral rings of
2000 m for each city. Then, this script calculated the IRECI index for the
summer period (highest foliar status), from January to March in 2016,
2017 and 2018, for Argentina, and from June to August in 2017 and
2018, for the United States. The product of this analysis is a raster
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composite image per year. To determine the fields with agricultural ac-
tivity, a mask was applied on the raster images to obtain the values that
represent the highest levels of chlorophyll content in the crops. This
value should be determined from field data or other reliable sources, as
they vary according to the type of crop and the date of analysis. Then, the
masked raster images are transformed into polygons, which allows a
discrimination of the fields of more than four hectares. Polygons larger
than this size were chosen to avoid counting small fields or isolated
pixels, which would probably correspond to detection errors. The final
result is a polygonal layer that represents the active peri-urban crops, in
all the cities analyzed, for each chosen date. These data can be exported
for use in geographic information system software (GIS). A validation of
IRECI index data was carried out using the Argentine database, Agri-
cultural Coverage for the period 2017-2018 (category level 2) from
Spatial Data Infrastructures of Cordoba (hereafter IDECOR) (Garcia et al.,
2018) and the U.S. database, Cropland Data Layer (hereafter CDL) for
2017 and 2018, from National Agricultural Statistics Service (USDA,
2019). Using these two bases, the type, location, shape and occupied
acreage of the peri-urban crops determined by the IRECI index were
corroborated.

All the georeferenced datasets described so far were entered into a
GIS using QGis 2.18 software to perform the calculations needed for
computing Eq. (1). In order to obtain surface area data (in hectares) for
each factor (tree cover, buffer zones and crops) zone statistics were
carried out for all the rings surrounding each city. This information was
introduced in the formula detailed below to obtain the values of Eq. (1):

a a
Factor=———xb | p. —————xb | p;
actor (Ring Smffacex > Ring * <Ring Smfacex > Ring
0 — 100m 100 — 250m

a a
4 ). b)),
+ (Ring Surfacex > Ring + (Ring Surfacex > Ring

250 — 500m 500 — 1000m
a
% ).
+ (Ring Surfacex > Ring
1000 — 2000m
(2)

where a corresponds to the area (hectares) of the specific factor in each
ring, tree cover, buffer zones and crops. Where b is a constant that varies
according to the factor and the ring. In the case of the crop factor in the
first ring (from O to 100 m), b is equal to 20; in the following ring, 10; in
the third, 5; the fourth, 2,5 and in the last ring 1 (exponential model). In
the case of tree cover and buffer zone factors, b is equal to 1 in all the
rings. This variable b allows the magnification of the factors according to
the model to be tested. In our research we consider that the presence of
crops close to human populations is potentially more dangerous, so the
area of first rings of this factor is multiplied in a greater proportion than
the surface of tree cover or buffer zones. The values used enable us to test
this model, but do not represent a condition or attribute of the factors
under study.

As with forest patches, cities are subject to different conditions of
exposure to disturbances (of the matrix that surrounds them) according
to various structural characteristics, such as shape, size, edge effect,
among others (Forman and Godron, 1981). For this reason, the S factor
was incorporated into the calculation of the CPI index as a variable that
reflects the size of the urban area and the perimeter of each city
researched (as a shape index). The size of the urban area is very impor-
tant, as the smaller it is, the more likely that the total population is
exposed to the proximity of crops and pesticide use. Similarly, the
perimeter of urbanization can be taken as a structural variable that re-
flects a greater or lesser degree of contact with peri-urban agricultural
activity and its possible pollutants. Cities with a long and irregular
perimeter have a greater edge effect. In order to introduce this factor into
the CPI calculation equation, we proceeded as follows: the area and
perimeter of each city were divided by a fixed number (100 for area and
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10000 for perimeter) in order to obtain a one-digit number for each
variable. This was done by the differences between units and to obtain a
unique value to add to Eq. (1). Then, the number corresponding to the
area was subtracted from the perimeter. Thus, we obtained a single value
that corresponds to the S factor in Eq. (1), and that allowed us to weight
these two variables for each city.

2.4. Theoretical cities

A theoretical city was created (called theoretical city 1) in order to
obtain a reference model that represented a situation of peri-urban land
occupation of lesser proximity to agricultural activity. This city was
created with the following characteristics: its size (1800 ha) and perim-
eter (30 thousand meters) corresponding to a medium to a large city,
taking into account the cities of the study areas. As for peri-urban land
cover, it has all the rings, from 0 to 2000 m, covered by 70% of forest
(tree cover), and 30% with buffer zones. This urban and peri-urban
configuration represents an extreme situation that sets a comparative
parameter. With this theoretical city the highest value that the CPI index
can reach will be established, and the real analyzed cities will be rela-
tivized. The final values of the CPI index will vary from 1 (the best sit-
uation) to -1 (the worst situation), or lower values, according to the land
occupation model of the theoretical city.

In addition, another theoretical city was created (called theoretical
city 2) that represents the worst situation, due to the size (400 ha) and
perimeter (10 thousand meters) of the urbanization, corresponding to a
small city, and the proximity and surfaces of peri-urban crops. The peri-
urban configuration is as follows: the first ring is occupied in 60% by
crops, 38% buffer zones and 2% tree cover. The second ring is 65%
occupied by crops, 33% buffer zones and 2% tree cover. The third and
fourth rings have 70% crop, 29% buffer zones and 1% tree cover. Finally,
the fifth ring has 80% crops, 19% buffer zones and 1% tree cover. This
allowed us to have a model, from which the influencing factors can be
studied, and which could serve as a reference to warn about extreme
situations.

2.5. United States complementary data

For determination of urban areas, we use the Census Bureau's urban-
rural classification data (polygon shapefiles) (United States Census Bu-
reau, 2010). From these urban areas the perimeter analysis rings were
determined, in order to calculate the data for each factor of Eq. (1).

In contrast to the Argentine database, all data were obtained and
processed using the Google Earth Engine platform. For discriminating
annual crops of soybeans and corn we used the CDL database for 2017
and 2018 (USDA, 2019). This database was used for corroborating the
active crops determined by the IRECI index, which has moderate reso-
lution satellite imagery (30m resolution) and extensive agricultural
ground truth. The Global Forest Change 2000-2018 database were used
to determine tree and forest cover. This database results from a
time-series analysis of Landsat images (30m resolution) in characterizing
global forest extent and change from 2000 through 2018 (Hansen et al.,
2013b). From these databases it was possible to determine all comple-
mentary data necessary for calculating the CPI index.

3. Results
3.1. Determination of land cover data

3.1.1. Argentine study area

After processing and carrying out the supervised classification of the
Sentinel 2 satellite image, corresponding to the month of February of
2017, it was possible to determine the different land coverages in the five
perimeter rings of the 20 cities under study. From the concordance
analysis of this classification, the confusion matrix gave an overall
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Table 1. Argentine study area land cover data. Urban and peri-urban data for calculation of factors for the CPI index - showing the results of zone statistics analyses
and overlap percentage of precision measures for IRECI index for 2018 (0 to 2km). The data shown as Crops correspond to calculations made with the IRECI index.

City Urban Data Peri-urban Data

Urban Area (Ha) Perimeter (m) Ring Area 0-2km (Ha) Tree Cover  Buffer Zones  Crops 2016  Crops 2017  Crops 2018  Overlap percentage (2018)

Ha % Ha % Ha % Ha % Ha %

Bell Ville 988 27882 4239 333 7.9 3029 715 567 134 359 85 333 7.9 100
Camilo Aldao 371 9097 2842 42 1.5 420 14.8 1926 67.8 1931 68.0 1776 62.5 97
Cavanagh 192 6878 2473 39 1.6 474 19.2 1384 55.9 1421 57.5 1340 54.2 97
Corral De Bustos 466 11152 3072 74 2.4 849 27.6 483 15.7 1543 50.2 1360 44.3 97
General Baldissera 129 6030 2300 23 1.0 669 29.1 776 33.7 1184 51.5 746 32.4 100
General Roca 198 8261 2568 61 2.4 694 27.0 1283 50.0 1277 49.7 865 33.7 100
Guatimozin 147 6525 2338 36 1.6 562 24.0 945 40.4 1381 59.1 1385 59.2 98
Inriville 172 7302 2382 44 1.8 324 13.6 1488 62.5 1455 61.1 618 25.9 100
Isla Verde 220 8701 2647 34 1.3 503 19.0 1320 49.9 1510 57.1 1673 63.2 98
Justiniano Posse 430 11484 3156 85 2.7 647 20.5 1704 54.0 1145 36.3 1594 50.5 100
Laborde 248 9057 2576 59 23 610 23.7 1483 57.6 1046 40.6 769 29.9 100
Leones 498 14077 3362 68 2.0 915 27.2 1351 40.2 1415 42.1 1416 42.1 98
Los Surgentes 160 6600 2387 75 3.1 358 15.0 1610 67.4 1370 57.4 669 28.0 100
Marcos Juarez 1204 24377 4737 92 1.9 1701 35.9 1396 29.5 1767 37.3 1499 31.7 98
Monte Buey 442 12599 3255 44 1.4 5% 18.3 1519 46.7 1533 47.1 1679 51.6 99
Monte Maiz 251 8519 2694 55 2.0 828 30.7 1146 42,5 987 36.6 1022 38.0 100
Morrison 218 7297 2542 104 4.1 547 21.5 1194 47.0 1041 41.0 1071 42.1 98
Ordonez 219 6703 2458 48 2.0 931 379 766 31.2 789 32.1 806 32.8 100
San Marcos Sud 195 6978 2413 50 2.1 792 32.8 1311 54.3 839 34.8 576 23.9 100
Wenceslao Escalante 145 5470 2247 31 1,4 539 24,0 1249 55,6 941 41,9 995 44,3 99
Theoretical city 1 1800 30000 - - 70,0 - 30,0 - 0,0 - 0,0 - 0,0 -
Theoretical city 2 400 10000 - - 1,4 - 29,6 - 69,0 - 69,0 - 69,0 -

CPI = Crop proximity index; IRECI = Inverted Red-Edge Chlorophyll Index, Ha = hectares, m = meters. The percentages of areas occupied by each factor and overlap

percentage of precision measures are highlighted in bold.

accuracy of 87.5%, and the Kappa index was 0.7. To determine active
crops in the summers of 2016, 2017 and 2018, the IRECI index was
calculated in Google Earth Engine platform for the 20 Argentine cities.
All the information obtained from the supervised classification and
analyses in the Google Earth Engine platform was processed in a single
database using QGIS software. Thus, polygonal data were obtained for
each factor of Eq. (1), which were counted in every ring of each city,
making zone statistics analyses. Table 1 shows the results of the sum of

each factor, in hectares, a percentage for the total ring area (0-2000 m) of
each city and the theoretical cities.

In regard to peri-urban land cover occupation, it is interesting to note
that in the 20 selected cities the average area occupied by trees is 9% in
the first ring (from 0 to 100 m), with a maximum of 23% and a minimum
of 4%. In the following rings, the tree cover decreases, without exceeding
17% cover in any case (the average is 3%). If we analyse the areas
covered by active crops (IRECI index for 2016, 2017 and 2018) occupy,

Table 2. United State study area land cover data. Urban and peri-urban data for calculation of factors for the CPI index - showing the results of zone statistics analyses
and overlap percentage of precision measures for IRECI index of 2017 and 2018 years (0 to 2km). The data shown as Crops correspond to calculations made with the
IRECI index. Source: Census Bureau's urban-rural classification data (United States Census Bureau, 2010) and Global Forest Change (Hansen et al., 2013b).

City Urban Data Peri-urban Data
Urban Area (Ha) Perimeter (m) Ring Area 0-2km (Ha) Tree Cover Buffer Zones Crops 2017 Overlap percentage (2017) Crops 2018 Overlap percentage (2018)
Ha % Ha % Ha % Ha %

Clarion 374 10810 2979 26 0.9 444 149 2193 73.6 97 2123 71.3 97
Emmetsburg 486 19070 3622 216 6.0 1501 41.4 1123 31.0 96 925 25.5 94
Estherville 746 23345 4460 601 13.5 1535 34.4 2173 48.7 94 1907 42.8 91
Forest City 688 16745 3925 196 5.0 1545 39.4 2031 51.8 91 1642 41.8 92
Garner 418 11323 3193 37 1.2 499 15.6 2310 72.4 95 2399 75.1 96
Hampton 522 18796 3566 183 5.1 934 26.2 2134 59.9 95 2501 70.1 92
Jefferson 629 17475 4005 622 15.5 1118 27.9 1459 36.4 97 1836 45.9 96
Sheldon 532 15523 3551 62 1.7 965 27.2 2397 67.5 95 2035 57.3 95
Sibley 277 11048 2885 54 1.9 735 255 1969 68.2 97 1656 57.4 97
Story City 378 12511 3012 280 9.3 569 18.9 1887 62.6 97 1735 57.6 96
Theoretical city 1 1800 30000 - - 70.0 - 30.0 - 0 - - 0 -
Theoretical city 2 400 10000 - - 1.4 - 29.6 - 69.0 - - 69.0 -

CPI = Crop proximity index; IRECI = Inverted Red-Edge Chlorophyll Index; Ha = hectares; m = meters. The percentages of areas occupied by each factor and overlap

percentage of precision measures are highlighted in bold.
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Table 3. CPI data and results for the Argentine study area. The data for each factor obtained using Eq. (2), necessary for the calculation of the CPI index, are shown.
The results are disaggregated by year and in a triennial average. The data shown as crops correspond to calculations made with the IRECI index.

City Tree Cover Factor Buffer Zones Factor Crops Factor (IRECI) S Factor CPL Average
2016 2017 2018 2016 2017 2018
Theoretical city 2 0.1 1.5 24.6 24.6 24.6 3.0 -1.0 -1.0 -1.0 -1.0
Camilo Aldao 0.2 0.8 22.0 23.3 229 2.8 -0.9 -1.0 -1.0 -0.9
Cavanagh 0.1 1.0 22.0 20.4 17.8 1.2 -1.0 -0.9 -0.8 -0.9
Los Surgentes 0.3 1.2 18.1 16.1 8.6 0.9 -0.8 -0.7 -0.3 -0.6
Monte Buey 0.1 1.0 17.2 20.1 10.5 3.2 -0.6 -0.8 -0.3 -0.6
Isla Verde 0.1 1.3 15.2 9.9 17.9 1.3 -0.6 -0.4 -0.8 -0.6
General Roca 0.2 1.1 16.3 18.3 7.0 1.2 -0.7 -0.8 -0.2 -0.6
Guatimozin 0.2 1.7 9.0 15.1 16.8 0.8 -0.3 -0.6 -0.7 -0.5
General Baldissera 0.1 1.6 12.0 15.5 11.0 0.7 -0.5 -0.7 -0.4 -0.5
Leones 0.1 1.7 15.1 11.5 13.2 3.6 -0.5 -0.3 -0.4 -0.4
Corral De Bustos 0.2 1.6 9.0 15.0 12.9 3.5 -0.2 -0.5 -0.4 -0.3
Morrison 0.3 1.7 13.2 6.2 9.4 1.4 -0.5 -0.1 -0.3 -0.3
San Marcos Sud 0.2 2.1 14.0 11.2 3.7 1.3 -0.5 -0.4 0.0 -0.3
Justiniano Posse 0.2 1.5 14.0 8.7 10.0 3.2 -0.5 -0.2 -0.3 -0.3
Inriville 0.2 1.5 9.4 14.1 2.1 1.0 -0.3 -0.6 0.0 -0.3
Laborde 0.3 1.8 12.8 8.6 4.4 1.6 -0.5 -0.2 0.0 -0.2
Wenceslao Escalante 0.2 2.2 9.2 53 8.7 0.9 -0.3 -0.1 -0.3 -0.2
Ordonez 0.1 2.6 8.4 8.0 3.7 1.5 -0.2 -0.2 0.0 -0.1
Monte Maiz 0.2 2.4 7.5 6.2 5.6 1.7 -0.2 -0.1 -0.1 -0.1
Marcos Judrez 0.2 2.2 7.2 10.5 7.1 9.6 0.2 0.1 0.2 0.2
Bell Ville 0.7 3.7 1.5 0.5 0.2 7.1 0.5 0.6 0.6 0.5
Theoretical city 1 3.5 1.5 0.0 0.0 0.0 15.0 1.0 1.0 1.0 1.0

CPI = crop proximity index; IRECI = Inverted Red-Edge Chlorophyll Index. The averages of the calculated CPIs are highlighted in bold.

on average, 21% of the first ring, with a maximum of 50% and a mini-
mum of 0%. In the following rings the average is 39%, with maximums of
80% and a minimum of 0%. As for the areas occupied by buffer zones, in
the first ring, the average peri-urban land occupation is 55%, with a
minimum of 32% and a maximum of 80%. In the rings that follow, from
250 to 2000 m, the average of this factor does not exceed 30% of occu-
pation, with a minimum of 8% and a maximum of 80%.

In order to validate the data calculated using this spatial index, the
polygonal layers corresponding to 2017 were compared with the
Argentine database IDECOR. The method chosen was the spatial inter-
section of the polygons (of the complete ring, from 0 to 2000 m), between
the IRECI index layer and the crops layer in the agricultural cover
database. The IDECOR database used is composed of the layers of soy-
bean, corn, wheat, peanuts and sorghum crops (overall resolution of 2.5
ha of minimum mappable unit). This gave the degree of precision for
detecting summer crops, compared to the other bases, as well as the error
when confused with other types of coverages. The advantage of this
spatial comparison is that the degree of precision, and error, in detecting
the shape and location of active crop fields is also measured. The results
of these measurements are shown in Table 1, expressed in percentages of
precision for detecting active crop fields in February 2018.

In general, there is a high precision in the detection of active crop
fields in the peri-urban, which is reflected in the percentage of coinci-
dence, both in form and extension. By taking account of the average of all
cities, the accuracy reaches 96% coincidence, with a minimum of 93%
and a maximum of 99%. Alternatively, the percentages of surfaces that
are detected as active fields by means of the IRECI index that belong to
other coverages, do not exceed 4% on average according to the compared
database.

In addition to the overlap analyses, data from both databases were
compared using simple linear regressions. The areas occupied by crops
(IRECI index) in each ring for each year were compared with the areas of
crops in the period 2017-2018 (IDECOR database). The results show a
high correlation (statistically significant at p < 0.0001) between the base

determined by the IRECI index (crops) and that of IDECOR. In particular,
the  for each year is 0.86 for 2016 (slope 1.59), 0.9 for 2017 (slope
1.64) and 0.86 for 2018 (slope 1.69).

3.1.2. United States study area

Through the processing of the proposed databases, it was possible to
determine the different peri-urban land use cover of the 10 cities selected
in the United States. All the data were obtained using the Google Earth
Engine platform, the periods analyzed correspond to 2017 and 2018
(Table 2). To determine active crops in 2017 and 2018, the IRECI index
was calculated for July and August (months in which the highest active
crop coverage was detected).

In regard to peri-urban land cover occupation, the summary data
shows that in the 10 selected cities the average area occupied by trees is
11% in the first ring (from 0 to 100 m), with a maximum of 25% and a
minimum of 3%. In the following rings, the tree cover decreases, not
exceeding 25% cover in any case (the average is 6.6%). As for the areas
occupied by active crops (IRECI index for year 2017 and 2018) on
average they occupy 21% of the first ring, with a maximum of 39% and a
minimum of 5%. In the following rings the average is 51%, with maxi-
mums of 80% and a minimum of 12%. If we analyze the areas covered by
buffer zones, in the first ring, the average peri-urban land occupation is
65%, with a minimum of 54% and a maximum of 85%. In the rings that
follow, from 250 to 2000 m, the average of this factor does not exceed
32% of occupation, with a minimum of 11% and a maximum of 70%.

The polygonal information generated by the IRECI spatial index was
compared with the Cropland Data Layer (CDL) for 2017 and 2018. The
intersection of polygons (in the complete ring, from 0 to 2000 m) was
made between the IRECI index layer and the crop layer (corn and soy-
bean) of the CDL database. The results of these measurements are shown
in Table 2, expressed in percentages of precision for detecting active crop
fields in July and August 2017 and 2018. In general, there is a high
precision in the detection of active crop fields in the peri-urban of 10
cities selected, this is reflected in the percentage of coincidence, both in
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Table 4. CPI data and results for the United State study area. The data are shown for each factor obtained using Eq. (2), necessary for the calculation of the CPI index.
The results are disaggregated by year and in a biennial average. The information and calculations carried out with two databases are shown: those of Crops, using the
IRECI index, and those of CDL, using the database of Cropland Data Layer. Source: Cropland Data Layer, National Agricultural Statistics Service (USDA, 2019) and Global

Forest Change (Hansen et al., 2013b).

City Tree Cover Factor Buffer Zones Factor ~Crops Factor (IRECI) CDL Factor S Factor IRECI Average CDL Average
2017 2018 2017 2018 CPI 2017 CPI2018 CPI 2017 CPI2018
Theoretical city 2 0.1 1.5 24.6 24.6 246 246 3.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0
Garner 0.1 14 20.4 20.3 186 196 3.0 -0.8 -0.8 -0.8 -0.7 -0.8 -0.7
Clarion 0.1 13 18.7 18.4 215 215 27 -0.7 -0.7 -0.7 -0.9 -0.9 -0.9
Hampton 0.4 1.7 13.6 16.9 53 54 33 -0.4 -0.6 -0.5 -0.5 -0.5 -0.5
Sheldon 0.2 2.0 15.8 14.5 157 161 3.8 -0.5 -0.4 -0.5 -0.5 -0.5 -0.5
Story City 0.5 15 13.8 12.4 171 164 25 -0.5 -0.4 -0.4 -0.6 -0.6 -0.6
Sibley 0.2 1.9 15.1 VZs, 165 165 1.7 -0.6 -0.2 -0.4 -0.6 -0.6 -0.6
Forest City 0.3 2.6 11.1 7.6 10.3 103 5.2 -0.1 0.0 -0.1 -0.1 -0.1 -0.1
Estherville 1.0 2.0 10.9 7.4 11.2 112 51 -0.1 0.0 -0.1 -0.2 -0.2 -0.2
Jefferson 0.7 2.0 6.2 8.7 104 10.2 45 0.1 -0.1 0.0 -0.2 -0.1 -0.1
Emmetsburg 0.3 2.8 4.3 515 7.9 7.6 2.9 0.1 0.0 0.1 -0.1 -0.1 -0.1
Theoretical city 1 3.5 15 0.0 0.0 0.0 0.0 15.0 1.0 1.0 1.0 1.0 1.0 1.0

CPI = crop proximity index; IRECI = Inverted Red-Edge Chlorophyll Index; CDL = Cropland Data Layer. The averages of the calculated CPIs are highlighted in bold.

form and extension. By taking account of the average of all cities in both
years, the accuracy reaches 95% coincidence, with a minimum of 91%
and a maximum of 97%.

The IRECI and CDL databases were compared using simple linear
regressions. The areas occupied by crops (IRECI index) in each ring for
each year were compared with the areas of soybean and corn crops for
2017 and 2018 (CDL database). The results show a high correlation
(statistically significant at p < 0.0001) between the base determined by
the IRECI index (crops) and that of CDL in both years, the 72 for 2017 is
0.98 for (slope 1.12) and for 2018 is 0.97 (slope 1,15).

3.2. CPI calculation

3.2.1. Argentine study area

After processing peri-urban land use data using Eq. (2), the values of
each factor were determined. Table 3 shows this information for each
city, which was needed to calculate Eq. (1). The crop data (IRECI index)
are disaggregated for 2016, 2017 and 2018. In addition, this table shows
the CPI indices for each year, as well as the average for these three years.
The values of the CPI index are relativized with respect to the theoretical
locality 1, so they vary from 1 to -1.

3.2.2. United States study area

As with the data from Argentina, after processing peri-urban land use
information using Eq. (2), the values of each factor needed to calculate
Eq. (1) were determined (Table 4). The crops (IRECI index) and CDL data
are disaggregated for 2017 and 2018. Also, this table shows the CPI
indices for each year and database, as well as the average for the two
years.

4. Discussion
4.1. Land cover data

By using different tools, the land cover and use of large territorial
extensions were determined with great precision in different periods of
time. This made it possible to determine areas covered by peri-urban
crops, forests or trees and buffer zones that otherwise could not be ob-
tained. Platforms for the analysis of satellite information in the cloud,
such as the Google Earth Engine, provide a large amount of data, with a
great capacity for analysis and processing. In addition, it enables
comparative work with databases from various sources, countries or re-
gions of the world.

The calculation of active crop areas using the satellite index IRECI
facilitates access to data for temporal and spatial monitoring at different
scales. Although this satellite index is not widely used today because it is
very new, our research showed high correlations with data from various
sources. This will allow us to automate the information to obtain acces-
sible and reliable indicators and indices for monitoring.

With respect to the differences in the total areas of active and clas-
sified layer crops between databases, in both countries, as seen in total
surface counts, or by the overlap percentages or correlation measures, it
is important to emphasize that the resolution, minimum mapping scale,
smoothing techniques, periods of analysis, and others factors probably
generate these discrepancies. In particular, the database of Argentina,
IDECOR, takes account of the rainfed crops for an entire year, so it may
include successive crops of soybeans or corn (commonly called second-
class crops), as well as other crops such as wheat, peanuts and sorghum.

Some limitations of the IRECI index detected in our research are that
when there is a high density cover of vegetation, such as forests, patches
of trees or shrubs, it is difficult to discriminate effectively between fields
of crops and other coverages. Although this erroneous detection is very
small for our data calculated for both countries, it can be corrected by
masking unwanted vegetation cover using data from sources such as the
Global Forest Change or through supervised classifications such as IDE-
COR or CDL, or other sources or methodologies.

The land cover data estimated showed an alarming situation of agro-
industrial activity in the periphery of many cities, for Argentina and
United State: the areas occupied by trees are practically non-existent and
agro-industrial activity with predominance of GMOs crops is extremely
close to the urban edges. Thus, the ecosystem services provided by trees as
a barrier to pesticide drift, direct from the fumigations or contained in the
dust from the fumigated areas, are diminished, and the population is po-
tential exposed to risks produced by agricultural activity. As Zaady et al.,
2018 indicates, this ecosystem services rarely been taken into consider-
ation by management policies of tree plantings in farmland areas.

Although the data sources are different, there is great similarity in the
surfaces of the different peri-urban coverages determined in both regions
of study. The average tree cover areas are smaller for the cities of
Argentina. In terms of active crops (IRECI spatial index) the average
percentages are very similar in both regions.

4.2. CPI assessment

The methodology and the CPI index serve as a screening tool to
provide a relative assessment of proximity to peri-urban agro-industrial
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production. Its implementation aims to have an instrument for moni-
toring the location of these activities.

One of the main advantages of the CPI index is that it requires very
few elements for its calculation, depending on the inputs available in the
region to be investigated (e.g. land use databases). The CPI index can be
calculated in any region with agro-industrial or other types of produc-
tion, by using the IRECI satellite index, which showed great robustness in
determining coverage of active crops.

Another advantage of the proposed methodology is the plasticity of
the index, since the variables that constitute it can be modified, changed
or new ones can be added. Thus, for example, toxicity calculation mod-
ules can be added to the pesticides used in each crop, measured by area or
other units.

We also believe that the CPI index provides the possibility of
obtaining exploratory data, necessary in the context of lack of informa-
tion on the degree of exposure of urban populations to agro-industrial
activity. As detailed above, there is strong evidence that inhabitants
living in agro-industrial regions in Argentina would be exposed through
multiple pathways to direct or indirect contact with pesticides or other
agricultural chemicals (Alonso et al., 2018; Aparicio et al.,, 2013;
Bonansea et al., 2018; De Ger6nimo et al., 2014; Etchegoyen et al., 2017;
Hunt et al., 2017; Lopez et al., 2012; Mendez et al., 2017; Mugni et al.,
2011; Peluso et al., 2014; Primost et al., 2017; Solis et al., 2017). In
addition, the two most commonly used herbicides in this type of trans-
genic crops, glyphosate and 2,4-dichlorophenoxyacetic acid, were clas-
sified as “probable carcinogen” and “possibly carcinogen” in humans by
the International Agency for Research on Cancer, for their genotoxic
activity and oxidative stress (Guyton et al., 2015; Loomis et al., 2015).
Atrazine, another of the herbicides of greater application in transgenic
crops, is associated with a relatively high chronic toxicity and potential
that accumulates as a recalcitrant substance in surface and groundwater,
so its use is restricted in the United States and has been banned in several
European Community countries (Hansen et al., 2013a).

The possibility of weighting the surfaces occupied by trees, buffer
zones or crops in the different perimeter rings using the constant b from
Eq. (2), provides the opportunity to model different study situations with
the CPI index. In our research the proximity of crops to the urban edge is
magnified because that way we can weight possible pesticide exposure.
This is reflected in those cities where the higher percentage of crops in
the first rings increase their CPI. The values used enable us to test this
model, but do not represent a condition or attribution of the factors under
study. This weighting constant can be modified by more complex ones
that, for example, reflect the protecting function of trees as physical
barriers, introduce the directionality and intensity of winds, or other
variables. Concerning to the use of tree cover and buffer zones as pro-
tective factors in Eq. (1), we would like to make a few observations. The
evaluation of wind breaks as barriers to pesticide drift at this scale of
analysis is extremely complex. As developed in point 2.3. in the section
on Materials and Methods, there is conclusive evidence that even a small
barrier of trees or buffer zone can act by reducing the possible primary
and secondary drift of pesticides. Therefore, in our research approach we
considered these variables to evaluate their impact on the risk of expo-
sure, without addressing the structure, composition or other character-
istics. More conclusive research is needed on this topic, at scales of
analysis such as those we propose, in order to determine the role of these
factors in exposure to pesticide use near cities.

The use of theoretical cities is another variant that allows us to model
different scenarios in order to understand the peri-urban land use factors
and how the proposed index varies. In addition, it allows us to design
strategies for the development of cities, since different peri-urban land
use and urban growth models can be tested.

If a review of the scientific literature referring to indicators and
indices of risk of contamination by pesticides is done, it will be seen that
most are focused on determining contamination in diverse environ-
mental sectors or on human health. These indicators and indices of
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pesticide contamination have been developed and used with the inten-
tion of reducing its use, the risks of exposure of the applicators, popu-
lation and contamination of the environment (Feola et al., 2011; Labite
et al.,, 2011; Reus et al., 2002). In Argentina, different indicators and
indices of the risk of pesticide contamination have been developed and
tested (Dubny et al., 2018; Ferraro et al., 2003; Hunt et al., 2017;
Maiztegui, 2010; Peluso et al., 2014). These have different objectives,
scales of analysis and results, however, the convergence of results is
interesting, where worrying levels of contamination and exposure to
pesticides stand out.

Although the use of these indicators and indices would be very useful
for the cities analyzed in this research, they would be difficult to apply on
a large scale due to the lack of, or inaccessibility to, the pesticide use data
needed for their calculation. For this reason, we propose the CPI index as
an exploratory research tool to generate information for assessment and
monitoring peri-urban agro-industrial activity in numerous cities at the
same time. In comparison with other indicators, the CPI index differs in
that takes account of a measurement of the potential peri-urban prox-
imity risk to agro-industrial pesticide use at the local level as a whole, by
using perimeter rings, which makes it possible to evaluate the entire area
surrounding a city. While most indicators are developed for the crop or
farm level (Labite et al., 2011; Reus et al., 2002), the CPI index serves to
monitor agro-industrial activity in large territorial extensions, allowing a
first approximation to potential exposures, which saves time and money.

An important aspect of the CPI index is that it allows monthly, annual
or longer time periods to be monitored, if required. Thus, patterns of
spatial distribution of agro-industrial activity can be analyzed to deter-
mine the times of year of greatest exposure to pesticide application. This
information can be used to perform cross analysis with environmental
and epidemiological data to provide new evidence on pesticide exposure
for humans and the environment.

It is also possible to evaluate the economic costs of the change in land
use through the methodology that we propose or to apply a system of
taxes linked to the risk of pesticide use for the fields surrounding the
cities, as proposed and applied by some European countries (Kudsk et al.,
2018). This could help to generate a shift from agro-industrial to
agro-ecological production with less risk of contamination.

The main limitations and challenges in calculating the CPI index are
described as follows. One key feature of CPI index is that is easy and
quick to calculate but, this simplicity (a sought-after and recognized
characteristic of good indicators) works at the expense of a more realistic
representation of the agro-industrial model and the risk of exposure to
the pesticide impacts. However, the main objective of this index is to
generate primary information, in later instances, new variables can be
added to the index to improve its representation of the phenomenon.

Another key factor, which is difficult to establish, refers to the dis-
tances to which a city model is considered without exposure to pollutants
generated by agro-industrial activity. This is fundamental since the
methodology that we propose bases its technique of classification of cities
on the comparison with a theoretical city. In our study we based our-
selves on research from Marcos Judrez, in the Argentine study area, that
determined that urban populations do not suffer any evident genotoxicity
only at distances greater to the range of 1500-2000 m (Bernardi et al.,
2015). There are other sources of information, such as the creation of
particular state regulations or judicial processes carried out by victims of
pesticide fumigations (individuals or communities). These processes
often resulted in restrictions on fumigation ranging from 500 m to 2000
m or more from the urban edge (Tittonell and Giobellina, 2018). At the
international level, numerous studies have determined negative associ-
ations or increased health risks, on pregnant women and children that
living at different distances within 2000 m from fields sprayed with
pesticides: cancer (Booth et al., 2015; Gomez-Barroso et al., 2016;
Malagoli et al., 2016; Rull et al., 2006, 2009), neurodevelopmental dis-
orders (Gonzalez-Alzaga et al., 2015; Gunier et al., 2017; Roberts et al.,
2007; Rowe et al., 2016; Shelton Janie et al., 2014), respiratory problems
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Data for CPI index
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Figure 3. Argentine cities with lower and higher average CPI index (2016-2018). Coverage of active crops (IRECI index), trees and buffer zones is represented.

CPI = Crop proximity index; IRECI = Inverted Red-Edge Chlorophyll Index.

(Raanan et al., 2017), malformations (Benitez-Leite et al., 2009; Rull et
al., 2006) and alteration of metabolites or biological markers (Babina et
al., 2012; Coronado et al., 2011; Gomez-Arroyo et al., 2013; Lu et al.,
2000). These data were also taken into account when deciding the dis-
tance from the theoretical city. However, all this information is still
insufficient to determine a pattern extrapolatable to all the cities and
types of crops or agricultural practices of diverse countries in standardize
way. For this reason, it is necessary to investigate the minimum safe
distances from urban populations to this type of agricultural activities in
different contexts and to establish more explicit patterns, since there is a
great lack of vital information for designing public policies that safeguard
collective health.

Some challenges to be overcome to achieve complete automation of
this index, which will allow a better and greater use, refer to obtaining
homogeneous databases of all the necessary inputs for its calculation.
Although significant progress has been made in this regard, using the
IRECI satellite index and databases such as Global Forest Change, there
are still methodological steps to resolve the collection and processing of
data that define other inputs of the CPI index. We believe that, by using
the Google Earth Engine platform, new versions of the index will be
advanced to minimize the amount of external information needed for its
calculation.

Another factor to take into account in these results is that two to three
year averages are being analyzed (depending on the country), i.e. they do
not reflect additive effect of the proximity of crops in successive years. To
do this, we should make a year-to-year analysis of peri-urban areas and
CPI indices. Thus, we would see that the percentages of crops close to
cities are high and accumulated over time. In addition, the only crops
that are considered are soybeans and corn, so that exposure to pesticides
may be greater with of the addition of other crops at other times of the
year, such as wheat, for example.

Making a comparative analysis of the results in both regions of study,
we found similar peri-urban crop proximity and land cover situations.
Results in Tables 3 and 4 show that most of the CPI values are negative:
90% in the case of cities in Argentina and 80% in the case of cities in the
United States. If the cities with CPIs below —0.5 are selected, 40% would
be included in both study regions (8 cities for Argentina and 4 for the
United States).

The following is a more detailed analysis of the results to determine
which factors most influence the determination of extreme CPI indices. In
the case of the Argentine city that obtained a higher CPI index (Table 3),
Bell Ville (average CPI 0.5), the factors that influence these results are:
large areas of buffer zones, a greater cover of trees in the 20 cities
analyzed (although only 7.9% at 2000 m), few areas of cultivation and,

finally, a great urban and perimeter area (Table 1). The key factors that
make the CPI index higher than that of the other cities are the smaller
crop areas, especially in rings close to the city, and the larger urban and
the perimeter size (Figure 3). This does not mean that there is no direct
contact between the fields and the urban edge, nor does it remove the
chance of possible exposures to pesticide drift. This city is simply less
surrounded and exposed, by proximity, to agro-industrial activity than
others, within this region of study. It is important to emphasize that
although Bell Ville obtains a CPI of 0.5, it is far from the ideal model, the
theoretical city 1.

At the other extreme, the city with the lowest average CPI (-0.9),
Camilo Aldao (Table 3), is due to large areas of crops on its periphery,
close to 70% in some years (Table 1). This situation is also accompanied
by the almost non-existence of tree cover and low buffer zone areas. This
distribution of peri-urban coverage is represented in Figure 3, where it
can be appreciated that the fields are very close to the urban border in
almost the entire periphery.

For the United States study area, the city with the highest average CPI
(0.1) is Emmetsburg (Table 4). Compared to other cities in the same area,
this city has large buffer zones and good tree cover, although it is not the
largest one (Table 2). In addition, the areas of peri-urban crops are the
lowest (as a percentage of the total ring area) compared to the other
cities. The opposite case, the city with the lowest average CPI index, -0.8,
is Garner (Table 4). If we analyze the peri-urban coverage, we will see
that the key factor to obtain this index is the large areas of crops, very
close to the urban edge, and the low areas occupied by buffer zones and
trees (Table 2).

5. Conclusion

The CPI index is a first methodological approach for the creation of an
automated tool to monitor peri-urban agro-industrial activity in contexts
of inaccessibility or lack of information.

The results, in both countries, show a worrying situation. Most of the
cities examined are extremely close to extensive areas of crops, that use a
large amount of pesticides, sprayed many times during the year, and that
do not have any protection of trees or buffer zones.
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