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Abstract: SARS-CoV-2 contains certain molecules that are related to the presence of immunothrom-
bosis. Here, we review the pathogen and damage-associated molecular patterns. We also study the
imbalance of different molecules participating in immunothrombosis, such as tissue factor, factors of
the contact system, histones, and the role of cells, such as endothelial cells, platelets, and neutrophil
extracellular traps. Regarding the pathogenetic mechanism, we discuss clinical trials, case-control
studies, comparative and translational studies, and observational studies of regulatory or inhibitory
molecules, more specifically, extracellular DNA and RNA, histones, sensors for RNA and DNA, as
well as heparin and heparinoids. Overall, it appears that a network of cells and molecules identified
in this axis is simultaneously but differentially affecting patients at different stages of COVID-19, and
this is characterized by endothelial damage, microthrombosis, and inflammation.

Keywords: pathogen-associated molecular patterns; damage-associated molecular patterns; extracel-
lular DNA; extracellular RNA; SARS-CoV-2; immunothrombosis

1. Introduction

In December 2019, the infectious outbreak of a new human coronavirus (SARS-CoV-2)
responsible for acute respiratory syndrome was detected in Wuhan, China [1]. The WHO
subsequently identified it as “the new novel coronavirus 2019”, or COVID-19 [2]. According
to information available, SARS-CoV-2 has caused more than 235 million cases worldwide
and more than 4 million deaths as of 5 October 2021 (https://coronavirus.jhu.edu/map.
html) (accessed on 9 October 2021) [3]. Moreover, the scenario for 1 January 2022 is expected
to exceed 5.8 million COVID-19 deaths globally [4].

COVID-19 shows heterogeneous clinical expression, which is associated with throm-
bosis and microangiopathy. There are various opposing theories related to the virus. On
the one hand, it could be associated with intravascular coagulation [5]. On the other hand,
it could correspond to complement-mediated thrombotic microangiopathies [6,7]. Hyper-
coagulation [8], platelet hyperactivity [9], and abnormal fibrinolysis [10,11] might explain
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the diversity of macrovascular and microvascular thrombosis expression, depending on
the study method. In the selection criteria for study subjects and the general population,
the frequency of thrombosis is variable. For example, results from autopsies report that in
87% of microthrombosis cases [12], coagulopathy is found in up to 50% of fatalities [13],
and macrothrombosis, such as deep vein thrombosis and pulmonary thromboembolism, is
found in up to 40% [14,15].

Several signaling routes have been reported to play a role in the mechanisms of
immunothrombosis or thrombo-inflammation [16,17] and cytokine storms in COVID-19
(Figure 1). The sequence of these events in SARS-CoV-2 infection is related to the inter-
actions of different cells and molecules (Tables 1 and 2), such as Angiotensin-Converting
Enzyme 2 (ACE2), tissue thromboplastin or tissue factor (TF), neutrophil extracellular traps
(NETs), extracellular DNA (eDNA) and RNA, histones [18], anti-PF4/heparin IgG antibod-
ies, antiphospholipid antibodies, neutrophil-platelet aggregates, and monocyte-platelet,
among others.
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1.1. Factors of the Contact System

Recently, some molecules of the contact system (prekallikrein (PK), high-molecular-
weight kininogen (HK), and factor XII (FXII)) have been reported to form an HK/FXII/gC1qR
complex [19,20] which could participate in coagulation or inflammation. The gC1qR is a
highly anionic multifunctional protein that participates in different mechanisms, including
inflammation and vascular injury [21].

In COVID-19, specifically, the expression of FXIIa increases in lung tissue. In addition,
this factor is colocalized with NETs in the lungs, indicating that the accumulation of NETs
leads to greater activation of FXII due to a defect in the clearance of NETs by DNases,
contributing to procoagulant activity [22]. This is also related to the activity of FXII in the
blood coagulation system and increases in DNA and H4 histones [23]. Histones contribute
to microvascular thrombosis and competitively inhibit plasmin to delay fibrinolysis [24].

Effects of factors of the contact system may also explain how coagulation, the kallikrein-
kinin system, and inflammation molecules participate together as defense mechanisms
favoring procoagulant mechanisms [25].

Clinical trials of this pathway of complement and kallikrein-kinin system activation
use human recombinant C1 esterase inhibitor [26].

1.2. Tissue Factor

Factor III is a membrane protein that acts in the extrinsic pathway of coagulation,
forming the FVIIa/TF complex [27]. The expression of tissue thromboplastin (also known
as coagulation factor III), is a complex mechanism, a de-encryption of TF, which includes
phospholipid scramblase and acid sphingomyelinase, i.e., the process transfers phos-
phatidylserine to the outer plasma membrane in monocytes for the efficient activation
of FX by the TF-FVIIa complex [28]. Increases in TF release results in hypercoagulability
and venous and arterial thromboembolism. TF is known to be released from different
sources such as the alternative polarization macrophages [29] and microvesicles from
endothelial cells [30]. The release of TF results from the formation of platelet-monocyte
aggregates observed in severe COVID-19 [31]. Moreover, activated platelets induce NETs
that carry FT [18]. In COVID-19, increased circulating extracellular vesicle TF activity has
been reported, which correlates with the markers of thrombosis such as D-dimer [32]. It is
important to point out that TF expression may be inhibited by platelet P-selectin (CD62P)
neutralization or integrin αIIb/β3 blocking, as with abciximab [31].

1.3. Neutrophil Extracellular Traps and Molecule Release

Circulating neutrophils infected with SARS-CoV-2 release elevated levels of neutrophil-
derived extracellular traps in the blood, trachea, and the lungs [33]. They also deliver all the
contents of the nucleosomes, i.e., H2A, H2B, H3, and H4 histones, DNA [34], extracellular
circulating viral micro-RNAs [35,36], and TF [25]. In COVID-19, the platelet/NETs/TF/
thrombin axis is enhanced by complement activation [33]. Not only do neutrophils release
eDNA, but also macrophages, eosinophils, and mast cells. These appear at different stages
of thrombosis [37,38], and similarly in tumor cells [34].

In COVID-19 patients, platelet activation products, such as TXB2 and proteins from
platelet α-granules PF4/CXCL4 and PDGF, are also released and found in tracheal as-
pirates [31]. Furthermore, it has been found that NETs can serve as a platform for the
activation of contact factors of the intrinsic coagulation pathway [22], such as FXII, FXI,
and PK, in the lung parenchyma.
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Of the molecules with NETs that are released, it has been suggested that free DNA may
be the cause of a more severe pathology in COVID-19 [39]. Moreover, the manifestations of
severity could be related not only to eDNA, but also to other alarmins, such as extracellular
heat-shock proteins and HMGB1, mentioned above, in addition to diverse self-nucleic
acids, including nuclear DNA, ribosomal RNA, extracellular RNA (eRNA), micro-RNAs,
and histones [40], Figure 1.

NETs are cytotoxic and procoagulant, in part due to the release of DNA-histone
complexes and double-stranded DNA, histones, and HMGB1 [41,42]. It is understood that
the increase in DNA-binding proteins, extracellular ribosomal RNA, and micro-RNAs, may
be related to thrombosis [43,44].

In COVID-19, eDNA from NETs and histones could also explain thrombosis in severe
forms [45]. The half-life of eDNA is around 4–30 min [46]. Its clearance is regulated by
different factors, such as 1) Serine proteases, e.g., Factor VII activating protease; cysteine
proteases, e.g., caspase-activated DNAse [47]; DNASE1; and deoxyribonuclease 1-like
3 (DNASE1L3) [48]. A deficiency in any of these nucleases causes the inability to remove
blood clots [49]. 2) Receptors, such as those for advanced glycation end-products. In
addition, Toll-like receptors 7 and 9 are sensors for eDNA in plasmacytoid dendritic cells
(PDC) which have a huge capacity for producing type I (IFN-α) and type III (IFN-λ)
interferons; 100–1000 more than other cells [50]. Type III IFN shows greater activity against
SARS-CoV-2 [51]. PDC and NK cells in the presence of interferon inducers, such as RNA-
containing immune complexes, produce tumor necrosis factor -α (TNF-α) and IL-6, among
other pro-inflammatory cytokines, as in systemic lupus erythematosus. These cytokines are
inhibited by interleukin -1 receptor-associated kinase 4 small molecule inhibitor, and also
by hydroxychloroquine [52]. In addition, eRNA interacting with high affinity with vascular
endothelial growth factor (VEGF) leads to the activation of VEGF-receptor 2/neuropilin-1
complex [42]. This complex increases endothelial permeability, chemotaxis, and cellular
proliferation [53]. Moreover, some VEGF isoforms, such as the VEGF165 isoform, stimulate
vascular growth and produce hyperpermeability. In order to block hyperpermeability in
patients with severe COVID-19, clinical trials have been generated using bevacizumab as
an anti-vascular endothelial growth factor [54,55].

A crucial point of NETs is the equilibrium or balance between the release of eDNA
and eRNA and their respective nucleases, which are required to maintain homeostasis. In
COVID-19, a significant increase in NETs is observed, and therefore an excess of eDNA. In
clinical trials, the human DNase I enzyme, (Dornase Alpha) is being evaluated to reduce
the severe symptoms of COVID-19 [56].

1.4. Platelets-SARS-CoV-2/Angiotensin-Converting Enzyme 2

Thrombocytopenia in COVID-19 is an indicator of poor prognosis, particularly when
it decreases in the first 7 days after admission to the hospital. Thrombocytopenia is an
independent risk factor associated with in-hospital mortality. Liu et al. [57] found that an
increase of about 50 × 109 /L over the whole range of platelet, decreases mortality. Adding
support to the means of platelet activation, several studies show that platelets are activated
in COVID-19 patients [58], i.e., there is an increase in young immature platelets named
reticulated platelets (RPs). These are associated with high platelet turnover and arterial
thrombotic events. In COVID-19, PRs or the immature platelet fraction (IPF) are similar to
patients with acute myocardial infarction [59].

Considering that the expression of ACE2 and transmembrane protease serine 2 (TM-
PRSS2) on human platelets has been detected by immunoblotting, confocal microscopy [60],
and flow cytometry [9], a controversial activation route takes into consideration platelet
expression of ACE2 and TMPRSS2 receptors. Zhang et al. [9] showed that spike protein
binds directly to ACE2, inducing platelet activation and potency in the presence of agonists
such as thrombin. However, others such as Manne et al. [61] have detected platelets with
mRNA from the SARS-CoV-2 N1 gene in COVID-19, but not the ACE2 receptor. These
authors found changes in platelet gene expression and functions associated with ubiq-
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uitination, antigen presentation, and mitochondrial dysfunction with increased MAPK
pathway activation and thromboxane generation resulting in platelet hyperreactivity [61].
Zaid et al. [62] have also reported that SARS-CoV-2 RNA is associated with platelets similar
to other viral infections, however they question the presence of the ACE2 receptor in
platelets, due to the methods used to detect these receptors. Moreover, the platelets are the
target of infection or capture the viral RNA. On the other hand, Shen et al. [63], using an
immunofluorescence assay, flow cytometry analysis, quantitative analysis of SARS-CoV-2
RNA in culture, and Western blot, did not find ACE2 receptors in human platelets and
megakaryocytes. In addition, they showed that SARS-CoV-2 could interacts with platelets
and megakaryocytes through an ACE2-independent mechanism.

Furthermore, platelets from subjects with severe forms of SARS-CoV-2 infection
have increased expression of CD62P and release of thromboxane A2 [58], as well as the
formation of platelet-neutrophil, platelet-monocyte, platelet-CD4 T cell, and platelet-CD8 T
cell aggregates [61]. Platelets have a procoagulant phenotype [64] generated in the vascular
circulation or megakaryocytes, which are affected by SARS-CoV-2 [65].

Platelet hyperactivity in COVID-19 can result from increased protein kinase C phos-
phorylation, the release of platelet extracellular vesicles, inflammatory cytokines PF4,
TNF-α, IL-8, and IL-1β from platelets, inducing the formation of leukocyte-platelet aggre-
gates [62,66].

In addition, platelets also participate with immune complexes or through other mech-
anisms, as indicated in Tables 1 and 2.

1.5. Heparin-Induced Thrombocytopenia

Considering that one of the main characteristics of COVID-19 is hypercoagulability,
and therefore the increased risk of venous and arterial thrombosis, it is necessary to differen-
tiate from Heparin-induced thrombocytopenia (HIT) [67–69], particularly secondary to the
use of vaccines [70]. Uaprasert et al. [71], in a systematic review and meta-analysis, found
a pooled incidence of HIT of 0.8%, being slightly higher in critically ill COVID-19 patients.

HIT is characterized by a decrease in platelets >30–50% associated with thromboem-
bolic complications in around 50% of patients with confirmed HIT. This occurs between 5
and 14 days after starting heparin [72,73].

In the pathogenesis of HIT, antibodies that recognize complexes formed by platelet
factor 4 (PF4) and polyanions, such as heparin [74] and anti-protamine (PRT)/heparin,
are implicated [75]. These immunogenic complexes induce a response in which IgG
bind to platelet Fcγ RIIa receptors. This results in platelet hyperactivity, where they
release circulating PF4-bearing microparticles [76], inducing the expression of TF by human
monocytes [77] and the release of NETs [78].

HIT has some similarities to the novel disorder, named “vaccine-induced immune
thrombotic thrombocytopenia”. For example, it starts 5–20 days after ChAdOx1 nCov-19
vaccination. The difference is that the neoantigen is formed by PF4 with components of the
vaccine. Specifically, it is associated with an adenovirus hexon protein/ PF4 complex [79].
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Table 1. Molecules, cells, complexes, or aggregates of importance in the generation of hypercoagulability and thrombosis.

Molecules, Cells,
Complexes or Aggregates

Multiple Cells Neutrophil Extracellular Traps and Histones

Tissue thromboplastin or TF
release

Monocyte-platelet and
neutrophil-platelet

aggregates
Complement- TF–NETs Remnants of NETs Neutrophil-platelets Histones

Research Type

Cross-sectional study and
brief report using Dual

RNA in situ hybridization
and immunofluorescence

Comparative study Clinical trial Case–control study Clinical trial Translational study

Study Characteristics

66 patients with COVID-19
and 11 autopsies of lung
tissues in patients with

COVID-19 associated ARDS

37 patients with
SARS-CoV-2 pneumonia
and 28 healthy subjects

25 patients hospitalized
with COVID-19 and 10

healthy age- and
sex-matched individuals

served as controls

44 patients hospitalized
with COVID-19 who

developed thrombosis, and
gender- and age-matched

COVID-19 patients without
clinical thrombosis

36 patients with COVID-19 and
31 healthy controls were

studied. Platelet and leukocyte
activation, NETs and matrix

metalloproteinase 9, a
neutrophil-released enzyme,

were measured

113 patients with
COVID-19

Key Findings

Antithrombin/FVIIa
complex and TF-containing

microparticles were
elevated in plasma of

patients. TF expression
correlated with SARS-CoV-2

staining, also, in regions
close to TF, fibrin thrombi
and thrombi positive for
PF4 in COVID-19 versus

non-COVID-19 ARDS lungs
was found.

Circulating platelets from
subjects with COVID-19

pneumonia show a
phenotypic and functional

profile of hypercoagulability
and promote the activation

of factors XII and VIII.

High levels of
myeloperoxidase

(MPO)/DNA complexes
correlated with

thrombin-antithrombin
(TAT) Activity.

Thrombin inhibition
(dabigatran) or NETosis

inhibition or C5aR1
(C5aRa/PMX-53) blockade
decreased platelet-mediated

NETs thrombogenicity.

Thrombosis in COVID-19
was associated with higher

levels of cell-free DNA,
myeloperoxidase-DNA

complexes, and citrullinated
histone H3 and calprotectin.

Platelet (P-selectin, soluble
platelet P-selectin, Circulating

CD66b+CD41+
platelet-neutrophil complexes)

and neutrophil
(neutrophil-derived

microparticles,
Myeloperoxidase (MPO)–DNA
complexes) activation are key

features of patients with
COVID-19. NETs biomarkers

may guide
low-molecular-weight heparin

treatment.

High levels of
circulating histones

(>30 µg/mL) in viral
infection. Circulating
histone levels were

significantly higher in
non-survivors than

those who survived.

Reference [80] [64] [18] [81] [82] [83]

Abbr: Tissue factor (TF); neutrophil extracellular traps (NETs); acute respiratory distress syndrome (ARDS); platelet factor 4 (PF4).
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Table 2. Molecules and complexes of importance in the generation of hypercoagulability and thrombosis.

Molecules and
Complexes

SARS-CoV-2 Antibodies

SARS-CoV-2 spike/anti-spike IgG
immune complexes

Anti-SARS-CoV-2 spike IgG immune
complexes dependent on FcγRIIA

Anti-PF4/heparin IgG
antibodies Antiphospholipid antibodies

Research Type

In vitro experimental study using
recombinant anti-spike IgG, platelet
adhesion assay, light transmission
aggregometry and flow cytometry.

In vitro experimental study using platelet
adhesion assay, in-vitro thrombus

formation, light transmission
aggregometry, and flow cytometry

measurement of fibrinogen binding.

Brief report/case
analysis Cross-sectional cohort study

Study Characteristics

SARS-CoV-2 S1 and anti-spike IgG
immune complexes with different

degrees of glycosylation were
evaluated

Effects of low fucosylation and high
galactosylation of anti spike IgG immune

complex on platelet activation and
thrombus formation on vWF were

evaluated

12 COVID-19 patients
with HIT

Serum samples from 172 hospitalized COVID-19
patients were evaluated for subtypes of aPL
antibodies: aCL IgG, IgM, and IgA; anti–β2

glycoprotein I IgG, IgM, and IgA; and aPS/PT IgG
and IgM. In addition, IgG purified from COVID-19

patient serum was injected into mouse models.

Key Findings

SARS-CoV-2/anti-spike IgG
immune complexes increase

platelet-mediated thrombosis if IgG
expresses both low fucosylation and

high galactosylation.

Immune complexes containing
afucosylated IgG activate platelet

FcγRIIA. Clustering of this platelet
FcγRIIA could be inhibited by

fostamatinib, ibrutinib or cangrelor that
counteracted tyrosine kinases Syk, Btk or

P2Y12 respectively.

Increased levels of
anti-PF4/heparin

antibodies, with negative
platelet-activating

antibodies.

52% of serum samples have antiphospholipid
antibodies IgG fractions purified from serum of

patients with COVID-19 could trigger aPL
antibody–mediated prothrombotic NETs release
and accelerate thrombosis in mouse by increased

expression of NET remnants and citrullinated
histone H3.

Reference [9] [84] [85] [86]

Abbr: Platelet factor 4 (PF4); heparin-induced thrombocytopenia (HIT); Antiphospholipid antibodies (aPL antibodies); anticardiolipin antibodies (aCL); anti-phosphatidylserine/prothrombin (aPS/PT); Platelets
and peripheral blood mononuclear cells (PBMCs).
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2. Cytokine Storm Syndrome

During a COVID-19 infection, immune cells flood the lungs and attack them instead
of protecting them. The imbalance between PAMPs and pattern recognition receptors
(PRRs) could fall into cytokine storm syndrome (CSS) or a specific syndrome from the
family of conditions characterized by a cytokine storm such as macrophage activation
syndrome. This is associated with autoimmune disorders, hemophagocytic lymphohistio-
cytosis genetic or secondary to different disorders, and cytokine release syndrome [87]. CSS
is also associated with delayed secretion of type I and III interferons [88], and low levels
thereof [89], probably due to membrane protein in SARS-CoV-2 via RIG-I/MDA-5-MAVS
signaling [90]. Furthermore, CSS has hypercytokinemia [91], macrophage polarization
from M2 to M1 [92], with activation of the Plcγ2 pathway and a reduction in Tmem178
levels in macrophages [93], T-cell cytotoxicity defects [16], complement activation [94],
and increased NETs [95,96]. As a result of all these changes, patients suffer from hyperin-
flammation [97], cytokine release [98], cytokine storms [99,100], multiorgan disease [101],
and thrombosis [15]. Therefore, various inhibitors have been suggested [102], several
of which are being used in clinical trials. Some preliminary studies report a significant
reduction in mortality, by Anakinra [103] and Canakinumab [104] for IL-1 inhibition, and
baricitinib [105] and ruxolitinib [106] for JAK inhibition. However, others have divergent
findings, e.g., tocilizumab [107,108] and sarilumab [109] for IL-6 inhibition (Figure 1). More-
over, molecules with immunomodulatory and antiviral properties that modulate cytokines
and interferons in immunosuppressed subjects such as inosine pranobex [110,111] have
been used in clinical trials with promising results [112].

3. Influence of Heparanase, Heparin and Heparinoids in Complications from COVID-19

Heparanase (HPSE) is an endo-β-D-glucuronidase that has specificity for HS and
heparin polysaccharide chains. It participates in the metabolism of HS in the extracellular
matrix and its activity is modified in inflammation, cancer and cell migration [113]. Acting
as a cofactor of TF, HPSE increases the activity of FX and interacts with the TF pathway
inhibitor, acting as a procoagulant [114]. It also has platelet hyperactivity and thrombotic
activity [115]. HPSE is increased in COVID-19 patients and is related to pathogenicity [116].
HPSE interacts with other molecules such as RNA, causing vascular leakage and inflamma-
tion. Low-molecular-weight heparins (LMWH) are potent inhibitors of HPSE, thrombus,
and inflammation [101,117], and they also neutralize histones [118].

Histone levels together with HPSE levels may explain interindividual sensitivities
to heparin (unfractionated heparin (UFH) and LMWH) or heparinoids in COVID-19 pa-
tients [119,120]. This means that the heparin used to treat microthrombosis in these subjects
also participates in the inhibition of histones and could decrease its toxicity. The effect
of LMWH is not always sufficient, as mentioned above, or it could be reversed [121]. In
COVID-19 patients, the use of LMWH is very important due to its anticoagulant, antiviral,
and anti-inflammatory effects [122]. However, the need for higher doses of LMWH has
been observed in critically ill patients [123], and the use of oral anticoagulants is required,
namely dabigatran, apixaban and rivaroxaban [124,125].

Heparin/ heparan sulphate competes with SARS-CoV-2 and reduces its entry into
the body [126,127], because, in the SARSCoV-2 spike (S) protein, the receptor-binding
domain (RBD) in the S1 subunit has an ectodomain that interacts with heparan sulfate
(HS) [128], and the RBD region in S protein in SARS-CoV-2 interacts with 2-O or 6-O
sulphate groups of heparin or enoxaparin [129]. Additionally, it has been reported that
heparan sulphate inhibitors, such as mitoxantrone, sunitinib, and BNTX, could block entry
of the virus [130]. In general, high negatively charged proteins, such as heparin, protein C,
and pentraxin, neutralize histones [131]. Heparin has been shown to act directly against
circulating histones, but its action does not depend on its anticoagulant function [132].

Among the heparin derivatives that have been proposed for the treatment of COVID-19
are heparinoids. Sulodexide is a heparinoid containing 80% iduronyl glycosaminoglycan
sulphate (IGS) or fast-moving heparin and 20% dermatan sulphate (DS). IGS interacts with
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and increases antithrombin and heparin cofactor II (HCII) [133], while DS interacts with
HCII. This combination has properties resembling those of UFH [134]. Sulodexide also
has profibrinolytic activity, which reduces the neo-synthesis of proinflammatory cytokines
and inhibits histones [135]. It releases an inhibitor of the endothelial TF pathway, inhibit-
ing FVIIa and FXa [136,137]. The prolonged use of sulodexide produces a “release and
depletion” effect as observed with UFH [138]. Nevertheless, the use of heparin also has
some limitations, such as its inability to inactivate antithrombin-heparin complex when
it is bound to fibrin. Dermatan sulphate-HCII complex has been reported to inactivate
fibrin-bound thrombin [139]. The RBD region in the S protein in SARS-CoV-2 interacts
with 2-O or 6-O sulphate groups of heparin or enoxaparin [129]. Therefore, heparin, and
most likely heparinoids, inhibit cellular interaction with the virus.

It is evident that, in addition to the factors related to the pathogenesis of SARS-CoV-2,
other pathogenic factors are associated with thrombosis and inflammation, such as HPSE,
eDNA, eRNA, micro-RNAs, and histones. Many of these molecules are being studied in
order to find drugs to treat COVID-19.

4. Conclusions

During COVID-19 infection, SARS-Cov-2 interacts with ACE2, NRP1, endothelial
cells, platelets, NETs, thrombin, eDNA, and histones, inducing heterogeneous clinical
manifestations characterized by endothelial damage, microthrombosis, and inflammation.
In summary, a network of cells and molecules identified in this axis are simultaneously but
differentially affecting COVID-19 patients at different stages of the disease.
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