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In people with drug resistant epilepsy (DRE), seizures are unpredictable, often occurring

with little or no warning. The unpredictability causes anxiety and much of the morbidity

and mortality of seizures. In this work, 102 seizures of mesial temporal lobe onset were

analyzed from 19 patients with DRE who had simultaneous intracranial EEG (iEEG) and

scalp EEG as part of their surgical evaluation. The first aim of this paper was to develop

machine learning models for seizure prediction and detection (i) using iEEG only, (ii) scalp

EEG only and (iii) jointly analyzing both iEEG and scalp EEG. The second goal was to

test if machine learning could detect a seizure on scalp EEG when that seizure was not

detectable by the human eye (surface negative) but was seen in iEEG. The final question

was to determine if the deep learning algorithm could correctly lateralize the seizure onset.

The seizure detection and prediction problems were addressed jointly by training Deep

Neural Networks (DNN) on 4 classes: non-seizure, pre-seizure, left mesial temporal onset

seizure and right mesial temporal onset seizure. To address these aims, the classification

accuracy was tested using two deep neural networks (DNN) against 3 different types of

similarity graphs which used different time series of EEG data. The convolutional neural

network (CNN) with the Waxman similarity graph yielded the highest accuracy across all

EEG data (iEEG, scalp EEG and combined). Specifically, 1 second epochs of EEG were

correctly assigned to their seizure, pre-seizure, or non-seizure category over 98% of the

time. Importantly, the pre-seizure state was classified correctly in the vast majority of

epochs (>97%). Detection from scalp EEG data alone of surface negative seizures and

the seizures with the delayed scalp onset (the surface negative portion) was over 97%.

In addition, the model accurately lateralized all of the seizures from scalp data, including

the surface negative seizures. This work suggests that highly accurate seizure prediction

and detection is feasible using either intracranial or scalp EEG data. Furthermore, surface

negative seizures can be accurately predicted, detected and lateralized with machine

learning even when they are not visible to the human eye.

Keywords: intracranial and scalp EEG, deep neural networks, LSTM (long short term memory networks), seizure

lateralization, seizure prediction, convolutional neural networks, seizure detection
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INTRODUCTION

Epilepsy is characterized by recurrent and unpredictable seizures.
This unpredictability is the core of suffering in the person with
epilepsy. Certain actions, like taking medication and getting
enough rest, decrease the risk of seizures. However, there is never

a guarantee for a seizure free day. The field, and this collection

of articles, is working to address this suffering by improving
the accuracy of seizure prediction, detection and forecasting.
Forecasting differs from prediction by identifying a period of
time, lasting hours to days, during which the person is more

likely to have seizures based upon their known prior patterns
and rhythms (1). The focus of our work is not forecasting but in
seizure prediction and detection. In seizure prediction, the goal
is to provide a warning that a seizure is about to occur within
minutes. For this warning to be useful, it must be accurate with a
low false positive and a low false negative rate.

The field of seizure prediction was established in the
1980s, but after >20 years, a comprehensive review published
in 2007 concluded that “the current literature allows no
definite conclusion as to whether seizures are predictable by
prospective algorithms” (2). Nevertheless, in the past decade,
several innovations have driven the field forward including
the compiling of extensive databases of long-term EEG
recordings; the establishment of international seizure prediction
competitions; and a prospective trial of a seizure forecasting
device that provided convincing evidence that forecasting of
seizures is possible (3).

Several reasons can be listed for this problem to evade
success including: inadequate amount of data; complexity of data
generated by EEG signals (noisy, non-linear, and non-stationary);
and lack of labeled data for certain classes. This is partially due to
the fact that EEG signal intensity is very small, in µV range, and
there are significant sensing difficulties given physiological and
non-physiological artifacts.

The nature of data collected by intracranial EEG (iEEG) and
scalp EEG differs greatly. Scalp EEG is readily available and is
not invasive. However, it is more prone to artifacts introduced by
shifting electrodes, muscle interference, and the effects of volume
conduction. Intracranial EEG has a better signal-to-noise ratio
than scalp EEG and can target specific areas of the brain directly.
Most previous work focuses on either scalp or iEEG recordings
since data sets that contain simultaneous recordings of scalp and
iEEG on the same patient are exceedingly rare. The novelty of
the work in this paper rests on a simultaneous iEEG and scalp
EEG data sets.

There are recent comprehensive survey papers on both seizure
detection and prediction (4–8) While many of the studies for
seizure detection are focused on training supervised learning
algorithms on EEG signals (4–6, 9), there are also unsupervised
algorithms based on multiway tensor analysis of scalp EEG
signals (10) and tunable Q factor wavelet transformation (11) or
non-negative matrix factorization of iEEG signals (12).

Seizure detection and prediction systems using intracranial or
scalp EEG signals rely on moving window analysis on extracted
features to generate predictions. One of the main challenges for

accurate prediction is extracting and evaluating linear and non-
linear univariate and bivariate features from the signal. However,
to achieve high sensitivity and a low false prediction rate, many of
the previous studies relied on handcraft feature extraction and/or
tailored feature extraction, which is performed for each patient
independently. This approach, however, is not generalizable, and
requires significant modifications (13).

The length of the pre-ictal period during which it is possible to
predict the seizure is called the prediction horizon or pre-seizure
period. The electrical changes that occur in the brain prior to a
seizure are poorly understood and undetectable by the human
eye. In the literature, the length of the pre-seizure period has
varied from minutes to hours (14), and has often been left as a
design choice. Estimates as to the length of the pre-seizure period
exist, but the estimates are not shown to be general (14, 15) or
they are patient specific (16, 17).

In our prior work, the length of the pre-seizure period was
determined as a part of the learning process and optimized
using grid search (18) on scalp EEG data. The pre-seizure length
was validated by analyzing the extracted features with different
pre-ictal lengths to elucidate the phase transition between the
interictal and pre-seizure state (18). The length of the horizon
was determined from the EEG data to be optimal at 10 min.

From a machine learning perspective, we built on current
models and added new methodology. Previously the maximal
absolute cross correlation value was defined as a functional
connectivity measure and further calculated for each pair of
EEG channels to quantify the similarity between any two
EEG signals (19). In this work, we used 3 methods to build
similarity graphs [Correlation Coefficient, Mutual Information
and Waxman model (20)] and used these as input into the deep
neural networks (DNN). A similarity graph is denoted by G =

(V, E) where the vertex set V is the set of electrodes and the
edge set E contains an edge (i, j) between the vertices i and j
if they are “similar.” Transforming raw EEG signal to a graph
representation enables us to capture spatial information as well
as frequency and time domain information.

In a seizure detection model (21) using DNNs, raw EEG
signal was segmented into 5 second (s) epochs to discriminate
the EEG seizure from the background. We expanded on that
concept and examined several window sizes ranging from 1 to
6 s and evaluated the impact of this parameter on the accuracy of
the results.

For this paper, 102 seizures of mesial temporal lobe onset were
analyzed from 19 patients who had simultaneous stereo and scalp
EEG as part of their evaluation for drug resistant epilepsy (DRE).
The first aim of this paper was to develop machine learning
models for seizure prediction and detection (i) using iEEG only,
(ii) scalp EEG only and (iii) jointly analyzing both iEEG and
scalp EEG. The data sets allowed for a direct comparison of
classification accuracy. The second goal was to test if machine
learning can detect a seizure on scalp EEG when that seizure
was not detectable by the human eye (surface negative) but was
seen in iEEG. The final question was to determine if the deep
learning algorithm could correctly lateralize the seizure onset.We
tested various combinations of machine learning algorithms to
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determine the highest accuracy of classifying the EEG data into
either non-seizure, pre-seizure or seizure (right vs. left).

MATERIALS AND METHODS

Data Sets
The study was approved by the Icahn School of Medicine
Institutional Review Board. Simultaneous iEEG and scalp
EEG were collected from patients using a Natus XLTEK 128
or Natus Quantum amplifier (Natus Medical Incorporated,
Pleasanton, CA). Nineteen scalp electrodes were used in the
standard 10-10 system. Placement of iEEG electrodes was
performed by two neurosurgeons (FP, SG) using the robotic
stereotactic assistance device ROSA software (Rosa; Medtech
Montpellier, France).

Intracranial seizure onset and offset time were determined
by the reading epileptologist and confirmed by independent
review (LM, MF), who adjusted onset and offset times in rare
cases. Scalp EEG onset times were reviewed separately from
iEEG to avoid bias. A comparison of seizure detection on
intracranial data and scalp data using this data sets was previously
published (22).

One hundred and two seizures of mesial temporal lobe onset
were analyzed from 19 patients who had simultaneous stereo
and scalp EEG as part of their evaluation for their DRE. For all
seizures, the integrity of scalp and intracranial electrodes was
intact. Movement artifact was not excluded. For the 19 patients
included, 7 had normal imaging and 12 had abnormal imaging.
Of the 12 with abnormal imaging, only one had prior epilepsy
surgery (R mesial temporal laser ablation). Nine of the patients
had lesions in the mesial temporal area. Three had lesions that
did not localize to themesial temporal area (cingulate cavernoma,
diffuse encephalomacia, and bilateral insular/lateral temporal
polymicrogryia). The patient with the polymicrogyria had seizure
onsets in themesial temporal area and arising from the insula and
lateral temporal lobe. Only the seizures of mesial temporal lobe
onset were included.

All patients had 19 bilateral scalp electrode contacts for
analysis, placed using the standard 10-10 system. Of these 102
seizures, 35 were not seen on the scalp EEG and were surface
negative. These seizures were either focal aware or subclinical.
Of the remaining 67 seizures, 7 had simultaneous scalp and iEEG
onset and 60 had a delayed scalp onset. Eighty seizures were of
right mesial temporal onset and 22 of the seizures were of left
mesial temporal onset. Sixty-eight seizures were focal aware or
subclinical, 18 seizures were focal impaired aware seizures, and
16 were focal to bilateral tonic clonic. As the SEEG arrays for
each patient could differ in the density of coverage and number of
electrodes, a subset of SEEG contacts common to all patients was
used. These were selected by visual analysis of both the SEEG and
the post-operative CT to ensure electrode integrity and proper
anatomic placement. For each hemisphere 24 contacts were used
with 4 contacts in each of the following areas: amygdala, lateral
anterior temporal, hippocampus, lateral mid temporal, medial
orbitofrontal and lateral frontal. Five patients had unilateral
studies (24 SEEG contacts) and the remaining 14 patients had
bilateral studies (48 SEEG contacts).

Data Processing
Our model was written in Python and run on a Macbook
Pro using Spyder with Adam as the optimizer. Adam has a
high performance for machine learning with high computational
efficiency and little memory requirements. All EEG data was
converted to EDF files without bandpass or notch filters.

Prior to running the DNN model, EEG signal segmentations
were chosen from non-overlapping EEG data with the sampling
rate of 512Hz. Each similarity graph was calculated from 1 s of
EEG data, i.e., the similarity between two EEG channels during
1 s was calculated from 512 data points. For DNN models with a
1 s time series, each sample is a single similarity graph that was
calculated from 1 s of EEG. For DNN models using 2 or 6 s time
series, each sample is 2 or 6 similarity graphs calculated from 2 or
6 consecutive time series.

Modeling Multichannel EEG by Similarity
Graphs and DNN
The relevant parameters and the notation is summarized below:

Acc Correlation Coefficient similarity graph adjacency matrix

AMI Mutual Information similarity graph adjacency matrix

Awaxman Waxman similarity graph adjacency matrix

yit tth sample of the time series measured at channel i

µit The mean values of yit

σit The standard deviation of yit

P(yit , yjt ) The joint probability mass function of yit and yjt

pyit The marginal probability mass function of yit

nij L2 norm of yit and yjt.

Samples of non-seizure, pre-seizure and seizure data were
randomly extracted from our EEG data sets. The ratio of these
three classes were non seizure: pre-seizure: seizure – 4:3:2. The
length of time was determined by the length of the seizure. For
example, if a seizure was 60 s, then 120 s of non-seizure data and
90 s of pre-seizure data was used to train the model. Based on our
prior work, the pre-seizure period was defined as the 10min prior
to seizure onset.

Multi-electrode time series data were quantized into 1 s
windows. For each window, a graph where nodes represent the
contacts, and pairwise edges indicate a measure of similarity
between the contacts was constructed. In addition to using a
single second of EEG data, the interaction between consecutive
time series was analyzed for 2 and 6 s time series. In order to
compare the effect of different similarity metrics, we proposed
3 graph construction models based on computing the pairwise
similarity between two electrodes: Correlation Coefficient,
Mutual Information andWaxman model. Each graph model was
tested against different DNNs to determine the combination that
yielded the highest accuracy for correctly classifying EEG data as
either not-seizure, pre-seizure or seizure.

Similarity Metrics and Graph Models
Fourteen patients had bilateral SEEG with 48 contacts selected
while the remaining 5 had unilateral SEEG with 24 SEEG
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contacts. For the unilateral iEEG, the architecture was
maintained with 48 contacts, 24 with recorded EEG data
and 24 without data. The similarity value between the 24
non-recorded contacts was defined as 0. Similarly, the value
between the recorded and the unrecorded contacts was set at 0.
The dimensions of the input similarity graph adjacency matrix
was n x n, where n= 48 for iEEG data; n= 19 for scalp EEG data
and n = 67 for combined EEG data (Figure 1). The adjacency
matrices were then vectorized as the inputs to the DNNs yielding
to 2,304 (48 × 48) for iEEG, 361 (19 × 19) for scalp EEG, 4,489
(67× 67) for joint scalp and iEEG.

Next we formally describe how to compute the similarity
metrics. Consider N channels of recorded EEG signals, each
channel associated with an observable time series{yit}

T
t=1

measured over T time-slots, yit denotes the t
th sample of the time

series measured at channel i, i.e., the EEG recording of channel i
at tth second.

1) Correlation Coefficient based similarity graph {ACC}
T
t= 1,

the similarity coefficient between channel i and channel j can
given by {cij}

T
t=1

, i = 1, 2, ...,N, j = 1, 2, ...,N

cijt =
E[(yit − µit)(yjt − µjt)]

σitσjt
(1)

where µit and µjt are the mean values of yit and yjt , respectively,
σit and σjt are the standard deviation of yit and yjt .

2) Mutual Information based similarity graph {AMI}
T
t= 1,

the similarity coefficient between channel j and channel j can
given by

{mij}
T
t=1, i = 1, 2, ...,N, j = 1, 2, ...,N

where P(yit , yjt) is the joint probability mass function of yit and

yjt , respectively, Pyit and Pyjt are the marginal probability mass

functions of yit and yjt .

mijt = I
(

yit; yjt
)

=
∑

i ∈yit

∑

j ∈yjt

p(yit ,yjt )
(

i, j
)

log

(

p(yit ,yjt)
(

i, j
)

pyit (i) pyjt
(

j
)

)

(2)

3) InWaxman model based similarity graph {Awaxman}
T
t= 1,

the similarity coefficient between channel i and channel j can be
given by {wij}

T
t=1

,i = 1, 2, ...,N,j = 1, 2, ...,N.

wijt = β∗exp
(

−nij /α ·max (n)
)

(3)

where β = 0.4, α = 0.1, and n ∈ R N×N have nij = || yit− yjt ||2,
nij is the L2 norm of yit and yjt .

Deep Neural Network Architectures for the Joint

Problem of Seizure Detection and Prediction
The seizure detection and prediction problems were addressed
jointly by training several different types of neural network

architectures. One shallow and several deep neural network
(DNN) architectures were used. A single layer neural network
was constructed as a baseline comparison. For the DNNs, we
focused on Convolutional Neural Networks (CNNs) and Long
Short-Term Memory (LSTM) and reported the classification
accuracy for the 3 class classification problems. Figure 1 shows
the overall DNN architecture used in this study with different
layers and input dimensions depending on the data sets being
analyzed (intracranial, scalp, or combined).We trained the CNNs
by using the Adam optimizer with 0.0005 as the learning rate, and
we trained the LSTM by using Adam optimizer with 0.001 as the
learning rate.

The Four-Class Classifier System for Lateralizing

Seizure Onset Using Scalp EEG
In order to analyze anatomic localization, the 3-class classifier
system (non-seizure, pre-seizure, and seizure) was expanded
to a 4-class classifier system with the seizure category sub-
divided into left and right mesial temporal onsets. Compared
with the DNN architectures shown in Figure 1, we extended
the dimension of the output layer to 4 × 1. For the 4-
class classifier system, we trained the CNN (1 s time series)
in conjunction with the Waxman graph by using the Adam
optimizer with 0.0005 as the learning rate, then presented the
classification accuracy using scalp EEG data. Seizures from
both the bilateral SEEG and unilateral SEEG studies were
included. For the unilateral SEEG, the ground truth onset
lateralization was assumed to be the side with the electrodes
implanted. In no cases did the scalp data or semiology suggest a
different lateralization.

RESULTS

Seizure Detection and Prediction
The data was split into a training set and a testing set in
multiple analyses. The training and test sets for each learning
model were kept separate to prevent data snooping. Furthermore,
we performed 5-fold cross validation to ensure there is no
overfitting. Seizure onset time was defined as the time of the
onset on iEEG data as the scalp onset was often delayed and in
35 seizures not present at all (surface negative seizures).

In the first analysis, all epochs from 16 patients were used as
the training set and all epochs from the remaining 3 patients as
the testing set. This process was repeated 5 times (5-fold cross
validation) to ensure that the 3 patients in the testing set were
different. Table 1 reports the average accuracy on the testing sets
for iEEG data alone, Table 2 shows the results with the same
approach on scalp EEG data alone, andTable 3 reports the results
on the joint iEEG and scalp EEG data sets. Within the training
and test data sets epochs are treated as a bag-of-epochs.

Classification accuracy was repeated on iEEG data alone using
a patient agnostic approach (Table 4). For this analysis, all epochs
were separated into 5 groups with 4 of those groups used for
training and the remaining epochs used for testing. This was
performed a total of 5 times (5-fold cross validation) with epochs
randomly assigned to one of the 5 groups. Table 4 reports the
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FIGURE 1 | CNN and LSTM architecture using different lengths of time series (1, 2, or 6 s) in conjunction with iEEG, scalp EEG or combined EEG similarity graphs. (A)

Shows the CNN architecture for iEEG data only. (B) Depicts the CNN architecture for both scalp EEG data and the combined input of scalp and iEEG data. (C) Shows

the LSTM architecture used for all three cases of the input (i.e., iEEG, scalp EEG, and combined EEG recordings). The dimension of input similarity graph adjacency

matrix was n x n, where n = 48 for iEEG data; n = 19 for scalp EEG data and n = 67 for combined EEG studies. Inputs to DNNs are vectorization of these matrices.

TABLE 1 | Impact of different combinations of similarity graphs with a shallow NN or DNNs on the average accuracy of intracranial EEG classification with 5-fold cross

validation using 16 patients in the training set, and 3 patients in the testing set with multiple random splits.

Intracranial

EEG

Base line:

Shallow NN

(1 s time series)

CNN

(6 s time

series)

CNN

(2 s time

series)

CNN

(1 s time

series)

LSTM

(6 s time

series)

LSTM

(2 s time

series)

LSTM

(1 s time

series)

Correlation Coefficient graph 90.14% 97.10% 97.96% 99.14% 90.16% 94.40% 99.27%

Waxman graph 90.48% 97.93% 98.20% 99.38% 93.48% 96.48% 98.61%

Mutual Information graph 88.12% 95.08% 96.19% 97.13% 90.10% 93.30% 96.39%

TABLE 2 | Impact of different combinations of similarity graphs with a shallow NN or DNNs on the overall average accuracy of scalp EEG classification with 5-fold cross

validation using 16 patients in the training set, and 3 patients in the testing set with multiple random splits.

Scalp EEG Base line:

Shallow NN

(1 s time series)

CNN

(6 s time

series)

CNN

(2 s time

series)

CNN

(1 s time

series)

LSTM

(6 s time

series)

LSTM

(2 s time

series)

LSTM

(1 s time

series)

Correlation Coefficient graph 87.99% 95.66% 96.95% 97.76% 89.32% 93.65% 97.93%

Waxman graph 88.36% 97.08% 97.50% 98.56% 92.54% 95.28% 97.87%

Mutual Information graph 85.42% 90.01% 90.36% 92.14% 89.43% 90.22% 91.23%

TABLE 3 | Impact of different combinations of similarity graphs with a shallow NN or DNNs on the overall average accuracy of iEEG and scalp EEG classification with

5-fold cross validation using 16 patients in the training set, and 3 patients in the testing set with multiple random splits.

Intracranial and

Scalp EEG

Base line:

Shallow NN

(1 s time series)

CNN

(6 s time

series)

CNN

(2 s time

series)

CNN

(1 s time

series)

LSTM

(6 s time

series)

LSTM

(2 s time

series)

LSTM

(1 s time

series)

Correlation Coefficient graph 88.43% 96.69% 98.16% 98.25% 89.96% 94.39% 98.42%

Waxman graph 88.66% 97.45% 98.11% 98.99% 93.15% 96.14% 98.65%

Mutual Information graph 87.95% 94.82% 96.30% 97.21% 90.70% 93.66% 96.10%
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TABLE 4 | Impact of different combinations of similarity graphs with DNNs on the overall average accuracy of intracranial EEG classification with 5-fold cross validation

based on patient agnostic epochs.

Intracranial EEG CNN

(6 s time

series)

CNN

(2 s time

series)

CNN

(1 s time

series)

LSTM

(6 s time

series)

LSTM

(2 s time

series)

LSTM

(1 s time

series)

Correlation Coefficient graph 97.07% 98.01% 99.13% 90.10% 94.38% 99.32%

Waxman graph 97.97% 98.21% 99.38% 93.46% 96.51% 98.60%

Mutual Information graph 95.13% 96.27% 97.14% 90.06% 93.32% 96.44%

average accuracy on the testing set. This approach mixed the data
from all the patients and treated the data as a bag-of-epochs.

The classification accuracy was nearly identical with this
patient agnostic approach. The rest of the discussion focuses on
the results presented with each patient’s data being kept as a
whole in either the testing or training set (Tables 1–3).

For all EEG data, results were poorest (as expected) when
the single layer (shallow) neural network was used. When using
the DNNs, for the iEEG data, the least accurate model was the
LSTM (6 s time series) with the Mutual Information graph at
90.10% and the highest accuracy was 99.38% using CNN (1 s
time series) in conjunction with the Waxman graphs. This latter
combination was the most accurate for scalp (98.56%) as well as
for the combined data sets (98.99%). While accuracy was high for
all EEG subsets, the accuracy was highest for iEEG (99.38%) and
lowest for scalp EEG (98.56%). All subsequent analysis is based
on CNN (1 s time series) with the Waxman graphs.

A confusion matrix for iEEG, scalp EEG and all EEG
(Figure 2) demonstrates how many time windows in each
class can be correctly classified as well as the specific errors
of misclassification. The confusion matrices are obtained by
using CNN model with the Waxman graphs constructed in 1 s
windows. For example, in Figures 2A, 4, 023 s of IEEG seizure
were inputted into the model and classified correctly as seizure
for 3,991 s and misclassified as pre-seizure for 32 s.

The misclassification percent was 0.65% for iEEG, 1.40% for
scalp, and for combined data it was 1.03%. The model showed
a low false positive rate with high classification accuracy for
non-seizure EEG (99.47% iEEG, 99.34% scalp, 99.42% all EEG).
The pre-seizure EEG epochs were correctly classified 99.27%
(iEEG), 97.95% (scalp EEG) and 98.2% (all EEG) of the time. For
seizure, the data was classified correctly in 99.20% (iEEG), 98.07%
(scalp EEG), 99.19% (all EEG). Interestingly, EEG epochs from
seizures were rarely misclassified as pre-seizure but were never

misclassified as non-seizure.

Seizure Detection From Scalp EEG
This analysis sought to ascertain if the model could detect the
seizures or the portions of seizures that were not visible on scalp
EEG. Of the 102 seizures analyzed 35 were surface negative (not
seen on scalp EEG), 60 were seen on scalp EEG after a delay,
and 7 had simultaneous iEEG and scalp onsets. For the surface
negative seizures, the CNNmodel (1 s time series) in conjunction
with the Waxman graph detected the seizure 98.47% of the time.
For the 60 seizures with a delayed scalp onset, only the scalp
EEG prior to a visible seizure was used in this analysis, essentially

the surface negative portion of the seizure. The model classified
these seizures correctly 97.83% of the time. The seizures with a
simultaneous iEEG and scalp EEG onset were classified correctly
classified 99.1% of the time. Anymisclassifications labeled seizure
data as pre-seizure, none as non-seizure, as shown in Figure 3.

Lateralization of Seizure Onset From Scalp
EEG
For the 4-class classifier system (non-seizure, pre-seizure, left-
seizure, right-seizure), the accuracy of the CNN (1 s time
series) in conjunction with the Waxman graph was 98.11%
with scalp EEG as the input. Seizure detection accuracy was
high. For the seizures of left mesial temporal onset, surface
negative seizures were classified correctly 95.00%, the surface
negative portion of seizures with a delayed onset 96.38% and
the simultaneous onset seizures 100%. For the seizures of right
mesial temporal onset, surface negative seizures were classified
correctly 95.25%, the surface negative portion of seizures with
a delayed onset 92.31% and the simultaneous onset seizures
97.49% (Figure 4). Importantly, seizures of left brain onset were
never misclassified as right brain onset and the reverse is true
as well. This finding held firm when analyzing surface negative
seizure and the surface negative portion of seizures with delayed
scalp onset. All misclassifcation errors occurred with seizure
data being mislabeled as pre-seizure data. Seizure data was
never misclassified as non-seizure. For surface negative seizures
(including the surface negative portion of the seizures with a
delayed scalp onset), the model was able to both detect and to
lateralize them with very high accuracy, as shown in Figure 4.

DISCUSSION

In this paper we re-explore seizure prediction and detection on
a unique data sets of simultaneous iEEG and scalp EEG. As
part of this work, various combinations of DNNs (both CNNs
and LTSM) were tested with different similarity graph models
(Correlation Coefficient, Mutual Information, and Waxman)
to determine which combination had the highest classification
accuracy. Interestingly, the models which used consecutive time
series, 2 or 6 s, did not perform as well as the models that used a
single second of EEG data for input. This is perhaps because for
the longer time series there was some averaging of features which
may have impacted accuracy. All models performed quite well,
but the CNN (1 s time series) in conjunction with the Waxman
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FIGURE 2 | The confusion matrix of CNN (1 s time series) with Waxman graph of (A) iEEG data, (B) scalp EEG and (C) scalp and iEEG data jointly.

FIGURE 3 | Seizure detection on scalp EEG data for seizures that are surface negative, have an onset after the iEEG onset (only surface negative portion of seizure

inputted), and have a simultaneous scalp and iEEG onset.

similarity graph performed the best. This combination became
the primary machine learning model in this paper.

The accuracy for correctly classifying EEG data into non-
seizure, pre-seizure and seizure was over 98% for iEEG
alone, scalp alone and iEEG and scalp combined. This
classification system can be used for both prediction and
detection. In the field of seizure forecasting and prediction,
false positives have the potential to create unnecessary
anxiety and intervention. In this model, the false positive
rate was very low, with <1% of the non-seizure epochs
being classified as seizure or pre-seizure. Further, the results
suggest that prediction is indeed possible, as over 97% of
EEG epochs from the 10minutes prior to a seizure were
labeled as pre-seizure. This worked best on iEEG data alone

(99.27%) and slightly less well on scalp EEG data (97.95%).
Correct classification of EEG data into seizure was similarly
highly accurate (>98%), demonstrating high efficacy in
seizure detection.

It is important to remember that this 10min pre-seizure
period is not different from the non-seizure period to the
human eye either intracranially or on scalp. Interestingly, seizure
prediction accuracy was not very different than seizure detection
accuracy; even though for the experienced epileptologist
detecting a seizure is quite easy and predicting a seizure
is impossible.

Surface negative seizures are seizures that do not appear
electrographically on a scalp EEG but are visible intracranially.
These can be clinical or subclinical. If clinical, they are usually
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FIGURE 4 | Analysis of left (A) and right (B) mesial temporal onset seizures using scalp EEG data for seizures that are surface negative, have an onset after the iEEG

onset (only surface negative portion of seizure inputted), and have a simultaneous scalp and iEEG onset.

focal aware seizures, like focal motor or a temporal lobe aura. In
our previous work with simultaneous scalp and iEEG electrodes,
67% of focal aware and 67% of subclinical seizures had no
visible scalp EEG seizure (22). This can occur when the seizure
involves <6 cm2 of cortex and/or when the source is deep.
In this work, 35 of the seizures were surface negative and
60 of the seizures had a surface negative portion (intracranial
onset occurred first followed by a delayed scalp EEG onset).
The model was able to classify these surface negative seizures
accurately as seizures over 97% of the time using scalp EEG
data alone. This suggests that seizure detection is possible using
scalp EEG alone, even when the seizure is not visible to the
human eye.

Lastly, the model was able to successfully lateralize scalp EEG
data into left and right onset (all were mesial temporal) with
high accuracy, using a 4-class DNN classifier. This is perhaps not
surprising for seizures that are visible on scalp. More interesting
is that this accuracy held firm for the surface negative seizures
and the surface negative portion of the seizures with a delayed
scalp onset.

In summary, the contributions of this paper are two-fold.
From the neuroscience perspective, we are the first to use
machine learning to (i) model, analyze, and evaluate iEEG and
scalp EEG jointly, (ii) detect surface negative seizures on the scalp
using scalp data, (iii) lateralize seizures using machine learning
from scalp EEG data, even those that are not visible on the scalp
EEG. This work expands on our previous results reported in (22).

From themachine learning perspective, our contribution is on
the spatial, frequency and temporal modeling of EEG data using
graph theory. In our previous work we introduced the concept
of graph theoretical analysis of scalp EEG recordings for seizure
prediction and detection using hand crafted features (19, 21).
In this work we (i) introduce and analyze different similarity
metrics for graph construction, and (ii) use the graph adjacency
matrices as the input to deep learning algorithms (CNN and
LSTM) which extract and learn from convoluted graph features.
To our knowledge, we are the first to apply the Waxman model
to the seizure prediction problem. This model is a method of
determining if two nodes on a graph are linked (20) and has

been used in communication and data networks. It surprisingly
outperformed the other two similarity graphs tested, suggesting
future utility in EEG modeling.

Clinical Significance
To our knowledge, this is the first work to provide seizure
prediction and detection using machine learning on a combined
data sets using simultaneous iEEG and scalp EEG. The iEEG
seizure onset time was used as the ground truth. Accuracy for
both prediction and detection was high whether or not the
input was iEEG data alone or scalp EEG data. This suggests that
different devices could be constructed from different sources of
EEG data depending on the clinical need. A wearable extracranial
seizure prediction device may be of use for a person with rare but
dangerous seizures who wishes to do a higher risk activity like
hiking. While a permanent intracranial prediction device would
be of greater use for people with refractory epilepsy and more
frequent seizures.

The ability to detect surface negative seizures from scalp
data may provide additional opportunities to non-invasively
understand surface negative seizure frequency and impact. Both
predicting a seizure before it occurs and detecting seizures at their
onset, before they manifest on scalp EEG, suggest a window for
intervention. Possible interventions include administration of a
fast acting medication or simply getting into a safe position and
notifying family.

The model was able to successfully lateralize all seizures, even
those that were not visible on scalp EEG. This suggests that it
may in the future be possible to detect surface negative seizures
in the epilepsy monitoring unit and lateralize them, which has
the potential to shorten length of stay. Additionally, accurate
lateralization can help guide surgical work-up and management
and may give greater detail to the seizure network, the visible and
the invisible.

Future Research and Limitations
The study was limited by data that was retrospective and
from only 19 patients. Additionally, we purposefully limited
this paper to seizures of mesial temporal onset for a more
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homogenous group. However, it is not known if these results can
be generalized to seizure onsets in other parts of the brain. While
this work shows accurate lateralization, a more intensive study
of localization using seizures of different onset location would be
of value.

In this paper, each 1 s window was treated as independent,
but for a real-time deployment of a prediction or detection
system, a risk assessment model, which considers the labeling
of consecutive 1 s windows, can be developed using conditional
probabilities. In other words, if the model assigns a 1 s epoch
into a category, the risk assessment model may require several
consecutive seconds to be classified similarly before the system
makes a categorization determination. This will decrease the false
positive rate. The next planned project is to test this program
prospectively on patients with simultaneous intracranial and
scalp EEG undergoing an epilepsy surgical work-up.

Accurate seizure prediction and detection will enable the
creation of wearable and implantable devices. In recent work
on seizure prediction using scalp EEG, there have been
advancements that will make it easier to deploy within hardware
(23–25). A limitation of the paper is that we did not use other
algorithms on our data sets for direct comparison. We met
our goal with high accuracy of classifying EEG data including
demonstrating it is possible to detect seizures on scalp EEG
that are not visible. Future research will need to allow for
direct comparisons as well as refinement of methods in order to
optimize models for use in portable devices.

The work in seizure prediction does indicate a pre-seizure
state, during which a seizure is nearly inevitable. However, the
transition from non-seizure to pre-seizure is not understood.
One avenue of research is to investigate the DNN themselves
by creating topographical images of the model, ie saliency maps,

to further inform us as to the nature of the pre-seizure state. A
very different avenue is to use prediction tools to conduct real
time experiments during that pre-seizure period of minutes to
understand the biology of the transition into seizure, and the
epileptic brain.
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