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In recent years, high-throughput genomic technologies and computational
advancements have invigorated efforts to identify the molecular mechanisms regulating
human adaptation to high altitude. Although exceptional progress regarding the
identification of genomic regions showing evidence of recent positive selection has
been made, many of the key “hypoxia tolerant” phenotypes of highland populations
have not yet been linked to putative adaptive genetic variants. As a result, fundamental
questions regarding the biological processes by which such adaptations are acquired
remain unanswered. This Mini Review discusses the hypothesis that the epigenome
works in coordination with underlying genomic sequence to govern adaptation to
the chronic hypoxia of high altitude by influencing adaptive capacity and phenotypic
variation under conditions of environmental hypoxia. Efforts to unravel the complex
interactions between the genome, epigenome, and environmental exposures are
essential to more fully appreciate the mechanisms underlying human adaptation
to hypoxia.
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INTRODUCTION

“Each living organism has two histories that determine its biology: an evolutionary history whose duration
is in the hundreds of thousands of years, and a developmental history that starts at the time of conception.”

Ze’ev Hochberg

Oxygen homeostasis, a process on which human survival depends, is severely challenged by the
hypobaric hypoxia of high altitude. Despite this challenge, humans have lived and thrived at high
altitudes on the Qinghai-Tibetan Plateau (western China), the Andean Altiplano (South America)
and the Semien Plateau (Ethiopia) for millennia (Aldenderfer, 2011; Scheinfeldt et al., 2012; Huerta-
Sanchez et al., 2013; Jeong et al., 2014; Rademaker et al., 2014). These highland populations possess
an array of “hypoxia-tolerant” physiological traits and exhibit strong genomic signals of recent
positive selection within or near genes involved in oxygen sensing or hypoxic response (Beall et al.,
2010; Bigham et al., 2010, 2014; Simonson et al., 2010; Yi et al., 2010; Scheinfeldt et al., 2012; Huerta-
Sanchez et al., 2013; Zhou et al., 2013; Cole et al., 2014; Crawford et al., 2017). Collectively, these
adaptive signals point toward genetic adaptation as a predominant molecular mechanism by which
humans have adapted to the high altitude environment. Yet, the adaptive variants identified do not
explain the full range of hypoxia-tolerant features characteristic to highland populations and their
relevance for improving reproductive success or sexual selection remains unclear. In this context,
it is vital to emphasize that natural selection acts not on genotypes directly, but rather phenotypes

Frontiers in Physiology | www.frontiersin.org 1 November 2019 | Volume 10 | Article 1397

https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2019.01397
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fphys.2019.01397
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2019.01397&domain=pdf&date_stamp=2019-11-22
https://www.frontiersin.org/articles/10.3389/fphys.2019.01397/full
http://loop.frontiersin.org/people/786276/overview
https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-10-01397 November 22, 2019 Time: 16:27 # 2

Julian An Aptitude for Altitude

which most often are the product of gene-gene interaction,
gene-environment interaction and non-sequence-based features
of the genome (e.g., epigenetic marks) that are critical for
transcriptional regulation in response to environmental and
developmental triggers. This complexity underscores the need to
emphasize more dynamic models of human adaptation than have
traditionally been appreciated (Box 1).

While genomic sequences are effectively hardwired, dynamic
epigenetic changes to chromatin conformation determine
regions of transcriptional silence or transcriptional potential in
response to biological or environmental cues to produce diverse
cellular phenotypes and functions (Bird, 2007; Feinberg, 2007;
Bonasio et al., 2010). Several unique epigenetic mechanisms
exist, including cytosine methylation, histone modification
and variants, and RNA-based mechanisms. This Mini Review
focuses on cytosine methylation, defined by the addition
of a methyl group to the C-5 position of cytosine residues
within CpG dinucleotides, given its prominent role in genomic
imprinting, transcriptional regulation, and the silencing
of repetitive DNA elements and comparatively extensive
study in humans (Robertson, 2001; Jones and Baylin, 2002).
A comprehensive review of epigenetic mechanisms underlying
transcriptional responses to hypoxia is provided elsewhere
(Choudhry and Harris, 2018).

Across the human genome, CpG motifs are extensively
methylated (Saxonov et al., 2006). Dispersed among these,
however, are regions rich with CpG dinucleotides occurring in
sequence (“CpG islands”) that typically remain unmethylated.
Approximately 70% of annotated gene promoters in the
human genome are associated with a CpG island (Saxonov
et al., 2006). CpG island hypomethylation typically promotes
transcription factor binding and active gene transcription,

BOX 1 | Models of human adaptation.
Historically, models of human adaptation have partitioned the process of
adaptation into distinct components that differ in timescale, stability, and
method of acquisition. On the most transitory end of the continuum are
comparatively rapid molecular and physiologic changes that maintain
homeostasis under shifting environmental or biological exposures. Conversely,
stimuli experienced during critical developmental periods may cause
physiologic or morphologic changes that persist into later life, a phenomenon
termed developmental adaptation or plasticity. On the most stable side of the
“adaptive spectrum” is natural selection. Natural selection refers to the
increased frequency of genetic variants within a population as a result of their
contribution to phenotypes that improve reproductive success or sexual
selection. Recent work suggests that the process of human adaptation
requires a more dynamic interaction of the various modes of adaptation than
previously appreciated. Epigenetic processes are vital for mediating
transcriptional and physiological responses to hypoxia. Physiologic
responses, however, can influence epigenetic patterns. Epigenetic events also
play a critical role in determining cellular identity and are involved in the effect
of early life exposures to alter developmental trajectories. While epigenomic
marks exert a powerful influence on the way genomic sequences are
translated into phenotypic traits, genetic background can also influence the
probability of epigenetic modification. Lastly, epigenetic marks can facilitate
changes to genetic sequence via several mechanisms, including
chromosomal recombination and cytosine to tyrosine transitions resulting from
the deamination of methylated CpG motifs. From this vantage point, elements
of the adaptive process are highly.

whereas hypermethylation often inhibits transcription factor
binding and thereby establishes an inactive chromatin state
(Feinberg, 2007). Exceptions do exist, however, making it
difficult to simplify the complex interrelationship of these
epigenetic events. In this way, the epigenome exerts a powerful
influence on the translation of genomic sequences to phenotypic
traits (Feinberg, 2007; Bonasio et al., 2010). For instance, the
differentiation of pluripotent cells, each with an identical DNA
sequence, into phenotypically distinct cell types is driven by
epigenetic processes (Reik, 2007). In other words, non-sequence
based changes to chromatin conformation enable phenotypic
flexibility about a given genotype.

This Mini Review considers that epigenomic mechanisms
may contribute to human adaptation to the high altitude
environment in a least four interconnected ways including
(1) the modification of transcriptional or phenotypic flexibility
under conditions of limited oxygen availability, (2) enhancing
(or limiting) phenotypic variation and thereby influencing the
heritability of traits, (3) underlying genetic variation affecting
local or distant methylation state, and (4) epigenetic silencing
to mask deleterious dominant mutations or reveal recessive
mutations. While still speculative and theoretical, the concept
that epigenomic processes contribute to heritable phenotypic
variation is gathering momentum.

EPIGENETIC REGULATION OF HYPOXIA
RESPONSIVE TRANSCRIPTIONAL
PROGRAMS

The hypoxia-inducible transcription factor (HIF), consisting
of two a-subunits (HIF1/2a) and a constitutive b-subunit, is
the predominant regulator governing robust transcriptional
responses to hypoxia that collectively act to defend oxygen
homeostasis (Semenza, 2011). Under conditions of adequate
oxygen supply, the hydroxylation of the HIF1/2a subunits
via prolyl hydroxylases (PHDs) (Bruick and McKnight, 2001)
facilitates the binding of von Hippel–Lindau tumor suppressor
(vHL) and, in turn, the proteasomal degradation of HIF1/2a
(Ivan et al., 2001). In contrast, under hypoxic conditions, the
hydroxylation of HIF1/2a by PHD is impaired, allowing HIF1/2a
to escape recognition by vHL and translocate to the nucleus.
Subsequently, HIF1/2a dimerizes with HIF1-b and subsequently
binds with hypoxia-responsive elements (5′ A/GCGTG 3′) and
associated cofactors across the genome to initiate the HIF-
transcriptional program and cellular adaptation to hypoxia
(Majmundar et al., 2010).

Epigenetic silencing of genes integral for the stabilization
of HIF, such as vHL and EPAS1, has been shown to be vital
for mediating the transcription of HIF pathway genes ex vivo
in isolated primary cells or cell lines (Herman et al., 1994;
Lachance et al., 2014). DNA methyltransferase 3a (DNMT3A),
for example, prompts the de novo CpG methylation of the
EPAS1 promoter, an effect that inhibits HIF2α-regulated gene
transcription (Lachance et al., 2014). Conversely, defective
DNMT3A inhibits the epigenetic silencing of EPAS1, resulting
in unscheduled EPAS1 activation (Lachance et al., 2014). Further
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underlining the likely critical role of epigenetic processes at
high altitude, the induction of erythropoietin (EPO) gene
expression is governed by methylation events within the
promoter and 5′-untranslated region of the EPO gene. EPO
is considered to be the “master regulator” of red blood
cell production. Hypoxia also alters methylation status by
regulating the expression of enzymes that catalyze methylation or
demethylation events [e.g., DNMTs and ten-eleven-translocation
(TET) 2, respectively] (Thienpont et al., 2016). TET2 enzymes
induce DNA demethylation by hydroxylating 5-methylcytosine
(5 mC) to 5-hydroxymethylcytosine (5 hmC) which, after
a series of oxidation events, is ultimately substituted with
an unmodified cytosine by base-excision repair to achieve
demethylation (Tahiliani et al., 2009; Ito et al., 2011). Given
that TET2 and 5 hmC are known to be modified by hypoxia
in the context of human disease, (Choudhry and Harris, 2018)
demethylation events also likely contribute to the epigenetic
regulation of transcriptional responses to the chronic hypoxia
of high altitude.

Histone acetyltransferases and demethylases also contribute
to the regulation of chromatin conformation within and around
HIF-binding sites and are regulated, in part, by hypoxia (Kallio
et al., 1998; Wellmann et al., 2008; Watson et al., 2009).
Histone deacetylases, for instance, are reported to increase HIF-
1α protein stability, thereby promoting HIF-1 transactivation
or, in the case of histone deacetylase 7, to augment HIF-1
transcriptional activity via physical interaction with HIF-1α,
p300, and CBP (Kato et al., 2004). Further studies are required
to determine whether the regulatory role of epigenetic processes
for transcriptional responses to hypoxia observed ex vivo occur
similarly in vivo.

DIFFERENTIAL METHYLATION WITH
HIGH-ALTITUDE EXPOSURE

Recent reports document differential methylation patterns
in highland populations in association with the duration
of high-altitude residence and phenotypes presumed to be
maladaptive at high altitude. One study contrasting EPAS1
promoter and LINE-1 repetitive element methylation among
Andean Quechua residing at high altitudes (4300 m) or sea
level in Peru suggests that altitude of current residence and
lifetime exposure to high altitude is inversely related to EPAS1
methylation and directly associated with LINE-1 methylation
(Childebayeva et al., 2019). The study does not report whether
association between methylation status and adaptive phenotypes
existed (Childebayeva et al., 2019). In the peripheral blood
mononuclear cells of Andean men living in La Paz-El Alto,
Bolivia (3600 to 4000 m), a recent report identified several
differentially methylated regions (DMR) at base-pair resolution
in individuals with excessive erythrocytosis (EE), considered to
be a maladaptive response to chronic hypoxia, compared to
healthy, age and altitude-matched controls (Julian, 2017). The
most notable DMR identified was a hypermethylated region
within EGLN1, (Julian, 2017) the gene that encodes PHD2 –
an enzyme that is vital for inhibition of HIF-regulated gene

transcription. Notably, the DMR identified was located within
the CpG island that surrounds the EGLN1 promoter and was in
close proximity (700 bp) to an EGLN1 SNP (rs12097901) that
occurs at an increased frequency in Tibetans (Lorenzo et al.,
2014; Tashi et al., 2017) In Tibetan populations, the rs12097901
SNP is inversely related to hemoglobin concentration and has
been reported to affect PHD2 binding, yet the latter remains
a topic of discussion (Bigham and Lee, 2014) rs12097901 also
exists in Andean populations, although at a reduced frequency,
indicating that the adaptive benefits afforded by this particular
SNP may also be of potential importance for individuals of
other high-altitude populations. If specific epigenomic marks
or the genetic potential for epigenetic regulation are heritable
and confer a selective advantage (or disadvantage) under
conditions of limited oxygen availability it is tempting to
speculate that such effects may contribute to human adaptation
to high altitude.

EVIDENCE FOR EPIGENOMIC
HERITABILITY

To be pertinent for human adaptation, epigenomic diversity
or the capacity for epigenetic diversity must be propagated.
Understanding how environmental exposures impact the human
epigenome, and whether or how such effects may be inherited
continues to be an area of intense investigation (Kaati et al.,
2002; Heijmans et al., 2008; Bygren et al., 2014). At this point,
it is essential to distinguish between cell-to-cell inheritance,
intergenerational inheritance, and transgenerational inheritance.
Cell-to-cell epigenetic inheritance, or mother-daughter cell
transmission, is well established (Figure 1) and reviewed
in detail elsewhere (Probst et al., 2009). Intergenerational
inheritance refers to the transmission of epigenetic traits
across a single generations (F0 to F1), while transgenerational
inheritance spans two or more generations (F0 to F2 onward).
Inter- and transgenerational epigenetic heritability in mammals
continues to be a contentious debate, predominantly due
to the fact that non-imprinted genes undergo vast, albeit
incomplete, epigenetic erasure before implantation (Smallwood
et al., 2011; Gkountela et al., 2015; Guo et al., 2015; Tang
et al., 2015). It follows that for intergenerational inheritance
to occur, epigenetic marks in the preimplantation embryo
would need to evade extensive reprograming. It is worth
noting, however, that arguments against intergenerational
and transgenerational epigenetic heritability rely heavily on
the assumption that epigenetic marks are inherited in a
replicative rather than a reconstructive manner. Mechanisms
do exist to protect against the reprograming of specific
sequences (Skvortsova et al., 2018). For instance, epigenetic
processes drive genomic imprinting, or the expression of
specific genes in a parent-of-origin manner. Specifically, DNA
methylation events epigenetically silence the inactive allele
and these changes are resistant to post-fertilization epigenetic
methylation reprograming.

For true transgenerational epigenetic inheritance to occur,
epigenetic marks would need to avoid erasure in primordial
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FIGURE 1 | Molecular mechanisms of epigenetic inheritance. (1) Cell-to-cell inheritance of epigenetic modifications. At the outset of semi-conservative DNA
replication, cytosine methylation marks (red circles) are only present on the original (“mother”) strands of DNA. NP95 (yellow ovals) binds methylated cytosines, and
recruits DNMT1 (purple oval) which is responsible for the de novo methylation of DNA on the complementary daughter DNA strands. (2) Genomic imprinting.
Epigenetic mechanisms drive genomic imprinting, a process by which select genes are expressed according to parental heritage. In the pre-implantation embryo,
the widespread erasure of epigenomic marks spares imprinted genes (red circles, DNA methylation of imprinted genes) such that the epigenome of imprinted genes
persists into adulthood. Extensive epigenetic reprograming of non-imprinted genes and select imprinted genes also occurs in the germ line. Epigenetic modifications
that are not retained through the reprograming process are subsequently restored in a sex-specific manner. (3) Transgenerational inheritance. Non-imprinted genes
undergo vast, albeit incomplete, epigenetic erasure prior to implantation. During this process, much of the epigenome, including DNA methylation marks (meDNA)
are “erased”. It has been proposed that small and long non-coding RNA species (including micro RNAs [miRNA]) recruit methylating enzyme complexes such as
DNMT3a/3b to restore epigenome to its original form.

germ cells, a phenomenon that has been observed in mammals
(Probst et al., 2009). While evidence supports the persistence
of epigenetic states across generations (Roemer et al., 1997;

Anway et al., 2005; Rexhaj et al., 2011) and transmission
between somatic cells and germ cells, (Hitchins and Ward,
2009) the regulatory processes underlying these observations
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remain unclear. Small RNAs and long non-coding RNAs are
one potential mechanism for the “inheritance” of epigenomic
marks beyond a single cell lineage (Cech and Steitz, 2014;
Holoch and Moazed, 2015). In particular, recent reports reveal
that somatic epigenetic modifications may be transferred to
the gamete by regulatory RNA species that direct histone
modification or methylation status in a sequence-specific manner
rather than being transferred intact (Figure 1; Chen et al.,
2016; Zhang et al., 2018). Through this same mechanism,
epigenetic marks could either bypass the widespread epigenetic
reprograming that occurs in early development or subsequently
“reconstruct” epigenetic patterns after the reprograming process.
Constitutional epialleles, defined as epigenetic marks deriving
from the early embryo or parental germline, constitute
another mechanism for transgenerational epigenetic inheritance,
however the stability of constitutional epialleles across meiotic
division remains unclear (Hitchins et al., 2007).

While epigenetic patterns vary extensively between
populations, the extent to which underlying genetic architecture
drives these differences remains unclear. Current literature
indicates that a comparatively large proportion of population-
specific CpG methylation patterns can be attributed to underlying
genetic variation (Fraser et al., 2012; Heyn et al., 2013; Moen
et al., 2013). Environmental influences, however, also appear
to exert a powerful influence given that, in these comparative
epigenomic studies, no direct relationship to genetic variation
could be detected for approximately one-third to one-half of
the differentially methylated loci (Fraser et al., 2012; Heyn et al.,
2013; Moen et al., 2013). Heritable variations with respect to
CpG density may permit or prohibit methylation marks that
govern transcriptional responses to hypoxia. While only a small
proportion of cytosine methylation marks across the genome
can be attributed to cis- and trans-acting single nucleotide
polymorphisms (SNPs), SNPs that disrupt (or create) CpG
motifs heavily influence methylation status of local and distant
(<10 kb) CpG sites and, in turn, the capacity for epigenetic
regulation of gene expression (Zemach et al., 2010; Bell et al.,
2011; Taudt et al., 2016). In other words, epigenetic regulation
of gene transcription would theoretically be constrained by
reduced CG content and more permissive by increased CG
content. Illustrating that such processes could potentially
contribute to high-altitude adaptation, a recent report found
that nearly 40% of EPAS1 SNPs showing evidence of positive
selection in highland populations altered CpG content (Julian,
2017). Given that the EPAS1 promoter is encompassed by a
CpG island and is transcriptionally regulated via epigenetic
mechanisms, (Lachance et al., 2014) these findings are of
particular interest.

POTENTIAL EVOLUTIONARY
CONSEQUENCES OF EPIGENOMIC
VARIATION

Epigenomic variation may affect evolutionary processes in
several different ways. For one, epigenetic mechanisms modify
phenotype, the subject of natural selection, and can thereby

influence the heritability of traits. Second, phenotypic variation
afforded by epiallelic silencing or other genetic mechanisms may
afford greater flexibility under rapidly changing environmental
or biological conditions, (Feinberg and Irizarry, 2010) such
as pregnancy and exercise, that pose significant challenges
for oxygen homeostasis, particularly at high altitude. Third,
using mathematical models, it has been proposed that heritable
genetic variants, in particular, the loss or gain of CpG
motifs, that enhance phenotypic diversity likely improve
reproductive fitness, and that such effects may be significant
for evolutionary adaptation to shifting environmental conditions
(Feinberg and Irizarry, 2010). In support of this concept,
short-term, fluctuating evolution appears to occur without
cumulative change. Specifically, the analysis of evolutionary
rates measured over 100–107 generations revealed a marked
pattern of constrained phenotypic fluctuation, such that the
predicted phenotypic variation of samples separated by ten
generations is effectively equivalent to that of samples separated
by one million generations (Gingerich, 2001; Estes and Arnold,
2007). Fourth, epigenetic marks can promote changes to
genetic sequence by several mechanisms, including cytosine
to tyrosine transitions due to the deamination of methylated
CpG motifs, and chromosomal recombination (Janion, 1982;
Sved and Bird, 1990; Carbone et al., 2009). Methylated
CpG motifs, for instance, convert to TpG at a rate 10 to
50 times greater compared to different transitional changes
(Branciamore et al., 2014). Methylation also reduces the
possibility of recombination and recombination-based repair
(Xia et al., 2012). Finally, epigenetic silencing could also conceal
dominant deleterious mutations or increase the probability
for fixation of recessive mutations (Chess, 2012). These
observations, together with accumulating evidence supporting
the heritability of epigenetic marks, raise new questions about
how the genome orchestrates the unique physiologic attributes
of highland populations.

SUMMARY AND FUTURE PROSPECTS

Promising investigations are poised to begin unraveling the
molecular mechanisms by which genomic signals showing
evidence of natural selection confer purportedly advantageous
phenotypes of highland populations within the context of the
high-altitude environment. At present, however, the adaptive
variants identified by single nucleotide polymorphism (SNP)
array or case-control comparisons do not explain the full range of
hypoxia-tolerant features characteristic to highland populations,
emphasizing the need for whole-genome sequencing and a
fuller understanding of the degree to which non-sequence based
features of the genome contribute to the adaptive physiological
features observed.

Epigenomic studies remain challenging. Human epigenomic
studies, for instance, are limited, in part, by the cell-specific
nature of epigenetic marks. Unlike genetic variation, epigenetic
patterns vary across cell types and, in humans, it is often
not possible to acquire the tissue of interest, let alone pure
cell populations from that tissue. Therefore, surrogate cells or
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tissues must be carefully considered, and investigators should
be certain to acknowledge that, in such cases, study results may
not reflect the epigenetic status of the target organ. Furthermore,
underlying DNA sequence variations, which are well-established
and potent contributors to the inheritance of epigenetic states,
are often disregarded in epigenome-wide association studies,
(Lappalainen and Greally, 2017) emphasizing the need for whole-
genome sequencing and an integrated genomic-epigenomic
approach. Finally, while functional investigations of site-
specific methylation state remain difficult, the introduction of
genome-editing techniques including the CRISPR/Cas-9 system
and Transcription Activator-Like Effector Nucleases (TALENs)
permits focused CpG methylation and demethylation in vitro and
in vivo (Maeder et al., 2013; Bernstein et al., 2015). Using these
techniques, experimental animal studies could evaluate whether
altering the methylation state of targeted CpG sites within specific
cell types affects transcriptional and physiological responses to

hypoxia in vivo. In recent years, sequencing technologies and
analytical capabilities have vastly expanded knowledge regarding
the mechanisms governing human variation and disease and
provide the opportunity to gain a deeper understanding of
the genome-epigenome interaction and its relevance for human
adaptation and adaptive potential.
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