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The Eyes Absent (EYA) transactivator-phosphatase proteins are important contributors to
cell-fate determination processes and to the development of multiple organs. The tran-
scriptional regulatory activity as well as the protein tyrosine phosphatase activities of the
EYA proteins can independently contribute to proliferation, differentiation, morphogenesis
and tissue homeostasis in different contexts. Aberrant EYA levels or activity are asso-
ciated with numerous syndromic and non-syndromic developmental disorders, as well as
cancers. Commensurate with the multiplicity of biochemical activities carried out by the
EYA proteins, they impact upon a range of cellular signaling pathways. Here, we provide
a broad overview of the roles played by EYA proteins in development, and highlight the
molecular signaling pathways known to be linked with EYA-associated organ develop-
ment and developmental disorders.

Introduction
The Eyes Absent (EYA) proteins are part of the well-conserved retinal determination gene network
(RDGN) that contributes to cell-fate determination processes in multiple tissues and species (reviewed
in [1–4]). In addition to the EYA proteins, the RDGN consists of the master regulatory transcription
factor PAX6 (eyeless ey and twin of eyeless toy in flies), the SIX family of homeodomain transcription
factors (SIX1–6; sine oculis and optix in flies), and the transcription factor DACH (dachshund).
Interactions between components of the RDGN are summarized in Figure 1. While the RDGN was
first described in Drosophila eye development [5], surveys of the eukaryote genome suggest that the
RDGN was employed in two different contexts early in evolution, eye development and oocyte devel-
opment [6]. In vertebrates, the proteins coded by members of the RDGN are widely implicated in cell
survival and differentiation during tissue specification. Here, we describe our current understanding of
the roles played by EYA proteins during development and in tissue homeostasis. Particular emphasis
is placed on linking the multiple biochemical activities of the EYA proteins with their developmental
roles whenever possible. We will highlight how the EYA proteins interface with other signaling path-
ways involved in organ development, the emerging evidence that EYA3 contributes to photoperiod-
ism, and mutations in the Eya genes associated with human disorders.

EYA protein architecture and it’s placement in the
RDGN
Mammals have four Eya paralogs (Eya1–4) and their expression begins during embryonic develop-
ment. Eya expression is much more restricted to specific adult tissues, with Eya3 having the most
wide-spread expression. The intrinsically cytoplasmic EYA proteins physically partner with the SIX
proteins and are then translocated to the nucleus where they play an essential role in the regulation of
gene expression driven by the RDGN (Figure 1b).
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All animal EYA proteins are characterized by a highly conserved C-terminal ∼270 amino-acid domain
referred to as the EYA domain (ED) (Figure 1a). Interaction with the SIX proteins occurs through the ED and
there is strong evidence that ED has tyrosine phosphatase activity [7–9]. However, ED bears no structural or
sequence similarity to the classical protein tyrosine phosphatases (PTP). This places the EYA proteins in the
unique position of being PTPs that do not employ the nucleophilic Cysteine residue-mediated catalytic mech-
anism characteristic of the classical PTPs (recently reviewed in [3]). Few EYA-PTP substrates have yet been
identified (recently reviewed in [3]). The best-characterized of these is the DNA damage repair-associated
histone protein H2AX [10,11]. Dephosphorylation of the terminal C-tyrosine of H2AX promotes DNA damage
repair and survival of cells. In addition, the tumor suppressor estrogen receptor-β and the cytoskeleton modu-
lating protein WDR1 have also been identified as likely EYA-PTP substrates [12,13]. The PTP activity of the
EYA proteins also promotes cell motility possibly via the Cdc42/Rac GTPases [14,15], but no EYA substrate
has yet been identified in this context. The N-terminal domain of the EYA proteins has an independent
transactivation function localized to a Pro/Ser/Thr-rich ∼210 amino-acid segment in Drosophila Eya [16].
In addition, a threonine phosphatase activity (either intrinsic or via interaction with protein phosphatase 2A
(PP2A)) is associated with the N-terminal domain [17–22].
This juxtaposition of distinct biochemical activities in a single polypeptide places the EYA protein in the

unique position of participating directly in both the regulation of gene transcription and in signal transduction

Figure 1. EYA proteins and the Retinal Determination Gene Network.

(a) A schematic of the proteins encoded by genes in the retinal determination gene network (RDGN), and the regulatory interactions (black arrows).

PAX6, the master regulator, is a paired-homeodomain family transcription factor. The SIX proteins are also homeodomain DNA-binding proteins

with an N-terminal domain (SIX domain) that interacts with the EYA proteins (indicated by the double-headed arrow). This interaction translocates

the intrinsically cytoplasmic EYA proteins into the nucleus. The DACH proteins have a winged-helix DNA-binding domain that may be involved in

DNA interaction [90]. The DACH C-terminal domain is involved in EYA interaction (double-headed arrow). The EYA proteins have a highly conserved

C-terminal domain commonly referred to as the EYA domain (ED). This domain has protein tyrosine phosphatase activity (PTP). The N-terminal

domain is poorly conserved and can activate transcription when bound to DNA as a complex with the SIX proteins. (b) Various models of

transcriptional regulation mediated by the SIX, DACH and EYA proteins have been proposed. SIX proteins can bind DNA as well as interact with the

EYA proteins, together activating target genes through the N-terminal transactivation domain in EYA proteins that can recruit RNA pol II and

co-activators such as CREB binding protein. Recruitment of DACH is generally associated with transcriptional repression. The domains within the

EYA, SIX and DACH proteins are color-coded as in (a). Double-headed arrows indicate physical interactions.
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processes. A schematic overview of molecular pathways impacted by EYA proteins as they participate in the
processes described below is provided in Figure 2.

EYA in eye development
Loss of the eya gene in Drosophila eye progenitor cells anterior to the furrow (eya2 mutant flies) resulted in
viable but completely eyeless flies due to apoptosis of eye progenitor cells [23]. The introduction of mouse Eya2
in progenitor cells prior to furrow formation in the eya2 mutant background was able to restore eye formation,
speaking to a high degree of conservation of function for these EYA proteins through evolution [24]. Initial
reports suggested that MAPK-catalyzed phosphorylation of Eya positively regulates fly eye development
[25–27]. However, subsequent investigation revealed that MAPK-mediated Eya phosphorylation was dispens-
able for normal eye development or survival [28].
Whether the tyrosine phosphatase activity of Drosophila Eya contributes to eye development has been

addressed multiple times with varying conclusions. The original studies using overexpression or mis-expression
showed that phosphatase-dead forms of Eya were defective in the rescue of the eya-null eyeless phenotype
[8,9]. However, when genomic transgenes mimicking endogenous spatial and temporal levels of Eya were used
in rescue experiments, phosphatase-dead Eya complemented the eya null alleles [29]. When such dose-
controlled rescue experiments were conducted in genetically sensitized backgrounds (heterozygosity for other
RDGN components sine oculis or dachshund), the phosphatase-dead form of Eya was not able to support
normal retinal development [30]. Hence the current thinking is that Drosophila Eya is not essential on its own,
but rather contributes to the ‘robustness’ of RDGN output in fly eye development [30].
It is not straightforward to extrapolate from fly eye development to the more complicated process of verte-

brate eye development. In flies, development initiates at a single imaginal disc epithelium. In contrast, in verte-
brates, the optic vesicle evaginates from the forebrain and forms the optic stalk, the retina and the retinal
pigment epithelium, while the lens and cornea derive from the surface ectoderm. Eya1 is seen earliest in the
ectoderm-derived lens placode, Eya2 in the retina, and Eya3 in the optic vesicle. While no gross eye phenotype
has yet been reported upon knockout of any Eya gene in mice, there is one report of congenital cataracts and
anterior segment anomalies in humans with an Eya1 mutation [31]. Eya1−/− mice die at birth with severe
cranio-facial and skeletal defects. They also lack thymus, parathyroid glands, ears and kidneys [32]. Except for
open eyelids, there appear to be no eye development defects. Eya2−/− and Eya3−/− mice have no obvious
phenotype and are viable and fertile [33,34]. No eye phenotype has been recorded in double Eya1−/−/Eya2−/−

Figure 2. EYA biochemical activities, signaling pathways influenced and roles in development/physiology.

Schematic showing the interaction of the individual EYA biochemical activities with molecular signaling pathways as they

impact upon the roles of the EYA proteins discussed here. The putative threonine phosphatase activity (either mediated by EYA

itself or through interaction with PP2A) is indicated by the hatched green box.
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mice [33]. The only reported ocular effect upon loss of an EYA protein is a mild delay in the development of
the post-natal mouse retinal vasculature upon endothelial-specific deletion of Eya3 [35].
In this context, it is relevant that the loss of other components of the RDGN have variable effects on verte-

brate eye development. Six3-null mice lack all forebrain structures including eyes [36]. Loss of Dach1, which is
expressed in the developing retina, results in no eye phenotype [37]. Pax6−/− mice die at birth with a complete
disruption of eye development [38], and heterozygous Pax6 mutation in humans results in small eyes [38].
Dosage effects of the Pax6 gene on eye formation have been demonstrated through the use of the CRISPR/Cas
system to generate a mosaic mixture of mutant and wild-type mice [39]. Notably, lens development from the
surface ectoderm requires higher Pax6 gene dosage than retinal development from the optic vesicle [39]. These
observations suggest that the roles of the RDGN proteins in eye development are more complex than can be
deciphered from simple loss-of-function experiments, and are likely to be influenced by genetic background,
somatic mosaicism and perhaps environmental factors.

EYA in ear development
EYA1 contributes to multiple stages of inner ear development. The inner ear has six sensory organs and each
one has sensory hair cells as well as non-sensory supporting cells. Eya1 and the transcription factor Sox2 are
co-expressed in the otocyst where pro-sensory epithelia are formed and play a role in specifying the sensory
cell lineage [40]. EYA1 along with SIX1 and the BRG1-associated SW1/SNF chromatin remodeling complex
(BRG1-BAF) induce Sox2, and thereby promote the specification of a pro-neurosensory-restricted progenitor
cell fate from an ectodermal cell [41]. The model proposed by these studies is that EYA1 bridges SIX1 and the
BRG1-BAF complex, thus inducing the formation of a compact structure that enables binding to distant cis-
regulatory elements, and hence Sox2 induction [41]. Together, EYA1 and SOX2 are required for the expression
of sensory markers including Jag1, Lfng, Bmp4, and Fgfs, and for cell cycle progression of these pro-sensory
progenitors. Once the progenitors become committed to a hair cell fate, Sox2 expression is no longer detected.
However, Eya1 continues to be expressed in differentiating hair cells along with Atoh1. Consistent with this,
Eya1-null mice completely lack inner ear sensory organs. There is evidence that dose-dependent EYA1 activity
is necessary for the development of different parts of the ear [40], mirroring the variation in inner ear malfor-
mation seen in patients with Eya1 mutation-associated developmental disorders (described below). According
to an Eya2lacZ knock-in reporter study Eya2 is also expressed in differentiating hair cells in the sensory epithelia
of the inner ear and Eya2−/− mice have a mild hearing deficit [41]. These new studies once again point to the
likelihood that Eya genes can act synergistically during development, as well the possibility that they can com-
pensate for each other and complicate loss-of-function studies. No studies have yet specifically queried the
involvement of the C-terminal PTP activity of the EYA proteins in ear development.

EYA in muscle development
EYA proteins are implicated in various stages of trunk myogenesis. As in the case of the ear, the different Eyas
are expressed at different timepoints during muscle development, and they work in conjunction with at least
three SIX proteins. During early myocyte specification and myogenesis, Eya1 and Eya2 are expressed in the devel-
oping limb buds. In vitro reporter assays show that the N termini of these EYA proteins are sufficient to drive
transactivation [42]. While some studies conclude that there is no requirement for EYA1 or SIX1 in early myo-
genesis [43] and that Eya1 knockout mice show no muscle phenotype [44], others report that Eya1 knockout
mice have delayed myogenesis between e11 and e13, and that Eya1−/−/Eya2−/− mice have severe muscular abnor-
malities [33]. EYA1 also plays an important role in post-natal muscle development where it can switch a
slow-twitch muscle to a fast-twitch phenotype by replacing the myosin I and IIA heavy chain isoforms to the
fast-acting IIB and IIX isoforms [45]. Eya3 knockout mice are also reported to have weaker muscle strength [34].
RDGN member SIX1 also plays a critical role in muscle development; Six1 mutant mice have impaired myo-

genesis and extensive muscle defects in the forelimb, hindlimb and diaphragm [46]. There is a complete
absence of all hypaxial muscles and a severe reduction in epaxial muscle in Six1−/−/Eya1−/− mice [44].
The EYA1-SIX1 complex activates SIX1 target genes involved in myogenesis including Pax3, MyoD and
Myogenin [33]. Indeed, ectopic expression of Eya1 and Six1 (along with Esrrb (Estrogen related receptor-beta)
and Pax3) is sufficient to induce myogenic stem cells with differentiation capacity in vitro and in vivo [47]. In
flies, eya and so induce tinman expression (ortholog of mammalian NKX2-5), which in turn activates the
JAK/STAT pathway to initiate myocyte differentiation [48]. In Caenorhabditis elegans, myogenic vs
non-myogenic fate is determined by the SIX-EYA complex downstream of WNT signaling [49].
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No specific examination of whether the tyrosine phosphatase function of the EYA proteins contributes to
muscle development has been reported, and the implication in all of the studies cited above is that EYA acts as
an activator of transcription in complex with the SIX proteins.

EYA in kidney development
Eya1+/− mice have renal abnormalities while Eya1−/− mice completely lack kidneys [32]. Ureteric bud out-
growth and consequently metanephric induction are compromised in the absence of EYA1. Downstream of
Eya1, Gdnf expression is down-regulated in Eya1-null mice. Eya1 is one of two genes (the other is Osr1) that
are required for the initial formation of the metanephric mesenchyme which condenses to form a precursor
cell population. These precursors can either differentiate (epithelialization to form the renal vesicle, the precur-
sor of the nephron), or self-renew to maintain a progenitor pool at the tip of the ureteric bud (cap mesen-
chyme). A balance between self-renewal and differentiation is crucial to appropriate kidney development. Eya1
(and Six2) are expressed in the cap mesenchyme throughout nephrogenesis representing an essential multipo-
tent cell population [50].
Nuclear EYA1 in nephron progenitors stabilizes MYC, which in turn promotes the proliferation of undiffer-

entiated cells. This occurs through dephosphorylation of Thr58 on MYC, thus preventing MYC degradation
and increasing MYC half-life. EYA1-mediated MYC stabilization induces nephron progenitor cell proliferation
[50]. Threonine phosphatase activity in the N-terminal domain of the EYA proteins had been previously
shown to play a role in the innate immune response [18]. While no structural or sequence similarity with
known phosphatase families could be found in the poorly conserved N-terminal domain of the EYAs, threo-
nine phosphatase activity was confirmed by several follow-up studies [17,19]. However, a recent report has
raised the possibility that the threonine phosphatase activity ascribed to the EYA proteins is actually mediated
through an interaction with the PP2A B55α subunit [21]. But in glioblastoma stem cells EYA1 directly interacts
with MYC, and the EYA1-MYC axis regulates GSC proliferation, migration and self-renewal [51]. Regardless of
the mechanism through which it occurs (either directly mediated by EYA or via PP2A), links between EYA
proteins and MYC stabilization continue to emerge in contexts beyond kidney development (Figure 2).

EYA proteins in other developmental contexts
Knockout studies show that the development of several neural-crest derived cranial structures are
EYA1-dependent. Eya1−/− embryos have defective pharyngeal arches and lack proximal arch structures contrib-
uting to a broad spectrum of defects in cranio-facial morphogenesis [52]. Interestingly, this is another develop-
mental context in which a putative EYA1 threonine phosphatase activity is implicated: threonine
dephosphorylation of the Notch intracellular domain (NICD) is believed to stabilize the NICD and thus
enhance Notch signaling, a crucial contributor to cranio-facial development (Figure 2).
EYA1 is also required for the morphogenesis of organs derived from the third pharyngeal pouch (thymus,

parathyroid, thyroid). Eya1−/− mice display thyroid hypoplasia and the thymus and parathyroid fail to form
[53]. Eya1−/− mutants also have a spectrum of abnormalities in cardiovascular development, the most common
being aortic arch defects [54]. This is exacerbated in Six1−/−/Eya1−/− double mutants (cardiac outflow tract and
aortic arch defects), partially due to a reduction in fibroblast growth factor 8 (Fgf8) levels [54].
EYA1, along with SIX1, contributes to hindbrain development through its ability to promote Nrp1 transcrip-

tion and favor Gli activators over Gli repressors following sonic hedgehog (Shh) stimulation [55]. In keeping
with this role, Eya1 is expressed in Shh-subtype medulloblastomas and promotes tumor growth [55].
A Shh-Eya1 axis is also involved in promoting symmetric cell divisions during cerebellar development [22].
This is believed to occur through dephosphorylation of Thr410 and thus inactivation of the atypical protein
kinase aPKCζ [22], once again implicating an EYA-linked threonine phosphatase activity in development.
A recent report shows that Eya1 is expressed in the bitter taste receptor cells of the oral epithelium and in

the differentiating taste bud cells in circumvallate and fungiform papillae and the soft palate [56]. The signaling
pathway(s) through which EYA contributes to the generation and differentiation of taste buds (specifically
bitter cells) remains to be established.

EYA in photoperiodism
An intriguing association between EYA3 and photoperiodism is emerging largely through studies on large sea-
sonal animals and birds. Photoperiodism is a phenomenon through which functional and behavioral responses
accommodate changes in the length of dark and light cycles, thus allowing plants and animals to adjust to
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seasonal variation. In animals, photoperiodism impacts phenomena such as growth, metabolism, migration,
reproductive behavior, and hibernation. In mammals, light-sensitive retinal ganglion cells (RGCs) transmit
light information to the suprachiasmatic nucleus (SCN) in the hypothalamus (Figure 3). This signal is then
transmitted via light-sensitive neurons to the pineal gland, where nocturnal melatonin is synthesized. The
length of the melatonin signal is consequently proportional to the length of the dark period, or night, and is
read by the pars tuberalis (PT) in the pituitary gland [57]. Long days (summer) induce thryroid stimulating
hormone (TSH; a heterodimer of α and β subunits) in the PT. TSH in turn promotes thyroid hormone produc-
tion and activity in the basal hypothalamus, thus interfacing with the regulation of crucial season-guided physi-
ology such as reproduction.
An EYA3-SIX1-TEF complex up-regulates TSHβ transcription in the PT [58]. EYA3 expression in the PT is

rhythmic, peaking transiently 12.5 h after the onset of darkness or melatonin expression. As a result, in winter
EYA3 peaks late in the night while in summer EYA3 peaks at dawn. Eya3 expression is thus central to the PT
coincidence timing mechanism. Furthermore, through a positive feedback loop EYA3 promotes its own tran-
scription and amplifies the EYA3-dependent coincidence-timer. As a consequence, EYA3 is a key player in the
ability to switch between the winter and summer phenotypes that follow from gradual changes in day length in
the Spring and Fall [59].
The tyrosine phosphatase-dead form of EYA3 was able to potentiate TEF/SIX1-mediated TSHβ transcription

to levels comparable to the wild-type protein [58], suggesting that the tyrosine phosphatase activity is dispensable
for EYA3’s role in photoperiodism. Collectively, the currently available evidence supports a role for EYA3’s trans-
activation activity in measuring night length and tuning the circadian clock with seasonal changes [60].

Developmental disorders associated with EYA mutations
The importance of EYA proteins (and the RDGN network) during crucial stages of embryonic development is
reflected in the numerous developmental disorders associated with Eya mutations. These are typically manifest
as defects in eye, ear, neck, cranio-facial, and heart development (summarized in Table 1). Below we describe
the developmental defects frequently associated with Eya mutations and, when available, links between the bio-
chemical activities of the EYA proteins and these disease states.

Figure 3. EYA3 in photoperiodism.

A simplified schematic showing how light signaling through the eye is transmitted through the SCN and inhibits melatonin

release by the pineal gland. Hence melatonin is exclusively secreted at night. TSH levels in the thyrotrophic cells of the PT

display melatonin-dependent photoperiodic changes; high TSH under long photoperiod, and low levels under short

photoperiod. EYA3 promotes transcription of the TSHβ subunit and thus acts as an ‘on-switch’ for TSH, making EYA3 a central

player in photoperiodic time measurement [91]. EYA3 is induced 12.5 h after the onset of melatonin expression. As a result,

EYA3 levels rise at first light in the summer and during the final hours of darkness in the winter.
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Eya1 is one of the three known causative genes for BOR (Branchio-oto-renal syndrome also known as
Melnick–Fraser syndrome; the other two genes being RDGN members SIX1 and SIX5 [61,62]). BOR is an
autosomal dominant disorder characterized by malformations of the neck, ears and kidney. These include
(to varying degrees) branchial fistulae or cysts, hearing loss as a result of inner, middle and outer-ear malfor-
mations, and kidney abnormalities ranging from hypoplasia to agenesis. Features of BOR partially overlap
with otofaciocervical syndrome (OFC), a rare developmental defect characterized by distinctive facial features
(triangular face, broad forehead, narrow nose and mandible, high arched palate), prominent ears, long neck,
branchial fistulae or cysts, sloping shoulders and clavicles, hearing impairment and mild intellectual defects.
Eya1 mutations are also associated with OFC [63]. Furthermore, Eya1 mutations are sometimes seen in
patients with congenital cataracts and ocular segment anomalies, sometimes associated with BOR [31].
Deletions, mis-sense mutations as well as complex rearrangements of the Eya1 gene are reported in BOR and
OFC patients [61,64–70]. Most of the mutations are unique to individual families and no apparent genotype–
phenotype correlation has yet emerged. Several experimental studies tried to link individual mis-sense muta-
tions to biochemical activities, variably reporting impaired tyrosine phosphatase activity as well as impaired
interaction with the SIX proteins [71,72].
Eya1 mutations have been reported in patients with congenital cardiac abnormalities [73,74], and mutation

of Eya4 is associated with dilated cardiomyopathy [75]. Genetic studies using compound deletions in mice
show that EYA1 and SIX1 play a role in cardiovascular development, and it is proposed that a Tbx1-Six1/
Eya1-Fgf8 regulatory cascade underlies a common mechanism important for the morphogenesis of both the
heart and the face [54]. This data has led to the speculation that the pathogenesis of BOR and cardio-facial
syndrome could be linked to Eya1 and Six1 mutations via a common molecular program [54].
Eya4 mutations are reported in several families with non-syndromic autosomal dominant post-lingual pro-

gressive hearing loss (late-onset deafness) [76–79]. Most of these mutations result in truncated EYA4 protein
lacking most, or all, of the conserved ED (tyrosine phosphatase) domain. There is some evidence that while
loss of just the tyrosine phosphatase domain causes non-syndromic sensorineural hearing loss, disruption of
both the ED and the N-terminal domains is associated with syndromic (dilated cardiomyopathy with sensori-
neural hearing loss) disease [75,78]. One clinically actionable extension of these studies on the pleiotropic
effects of Eya4 gene variants is described in a recent study where a ‘genotype-first’ approach was used to iden-
tify as-yet undiagnosed cardiac conduction disorders in adults presenting with hearing loss [80].
A recurrent mutation in Eya3 (resulting in an Asn358Ser substitution) causing oculo-auriculo-vertebral spec-

trum has recently been reported [81]. This mutation appeared to increase the half-life of EYA3 but have no
impact on tyrosine phosphatase activity. This report notwithstanding, in general Eya2 and Eya3 mutations are

Table 1. A summary of Eya mutations associated with developmental disorders

Disease/affected organ(S) GENE Mutations References

Branchio-oto-renal Syndrome 1 (BOR)/disrupted development of
tissues in neck, malformation of ears and kidneys

EYA1 Deletions, insertions,
mis-sense mutations

[61,64–
66,69,70]

Branchio-oto-syndrome 1 (BOS)/disrupted development of tissues in
neck, malformation of ears

Insertions, deletions [66]

Oto-facio-cervical Syndrome (OFC)/facial dysmorphism, ear anomalies,
branchial cysts or fistulae, anomalies of the vertebrae and should
girdle, mild intellectual disability

EYA1 Deletions, splice site
mutations

[63,67]

Anterior segment anomalies, congenital cataracts/defects of the
cornea, lens, iris and aqueous humor

EYA1 Mutations, substitutions [31]

Cardio-facial Syndrome/asymmetric crying face and heart defect EYA1 Deletions, frame-shifts [73]

Late-onset deafness (non-syndromic) EYA4 Truncations, mutations [77,78]

Dilated cardiomyopathy with sensorineural hearing loss/progressive
defect in cardiac muscle, defects affecting inner ear and auditory nerve

EYA4 Deletions [75,80]

Oculo-auriculo-vertebral Spectrum (Goldenhar Syndrome)/deformity of
external ear and small ipsilateral half of face, vertebral anomalies

EYA3 Mis-sense mutation [81]
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rarely been linked with developmental disorders. This could be a consequence of redundancy, since while both
genes are broadly expressed during development, they are most often co-expressed with other Eya genes.

Conclusions
Many decades after Drosophila EYA was first described, insights into the roles of EYAs in normal development,
physiology and disease continue to emerge. Not described here, but of emerging clinical importance, is the thera-
peutic potential of targeting the EYA PTP activity for diseases ranging from cancer [82–84] to pulmonary arterial
hypertension [85] and proliferative retinopathies [35]. Much remains to be clarified regarding EYA protein func-
tion and regulation. The question of whether the N-terminal domain and C-terminal domain activities of the
EYA proteins impact on each other is still a matter of some debate. The fact that interaction with the SIX proteins
is mediated by the ED domain, while transactivation potential exists in the N-terminal domain suggests that, at
least for the transactivation activity in the context of the RDGN, the two domains are functionally linked. It is
curious that the PTP activity of the EYA proteins has not yet been linked to any major developmental role, other
than contributing to post-natal vascular development in the murine retina [35]. This is particularly notable since
the EYA-PTP activity promotes DNA damage repair [10] and cell motility [14,15], two processes important in
development: embryonic development involves rapid cell proliferation inevitably accompanied by DNA damage,
and cell motility plays a crucial role in morphogenesis. It is likely that subtle developmental defects attributable to
the PTP activity will be uncovered upon more careful examination in the future.
How did the EYA proteins come to have so many biochemical activities in a single polypeptide? It is inter-

esting to speculate about where these activities originated. Notably, plants have an EYA protein that is com-
prised solely of the ED domain [7], and no significant amino-acid sequence homology exists between the EYA
N-terminal domain and any other known protein sequence [4]. It has been suggested that some animal EYA
proteins with an ED-like domain have very weak, or no, tyrosine phosphatase activity [86]. But this has not
been experimentally queried. Could the EYA proteins we see in vertebrates have emerged from an ancestral ED
domain-containing protein that may, or may not, have had tyrosine phosphatase activity? Does the N-terminal
domain have intrinsic threonine phosphatase activity? Evolutionary biochemists suggest that all enzymes are
promiscuous (have an average of 10 promiscuous activities [87–89]). Perhaps the putative threonine phosphat-
ase activity of the EYA proteins is one such instance of evolution in progress? In this review, we have attempted
to match the observed biochemical activities of the EYA proteins with their developmental roles, as understood
from our vantage point at one moment in the evolutionary journey of the EYA proteins.

Perspectives
• EYA transactivator-phosphatase proteins play crucial roles in embryonic development and in

tissue homeostasis. Mutations or mis-expression of EYA are linked to human genetic disor-
ders and cancers, offering opportunities for the development of therapeutics and genetic
diagnoses.

• The vast majority of the studies thus far implicate the EYA transactivation function in cell-fate
determination. However, a growing body of evidence suggests that the tyrosine phosphatase
activity (and the putative threonine phosphatase activity) could contribute to disease states.
These observations are now being exploited in efforts to devise EYA-targeted therapeutics.

• Beyond the further examination of the myriad signaling pathways impacted by EYA-mediated
transactivation and dephosphorylation events, examination of the molecular evolution of this
unusual protein is of great interest. Such studies could be important contributors to our under-
standing of how phosphorylation-based signaling mechanisms evolved in general.
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