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Background: A functional cure for chronic HBV could be achieved by boosting HBV-
specific immunity. In vitro studies show that immunotherapy could be an effective strategy.
However, these studies include strategies to enrich HBV-specific CD8 T cells, which could
alter the expression of the anti-PD-1/anti-PD-L1 antibody targets. Our aim was to
determine the efficacy of PD-L1 blockade ex vivo.

Methods: HBV-specific CD8 T cells were characterized ex vivo by flow cytometry for the
simultaneous analysis of six immune populations and 14 activating and inhibitory
receptors. Ex vivo functionality was quantified by ELISpot and by combining peptide
pool stimulation, dextramers and intracellular flow cytometry staining.

Results: The functionality of HBV-specific CD8 T cells is associated with a higher
frequency of cells with low exhaustion phenotype (LAG3-TIM3-PD-1+), independently of
the clinical parameters. The accumulation of HBV-specific CD8 T cells with a functionally
exhausted phenotype (LAG3+TIM3+PD-1+) is associated with lack of ex vivo functionality.
PD-L1 blockade enhanced the HBV-specific CD8 T cell response only in patients with
lower exhaustion levels, while response to PD-L1 blockade was abrogated in patients with
higher frequencies of exhausted HBV-specific CD8 T cells.

Conclusion: Higher levels of functionally exhausted HBV-specific CD8 T cells are
associated with a lack of response that cannot be restored by blocking the PD-1:PD-
L1 axis. This suggests that the clinical effectiveness of blocking the PD-1:PD-L1 axis as a
monotherapy may be restricted. Combination strategies, potentially including the
combination of anti-LAG-3 with other anti-iR antibodies, will likely be required to elicit
a functional cure for patients with high levels of functionally exhausted HBV-specific
CD8 T cells.
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INTRODUCTION

Public health awareness for chronic hepatitis B (HBV) infection
have progressively increased in the last decade. Despite a
preventive vaccine being available, coverage is still under
40% and prevention strategies are insufficiently implemented
(1). More than 257 million people, a striking 3.5% of
the worldwide population, are living with chronic HBV
infection. Persistent viral replication and continuous liver
necroinflammation eventually leads to cirrhosis, end-stage liver
disease, hepatic decompensation and hepatocellular carcinoma
(HCC) (2, 3) which, annually, results in more than 850,000
deaths (1). Current antiviral therapies (PEGylated-IFNa and
nucleos(t)ide reverse transcriptase inhibitors –NRTI), while they
provide long-term benefits by suppressing HBV viremia and
reducing hepatic necroinflammation, they do not eliminate the
cumulative risk of developing HCC (4–6). Therefore, while
mortality caused by other widespread chronic infectious
diseases – like tuberculosis or HIV – has declined over time,
HBV-related mortality has increased by 22% in the last decade,
highlighting the need to find new therapeutic strategies able to
elicit a functional cure for chronic HBV infection.

A functional cure, defined as persistently undetectable levels
of HBsAg in the absence of antiviral therapy (AVT) (7), implies
the complete suppression of intrahepatic HBV replication even
at the subclinical level. This level of viral control is observed
during self-resolving acute HBV infection, suggesting that
enhancement of HBV-specific immune responses through
immunotherapy strategies could be a successful approach. Self-
resolving HBV infection relies on an effective CD4 T cell, CD8 T
cell and B cell response that will result in non-cytolytic HBV
clearance. The critical antiviral role of cytotoxic CD8 T cells
during this process has been demonstrated in the chimpanzee
model (8) and it’s associated with vigorous, broad and polyclonal
T cell responses (8–10). In vitro studies have shown that HBV-
specific T cell-related production of IFNg and TNF can
effectively suppress viral replication (11). Critically, the
immune system of liver transplant immune recipients is able to
clear HBV infection (12, 13), proving that chronic HBV can be
cured by a strong, broad and effective immune response.

In chronically infected patients a sufficient boost of HBV-
specific immunity through immunotherapy can be challenging,
due to both extremely low levels of HBV-specific T cells and
weak T cell responses that are associated with immune
exhaustion, immune dysregulation and inhibitory pathways of
immune suppression [reviewed in (14)]. However, even with
high exhaustion and low functionality there is an ongoing
immune control during chronic HBV infection. This is
highlighted by the fact that liver T cell infiltrates correlate with
better viral control and less liver inflammation (15) and viral
replication increases with immunosuppressive treatment (16).
Thus, immunotherapies to boost both immune responses for
chronic HBV infection hold promise and are being actively
researched. It is worth noting that even if immunotherapy is
now used in routine clinical practice and has even become the
standard of care for some cancer indications [reviewed in (17)],
the use of checkpoint inhibitors in the context of chronic viral
Frontiers in Immunology | www.frontiersin.org 2
infections is still controversial and in pre-clinical development
stages [reviewed in (18)]. For HBV infection, most clinical data is
in the context of HBV-induced HCC cancer treatment (19).
Strong pre-clinical data clearly outlining whether the benefit of
checkpoint blockade in chronic HBV-infected patients would
outweigh the risk associated with this type of therapy is needed to
encourage clinical trials aiming to a functional cure.

While immunotherapy strategies are intended to boost
intrahepatic immunity, PBMCs are the most widely used proxy
to study in vitro HBV-specific reactivity and efficacy of
immunotherapies. In this approach, the scarcity of HBV-
specific T cells within the PBMC compartment adds an
additional challenge. To overcome this limitation, in our
previous work (20) we developed a 5-day expansion protocol
to increase sensitivity and we showed that PD-L1 blockade
enhanced HBV-specific T cell reactivity. This approach, using
expansion protocols to enrich on HBV-specific CD8 T cells prior
to characterize their functionality, has been reported elsewhere
(21, 22). Notwithstanding the relevance of this proof-of-concept,
in vitro expansion and manipulation of the target cells can
modify the expression of PD-1, PD-L1 and/or other activating
(aR) or inhibitory (iR) receptors, affecting the in vivo
translatability of the results. Thus, the aim of this study was to
determine the efficacy of PD-L1 blockade ex vivo to increase the
functionality of HBV-specific CD8 T cell responses.
RESULTS

HBV-Specific CD8 T Cell Response Types
Evolve With Clinical Progression
To overcome the scarcity of HBV-specific CD8 T cells, in
previous studies we (20), and others (21, 22), have used
strategies focused on the expansion of HBV-specific T cells
prior to PD-L1 blockade assessment. However, to avoid the
modification of the expression patterns of the different
inhibitory (iR) and activating (aR) receptors associated with
expansion protocols, for this study we have optimized an ex
vivo ELISpot strategy (Figure 1A). HBV-specific reactivity was
analyzed using two different HBV peptide pools (HBVsp; Core
and Pool). Reactivity to prevalent herpes infections (HERsp;
CMV and EBV) was included for every sample as an example of
chronic viral infections with effective immune control. Negative
(Actin) and positive (CEFX) peptide pool controls were included
for each sample. Ex vivo HBV-specific reactivity was detected in
36% and 33.7% of patients for Core and Pool, respectively
(Figure 1B), with a combined HBV-specific response of 51.7%
[HBVsp (+); 46/89; Core and/or Pool]. HERPES-specific
reactivity [HERsp (+); 56/89; CMV and/or EBV] was detected
at a slightly higher frequency (62.9%) but consistent with the
prevalence of these infections on the general population in North
America (23, 24). In addition, HBV-reactive samples showed a
significantly lower magnitude of the response than HERPES-
reactive samples (Figure 1C).

We then sought to analyze whether HBV-specific reactivity
was associated with clinical parameters. Patients were
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FIGURE 1 | Ex vivo HBV-specific response evolves with clinical progression. (A) Schematic representation of the ex vivo ELISpot workflow with
representative example of the response levels. (B) Number of samples with ex vivo ELISpot reactivity. HBV number of cases shows CORE and/or POOL
while HER (HERPES) number of cases shows EBV and/or CMV. (C) Magnitude of the Ag-specific response, as measured as spot-forming units (SFUs) per
million PBMCs, among the different stimulations. ***p < 0.0001; Kruskal-Wallis one-way analysis of variance. (D) Number of samples with ex vivo HBV-
specific (core and/or pool) reactivity among the different clinical groups. (E) Evolution of the individual HBV-specific stimulations (CORE and POOL) with
clinical progression. Lines show the variability of HBV DNA and ALT levels within each group. (F) Frequency of T cells (left panel) and CD14+ monocytes
(right panel) among the different clinical groups. *p < 0.05; **p < 0.01; Mann Whitney U test. IT, Immune Tolerant; IA+, HBeAg+ Immune Active; IC, Immune
Control; IA-, HBeAg- Immune Active; AVT, Anti-Viral Therapy.
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categorized in 5 different groups according to HBeAg serology
and ALT levels (25). According to this clinical definition
Immune Tolerant (IT) is defined as HBeAg positive and ALT
≤ 1.3X upper limit normal (ULN); HBeAg+ Immune Active
Hepatitis (IA+) as HBeAg positive and ALT > 1.3X ULN;
Immune control (IC) as HBeAg negative and ALT ≤ 1.3X ULN
and HBeAg- Immune Active hepatitis (IA-) as HBeAg negative
and ALT > 1.3X ULN. All patients under antiviral therapy where
included in the AVT group. Ex vivo HBV-specific reactivity was
distributed among all clinical groups (Figure 1D) and
independently of HBeAg, HBsAg, ALT or HBV DNA levels
(Supplementary Figure 1). Interestingly, the proportion of the
two different HBV stimuli changed with clinical evolution
(Figure 1E). Our results show that during the IT phase, where
the adaptive immune response is not strong, reactivity towards
the more conserved proteins of the core and capsid were more
frequently detected. HBV reactivity for patients with HBeAg+
hepatitis (IA+), a clinical status normally associated with a strong
adaptive immune response that will lead to the negativization of
the HBeAg, favored a broader and more polyclonal T cell
response. This broad response is associated with the partial
control of the HBV viral replication during the IC phase while
the failure to maintain a diverse T cell response could be
responsible of the viral escape observed during HBeAg-
hepatitis (IA-). Patients under AVT, despite being a more
heterogeneous group, consistently had a more constrained
frequency similar to the reactivity observed during the IA-
phase. In line with these results, peripheral CD8 T cells were
increased in IA+ samples but significantly decreased in IC phase
while inflammation [as measured as frequency of CD14+
monocytes (26)] consistently declines (Figure 1F). However,
after viral escape, IA- samples fail to increase CD8 T cells or
inflammation again. Altogether, these results strongly suggest
that exhaustion of the HBV-specific CD8 T cell population
plays an active role on the clinical progression of chronic
HBV infection.

General T Cell Exhaustion Is Not Detected
in Chronic HBV Infection
To determine whether exhaustion had a main role in viral escape
from CD8 T cell control, we quantified the expression of six
different populations and 14 different iR and aR (full list of
markers is shown in Supplementary Table 2). Representative
examples of the gating strategy are shown in Figure 2A and
Supplementary Figure 2A. Our data showed that neither the
frequency of the different immune populations (CD11c DC,
CD14 Monocytes, CD56 NK, CD20 B cells, CD4 T cells and
CD8 T cells) nor iR and aR expression levels on bulk CD8 T cells
was different between samples with or without ex vivo HBV-
specific or HERPES-specific reactivity (data not shown). We
then analyze expression patterns of six iR/aR strongly related
with chronic HBV infection and PD-1/PD-L1 blockade
immunotherapy (Figure 2A). Results showed that expression
patterns of these selected markers were similar among samples
with or without ex vivo HBV-specific or HERPES-specific
reactivity (Figure 2B) and did not change with clinical
Frontiers in Immunology | www.frontiersin.org 4
progression (Supplementary Figure 2B). To confirm that
exhaustion of bulk CD8 T cells was not associated with
reactivity we quantified the frequency of CD8 T cells expressing
a Low exhaustion (LAG3-TIM3-PD-1+), Intermediate exhaustion
(LAG3-TIM3+PD-1+) or High exhaustion (LAG3+TIM3+PD-1+)
phenotype, but no differences were observed between reactive or
not reactive samples (Figure 2C). However, while the level of Low
exhaustion remained unchanged among the different clinical
groups (Figure 2D, left panel) we observed a significant decrease
of CD8 T cells with Intermediate exhaustion phenotype
(Figure 2D, middle panel) and a concomitant increase of Highly
exhausted CD8 T cells (Figure 2D, right panel) associated with
clinical progression. Any other immune population analyzed did
not show changes associated with reactivity or clinical progression
(data not shown), except for a significant increase of FAS-
expressing CD11c DC during IA- phase (Supplementary
Figure 2C). Increased sensitivity to cell death of antigen
presenting cells like DC has been associated with failure to
control chronic viral infections (27) and in this study was
significantly associated with a lower frequency of peripheral CD8
T cells (Supplementary Figure 2D). This data suggests that even if
exhaustion is related to longer times of infection and clinical
progression and could be associated with the loss of HBV-
specific reactivity leading to viral escape, antigen-specific CD8
T cells must be gathering most defects.

HBV-Specific CD8 T Cells Express a
Higher Frequency of Exhaustion Markers
Dextramer positivity was tested for any sample with the alleles
HLA-A*0201; B*3501 and B*5101 (n = 48). MHC I Dextramers®

(Immundex) specific for HBV capsid, three different epitopes of
HBV Protein S, CMV and EBV were used to detect Ag specific T
cells. A gating example for Ag-specific CD8 T cells is shown in
Supplementary Figure 3A. Fourteen individual patients had
detectable HBV-specific CD8 T cells using this method. The
positive samples were distributed equally among clinical groups
(Supplementary Figure 3B) and independent of HBsAg levels
(Supplementary Figure 3C). HBV DNA levels were slightly
increased in the samples with detectable HBV-specific CD8 T
cells (Supplementary Figure 3C). We then quantified the
expression of iR and aR in dextramer-positive Ag-specific CD8
T cells (Figure 3A and Supplementary Figure 3A). Expression
patterns of 6 different receptors (Figure 3B, 6+ markers
PD-1+41BB+TIGIT+PD-L1+TIM3+LAG3+) showed that Ag-
specific CD8 T cells, either HERPES-specific or HBV-specific,
are significantly more exhausted than paired bulk CD8 T cells. In
addition, HERPES-specific CD8 T cells, which are successfully
controlling viral replication, are significantly less exhausted than
the HBV-specific CD8 T cells (Figure 3B). While HERPES-
specific CD8 T cells express mostly one or two of these iR at the
same time (Figure 3B, 2+/1+ makers), most HBV-specific CD8
T cells simultaneously co-express 3 to 6 iR. In addition, the
frequency of some receptors (Supplementary Figure 3D;
CD127, 2B4, TIGIT, PD-L1 and PD-L2) is significantly
different between bulk CD8 and Ag-specific CD8 T cells but
similar between HERPES- and HBV-specific CD8 T cells.
September 2021 | Volume 12 | Article 648420
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However, HBV-specific CD8 T cells showed significantly higher
expression of markers like 4-1BB, ICOS or PD-1hi (Figure 3C).

When we focused on PD-1, TIM3 and LAG3 expression,
hallmarks of functional exhaustion, the data showed a significant
increase of Low exhaustion and Intermediate exhaustion
HERPES-specific CD8 T cells (1+ markers; LAG3-TIM3-PD-1
Frontiers in Immunology | www.frontiersin.org 5
+ and 2+ markers; LAG3-TIM3+PD-1+), phenotypes consistent
with an activated and functional response associated to viral
control (Figures 3D–F). HBV-specific CD8 T cells, on the other
hand, showed a significant increase of Intermediate exhaustion
and High exhaustion (2+ markers; LAG3-TIM3+PD-1+ and 3+
markers; LAG3+TIM3+PD-1+), a phenotype consistent with
A

B

C

D

FIGURE 2 | Ex-vivo Ag-specific reactivity does not associate with bulk CD8 T cell exhaustion levels. (A) Representative flow plots showing expression levels, on bulk
CD8 T cells, of inhibitory (iR) and activating (aR) receptors included in the SPICE analysis. (B) SPICE analysis showing the distribution of marker co-expression (6+
markers for CD28+PD-1+TIGIT+PD-L1+TIM3+LAG3+) among patients with either HBV-specific reactivity (core and/or pool, left panel) or HERPES-specific reactivity
(CMV and/or EBV, right panel). Frequency of CD8 T cells with phenotype consistent with low exhaustion (LAG3-TIM3-PD-1+, left panel), intermediate exhaustion
(LAG3-TIM3+PD-1+, middle panel) or high exhaustion (LAG3+TIM3+PD-1+, right panel) (C) among patients with either HBV-specific reactivity (core and/or pool) or
HERPES-specific reactivity (CMV and/or EBV) and (D) among the different clinical groups. IT, Immune Tolerant; IA+, HBeAg+ Immune Active; IC, Immune Control;
IA-, HBeAg- Immune Active; AVT, Anti-Viral Therapy. *p < 0.05; ***p < 0.001.
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FIGURE 3 | HBV-specific CD8 T cells express high frequency of exhaustion markers. (A) Representative flow plots showing expression levels, on HBV-specific CD8
T cells, of inhibitory (iR) and activating (aR) receptors included in the SPICE analysis. Dextramer-positive HBV-specific CD8 T cells (maroon) are overlaid on bulk CD8
T cells (light blue). (B) SPICE analysis showing the distribution of inhibitory receptors (6+ markers for 41BB+PD-1+TIGIT+PD-L1+TIM3+LAG3+) in bulk CD8 T cells
(left pie), HERPES-specific CD8 T cells (CMV and/or EBV, middle pie) and HBV-specific CD8 T cells (core and/or pool, right pie). ***p < 0.0001; Permutation test.
(C) Frequency of 41BB (left panel), ICOS (middle panel) and PD-1hi (right panel) expression in bulk, HBV-specific (core and/or pool) and HERPES-specific (CMV and/
or EBV) CD8 T cells. *p < 0.05; **p < 0.001; ***p < 0.0001; Wilcoxon signed rank test (bulk vs. Ag-specific) and Mann-Whitney U (HBV-specific vs. HERPES-
specific). Frequency of bulk, HBV-specific (core and/or pool) and HERPES-specific (CMV and/or EBV) CD8 T cells with phenotype consistent with low exhaustion
(LAG3-TIM3-PD-1+, 1+ markers), intermediate exhaustion (LAG3-TIM3+PD-1+, 2+ markers) or high exhaustion (LAG3+TIM3+PD-1+, 3+ markers) shown as
(D) SPICE analysis; ***p < 0.0001; Permutation test, (E) SPICE CoolPlot and (F) pooled data; **p < 0.001; ***p < 0.0001; Wilcoxon signed rank test (bulk vs. Ag-
specific) and Mann-Whitney U (HBV-specific vs. HERPES-specific). (G) Frequency of HBV-specific CD8 T cells with a high exhaustion phenotype (LAG3+TIM3+PD-1+)
among patients with [HBVsp(+)] or without [HBVsp(-)] ex vivo HBV-specific reactivity (core and/or pool). *p < 0.05; Mann Whitney U test.
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functional exhaustion and lack of viral control (Figures 3D–F).
Despite the low number of samples, High exhaustion tends to
increase with clinical progression (Supplementary Figure 3E).
In line with these results, patients with ex vivo HBV reactivity
[HBVsp(+)] have significantly lower amounts of highly
exhausted HBV-specific CD8 T cells (Figure 3G).
Frontiers in Immunology | www.frontiersin.org 7
We then sought to determine whether non-reactive,
exhausted HBV-specific CD8 T cells retained the ability to
proliferate. Samples with different levels of ex vivo HBV
reactivity were incubated, in the presence of IL-2, with
different HBV peptide pools and controls and proliferation
levels were quantified on day 10 (Figure 4A). Samples with ex
A

B

C

FIGURE 4 | T cell expansion unveils Ag-specific T cells in ex vivo not-reactive samples. (A) Representative flow plots showing the gating strategy for the cell trace
dilution assay. (B) Frequency of CD8 proliferating cells among reactive and non-reactive samples for both HBV-specific (core and/or pool) and HERPES-specific
(CMV and/or EBV) assays. (C) Baseline frequency of CD28+PD-1+ CD8 T cells and the mean fluorescence intensity (MFI) of the PD-1 marker on CD8 T cells among
samples with low or high proliferation levels. *p < 0.05; **p < 0.001; Mann Whitney U.
September 2021 | Volume 12 | Article 648420
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vivo reactivity [ELISpot(+)] showed consistent proliferation for
both HBV- and HERPES-specific stimulations (Figure 4B).
Samples that did not show any ex vivo reactivity for the
ELISpot assay were only partially recovered by proliferation
(Figure 4B). Despite the lower limit of detection of the
proliferation assay, some samples did not show any
proliferative capability. High proliferation levels for HBV-
specific T cell reactivity was associated with a higher baseline
frequency of CD28+PD-1+ co-expression and higher expression
of PD-1 per cell on bulk CD8 T cells (Figure 4C and
Supplementary Figure 4A), suggesting that low exhaustion is
a requisite for HBV-specific T cell proliferation, while this
difference was not observed for HERPES-associated proliferation.
Altogether, these results show that functional exhaustion of
HBV-specific CD8 T cells plays a role in the clinical progression
of chronic HBV infection and could be a barrier to successful
immunotherapy strategies.

Lack of Response to PD-L1 Blockade Is
Associated With Higher Frequency of
Functionally Exhausted HBV-Specific
T Cells
Ex vivo HBV-specific reactivity was assessed in the presence of
MEDI2790, a PD-L1 inhibitor. Response to PD-L1 blockade was
defined as increase of at least 10 SFUs in the ex vivo ELISpot
when compared to the untreated control. We observed a 50%
response to MEDI2790 [R(+)](Figure 5A). Response to PD-L1
blockade was independent of HBeAg, HBsAg, ALT or HBV
DNA levels (Supplementary Figures 5A, B). Distribution
patterns of the 6 iR (Supplementary Figure 5C, 6+ markers
PD-1+41BB+TIGIT+PD-L1+TIM3+LAG3+) was also similar
between responders and not responders. However, non-
responders had a significantly higher frequency of functionally
exhausted HBV-specific CD8 T cel ls (3+ markers ,
LAG3+TIM3+PD-1+), independently of the expression levels
of PD-L1 (Figures 5A–C) while response to MEDI2790 was
associated with a higher frequency of the phenotype TIM-3+PD-
1+PD-L1+ in absence of LAG3 expression (Figures 5A, C).
These results strongly suggest that LAG3 expression signifies a
functionally exhausted status that cannot be recovered by PD-L1
blockade strategies.

Response to PD-L1 Blockade Increases
HBV-Specific T Cell Functionality
Finally, we tried to determine the mechanisms underlying the
increase of ex vivo HBV reactivity after PD-L1 blockade.
However, proliferation levels were not increased in the presence
of MEDI2790 (Figure 6A), MitoTempo, a mitochondrial-targeted
antioxidant agent that has shown to restore T cell activation (28)IL-
12, a third signal cytokine that regulates T cell responses and could
rescue anti-viral activity of exhausted cells (29, 30), or the
combination of all three agents (Supplementary Figure 6A).
Then, we sought to determine whether PD-L1 blockade would
affect cytokine production. HBV-specific CD8 T cells are present in
such a low frequency that conventional approaches combining
peptide pool stimulation and intracellular staining of bulk CD8
Frontiers in Immunology | www.frontiersin.org 8
T cells often fail because the signal is under the threshold of
detection. To overcome this limitation, we used an innovative
approach to force the upregulation of the TCR to the cell surface
that allowed us to combine dextramer staining, peptide pool
stimulation and intracellular staining of HBV-specific CD8 T
cells, greatly increasing the sensitivity of the flow cytometry-
based approach. As shown in Figure 6B, overnight stimulation
of PBMCs with the irrelevant peptide Actin and dasatinib
treatment prior to the dextramer and intracellular staining did
not detect cytokine production among HBV-specific CD8 T cells.
However, when a relevant peptide (HBV Pool) was used for the
stimulation (Figure 6B, right panel) we were able to detect a robust
cytokine production by HBV-specific CD8 T cells. PD-L1 blockade
significantly increased IFNg production and cytotoxicity
(IFNg+GrzB+) for both HBV-specific and HERPES-specific CD8
T cells (Figure 6C, left and middle panels). IL-10 production was
increased only for HBV-specific T cells (Figure 6C, right panel)
while TNF, IL-2 and IFNg+CD107a+ remained unchanged
(Supplementary Figure 6B). In line with our previous results,
the frequency of Ag-specific CD8 T cells with a functional response
(cytokine production or cytotoxicity) is inversely associated with
the frequency of functional exhaustion (Figure 6D and
Supplementary Figure 6C).
DISCUSSION

In this study we show that a high frequency of functionally
exhausted HBV-specific CD8 T cells (as determined by the
simultaneous expression of LAG3+TIM3+PD-1+) is associated
with both lack of ex vivo reactivity and unresponsiveness to PD-
L1 blockade. These results could have implications in the design
of immunotherapy strategies aiming to achieve a functional cure
for chronic HBV infection.

Chronic HBV infection, besides the stigma and significant
impact on quality of life (31, 32), is characterized by a 100-fold
increase of the risk to develop hepatocellular carcinoma (HCC)
(2, 33). A functional cure, defined as persistent absence of HBsAg
in the absence of antiviral therapy, indicates complete immune
control and viral suppression and is regarded as the optimal
point of therapy (7). Current antiviral therapy (AVT) with
different nucleos(t)ide reverse transcriptase inhibitors (NRTI)
can provide long-term benefits by suppressing HBV viremia but
they are still life-long treatments with negligible rates of HBsAg
loss and patients maintain a 6% 8-years cumulative risk to
develop HCC (4–6). Some patients can achieve functional cure
after discontinuation of NRTI treatment (34, 35), but this is a
minority and stopping NRTI’s is not without risks as severe flares
and liver decompensation may occur (36). PEGylated-IFNa is a
finite but toxic therapy, given for 6-12 months as monotherapy
or combined with NRTI, resulting in about 10% HBsAg loss after
long-term follow-up. Thus, achieving HBsAg loss with finite
therapy is a current need for chronic HBV infected patients.

The immune system is able to completely suppress
intrahepatic HBV replication during self-resolving acute HBV
infection and the critical antiviral role of adaptive immunity,
September 2021 | Volume 12 | Article 648420
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especially cytotoxic CD8 T cells, during the resolution of acute
HBV infection has been clearly defined (8–10). In humans, liver
transplant immune recipients are able to clear HBV infection in
organs from chronically infected donors (12, 13), proving that
chronic HBV infection can be functionally cured by an effective
immune response. Direct disruption of the PD-1:PD-L1 axis
with monoclonal antibodies has been successfully tested to
restore functionality of CD8 T cell in both, cancer and
infectious diseases (37–40). The combination of immunotherapy
and therapeutic vaccine showed some promising results in a small
clinical trial (41). In addition, we have previously shown that
in vitro PD-L1 blockade with MEDI2790 increased by two-fold
the HBV-specific T cell response in 97% of chronically infected
Frontiers in Immunology | www.frontiersin.org 9
patients with baseline T cell reactivity (20). However, due to the
extremely low frequency of peripheral HBV-specific T cells, in
our past study HBV-specific T cell were expanded prior to the
PD-L1 blockade, serving as a proof-of-concept for the use of
immunotherapy in chronic HBV infection.

To increase the translatability of this proof-of-concept, in this
study we optimized an ex vivo approach to determine HBV-
specific T cell reactivity and response to MEDI2790. Two
different HBV peptide pools, a commercially available peptide
pool containing 9 HLA-class-I restricted T cell epitopes known
to be highly immunogenic and a custom-generated pool
including 34 HLA-class-I restricted epitopes shared by all HBV
genotypes, were used to maximize the level of response when
A

B

C

FIGURE 5 | Highly exhausted HBV-specific CD8 T cells do not respond to PD-L1 blockade. Frequency of HBV-specific (core and/or pool) CD8 T cells with
phenotype consistent with low exhaustion (LAG3-TIM3-PD-1+PD-L1-; 1+ markers); intermediate exhaustion LAG3-TIM3+PD-1+PD-L1±; 2+/3+ markers) and high
exhaustion (LAG3+TIM3+PD-1+PD-L1+; 4+ markers) between responders (R) and non-responders (NR) to PD-L1 blockade shown as (A) SPICE analysis. *p < 0.05;
Permutation test, (B) SPICE CoolPlot and (C) pooled data. Mann Whitney U.
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A

B

C

D

FIGURE 6 | PD-L1 blockade increases the frequency of IFNg-producing Ag-specific CD8 T cells. (A) Effect of PD-L1 blockade on the proliferation levels of Ag-
specific CD8 T cells. (B) Representative flow plots showing the gating strategy for intracellular cytokine staining of dasatinib-treated HBV-specific CD8 T cells.
Dextramer-positive CD8 T cells (maroon) are overlaid on bulk CD8 T cells (light blue). While cytokines cannot be detected on samples stimulated with Actin negative
control (left panel), dasatinib-treated stimulated HBV-specific T cells accumulate both cytokines and degranulation markers (right panel). (C) Effect of PD-L1 blockade
in IFNg (left panel), IFNg+GrzB+ (middle panel) and IL-10 (right panel) production. Blue dots show HERPES-specific stimulations (CMV or EBV) while orange dots
show HBV-specific stimulations (pool). *p < 0.05; **p < 0.001; Wilcoxon signed rank test. (D) Linear regression showing the negative correlation between Ag-specific
IFNg production and the frequency of highly exhausted (LAG3+TIM3+PD-1+) Ag-specific CD8 T cells. Blue dots show HERPES-specific stimulations (CMV or EBV)
while orange dots show HBV-specific stimulations (pool).
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using this ex vivo approach. HBsAg overlapping peptide pools
were not included for ex vivo ELISpot analysis, since HBsAg
immune responses are normally scarce and impaired during
chronic HBV (22, 40, 42). As recently reported (43, 44), in this
study we show that the immune response leading to the initial
control of viral replication is broad and targets multiple HBV
proteins while HBeAg- Immune Active hepatitis is characterized
by a narrow and weak HBV-specific T cell response. In line with
these results, we found that HBV-specific CD8 T cells are
significantly more exhausted than herpes-specific CD8 T cells
(CMV and/or EBV) in the same patients. It is worth noting that
herpes infections are also chronically established but, in
immunocompetent hosts, don’t show a clinical progression due
to complete control of replication by the immune system. Not
surprisingly, high levels of functional exhaustion in the HBV-
specific CD8 T cell population was associated to lack of ex vivo
reactivity and failure to respond to MEDI2790 PD-L1 blockade.

We then developed a strategy to quantify cytokine production
by HBV-specific CD8 T cell by flow cytometry. While MHCI
dextramers have been widely used as a detection tool for ex vivo
approaches, once antigen-specific CD8 T cells are activated
the T cell receptor gets internalized and thus unavailable for
dextramer-based staining. Due to this limitation, flow cytometry
approaches to quantify cytokine production from antigen-
specific T cells usually focus on the bulk CD8 subset, greatly
limiting the sensitivity of the detection. This is especially
problematic in chronic HBV infection where, due to the rare
frequency of these cells, the frequency of cytokine-producing
cells is rarely detected over the background noise. To overcome
this limitation, we used dasatinib, a blocker of the Src kinase
family (45–47), to force the re-expression of the TCR on the
surface of antigen-specific CD8 T cells after peptide stimulation.
Using this approach, we were able to determine that HBV-
specific CD8 T cells with low level of exhaustion were indeed
responding to PD-L1 blockade by increasing the production of
IFNg and IFNg+GrzB+ cytotoxic responses. However, HBV-
specific CD8 T cells with higher levels of exhaustion, mainly
characterized by the expression of LAG3, are unable to respond
to this immunotherapeutic approach.

Bengsch et al. (48) have previously shown that iR expression
on HBV-specific CD8 T cells is hierarchical, with PD-1 being
expressed the most and LAG-3 being the hardest iR to detect.
Despite the comprehensive characterization of the different iR
expression on HBV-specific CD8 T cells, they analyzed the
response to PD-L1 blockade as the increase on proliferative
capacity. Since this approach has a higher detection limit, they
were not able to identify a specific phenotype associated with lack
of response. In this study, we were able to determine that the co-
expression of PD-1, TIM-3 and LAG-3 is associated with the
lack of response to anti-PD-L1 antibodies. This result has
direct translational implications. Foremost, it suggests that
monotherapy strategies are not suitable to treat chronically
infected HBV patients. In addition, since terminally exhausted
CD8 T cells undergo epigenetic changes that prevents for this
phenotype to be rescued (49, 50), finding the appropriate
therapeutic window before HBV-specific T cells become
Frontiers in Immunology | www.frontiersin.org 11
functionally exhausted, may be necessary to successfully apply
immunotherapy to cure chronic HBV infection. Finally, even if
combination strategies may be still effective in selected or
unselected HBV patients, targeting LAG-3 blockade (51, 52)
may be essential to elicit a clinically effective response.

Altogether, our results suggest that while immunotherapeutic
approaches aimed to boost HBV-specific T cell immunity could
be a successful strategy to elicit a functional cure for chronic
HBV infection, a monotherapy aiming to disrupt the PD-1:PD-
L1 axis could have limited effectiveness. The high levels of
functional exhaustion present in the HBV-specific CD8 T cell
subset suggest that combination strategies, potentially including
the combination of anti-LAG-3 with other anti-iR antibodies,
should be explored and likely prioritized for unselected chronic
HBV patients.
METHODS

Patients
One hundred adult patients with chronic HBV infection (female
38%; median age 48 years old) were included in this study. All
patients were in follow up at the Toronto General Hospital Liver
Centre, University Health Network in Toronto, Canada and
willing to provide informed consent. All patients had
confirmed chronic HBV infection, documented by the
presence of HBsAg for at least 12 months prior to the
inclusion of this study. The study protocol was approved by
the Ethics Committee of the Toronto General Hospital,
University Health Network. Exclusion criteria included acute
HBV infection, acute flare or reactivation of HBV infection
(defined as symptoms of acute hepatitis and recent elevation of
ALT > 10xULN or bilirubin levels), treatment with interferon
(IFN)-a, systemic corticosteroids or any other immune
modulators or suppressive agents within 4 weeks of screening,
cirrhosis, hepatocellular carcinoma, liver transplantation, known
coinfection with HCV, HDV and/or HIV, need for renal dialysis
and known active autoimmune disease, including autoimmune
hepatitis. Informed consent was obtained from each individual at
enrollment. Peripheral blood samples were obtained by
venipuncture, anonymized and processed to obtain peripheral
blood mononuclear cells (PBMC). All samples were
cryopreserved until further use. Characteristics of the cohort
are summarized in Table 1.
Ex Vivo ELISpot
PBMC samples from chronic hepatitis B (HBV) patients were
thawed and washed in CTL Anti-Aggregate™ medium (Cellular
Technology Limited, CTL) and rested overnight at 37°C in
complete RPMI with 10% human serum. Duplicated wells
containing 5E5 PBMC were incubated overnight with the
appropriate peptide pools in CTL-Test™ Medium (Cellular
Technology Limited, CTL), including negative and positive
controls, in the presence of MEDI2790 or a control IgG
isotype. Antigen-specific T cell responses were quantified using
September 2021 | Volume 12 | Article 648420
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ELISpot PLUS IFNg pre-coated plates (MabTech) and the
ImmunoSpot® reader and software (Cellular Technology
Limited, CTL). CORE, POOL, CMV, EBV and the negative
control ACTIN pool were used at a concentration of 2 µg/
peptide/mL. The positive control CEFX pool was used at 0.2
µg/peptide/mL. HBVsp refers to combined results from HBV
CORE and HBV POOL stimulations. HERsp (HERPES) refers to
combined results from CMV and EBV stimulations. Additional
information, including specific peptides, of the peptide pools can
be found in Supplementary Table 1.

One hundred samples were tested in this study. Samples with
failed positive and/or negative controls after two independent
attempts were discarded. A total of 89 ELISpot quantifications
passed all quality controls and were included in the analysis for
this study. All results are reported after background subtraction
using each sample’s actin control.

Polychromatic Flow Cytometry
Ex Vivo Analysis of Bulk CD8 T Cells
PBMC samples from the 100 chronic HBV patients were thawed,
washed in CTL Anti-Aggregate™ medium (Cellular Technology
Limited, CTL) and rested 2h in CTL Test™ medium (Cellular
Technology Limited, CTL). Cells were then washed and stained
in 96-well plates at 1E6 - 2E6 cells per well with titrated amounts
of LIVE/DEAD™ Fixable Blue Dead Cell stain kit (Invitrogen).
All surface markers were stained at a final volume of 100µL with
titrated amounts of monoclonal antibodies, in the presence of
Frontiers in Immunology | www.frontiersin.org 12
Super Bright Staining Buffer (eBiosciences) for 45 min at room
temperature. After the final wash cells were fixed with 1% PFA/
PBS and acquired in a BDSymphony® flow cytometer. Analysis
was performed with FlowJo v10.6.2. Further information about
the antibodies can be found in Supplementary Table 2.

Ex Vivo Analysis of HBV-Specific CD8 T Cells
For a subset of patients with selected HLA alleles (HLA-A*0201,
HLA-B*3501 and HLA-B*5101; n = 48) dextramer staining was
included in the ex vivo analysis. Samples were incubated for 15
min, previous to the surfacemarker staining, with the appropriated
dextramers depending on their HLA type. Negative controls were
included for all samples. Further information of the dextramers
can be found in Supplementary Table 3.

Functional Analysis by Intracellular Staining
Thirteen HLA-A*0201 samples, with HBV-specific dextramer
frequency higher than 0.1% and sample availability were selected
for a functional analysis. PBMC samples were thawed, washed in
CTL Anti-Aggregate™ medium (Cellular Technology Limited,
CTL) and rested 2h in CTL Test Plus™ medium (Cellular
Technology Limited, CTL). PBMC were then washed and
added to 48 well plates at a concentration of 2E6/mL on CTL
Test Plus™ medium. Samples were stimulated with either HBV
Pool (PX-HBV ThinkPeptide), CMV (PA-CMV-001, PanaTecs),
EBV (PA-CMV-001, PanaTecs) or Actin control (PM-ACTS,
JPT) at 2µg/peptide/mL for 12h in the presence of brefeldin A
(BFA) and titrated amounts of CD107a antibody. Cells were then
washed and incubated with Dasatinib 100mM (Sigma-Aldrich)
in PBS for 1h at 37°C to favor the re-expression of the TCR in the
cell surface (45–47). All further incubations and washed were
done in the presence of 100mM Dasatinib (Sigma-Aldrich). This
approach is a modification of a previously reported protocol (30,
53). After the incubation cells were stained with titrated amounts
of LIVE/DEAD™ Fixable Blue Dead Cell stain kit (Invitrogen).
After a blocking step, each actin control/peptide-stimulated pair
was stained with the appropriate dextramers (Capsid or Protein S
for Actin/HBV pool, CMV for Actin/CMV pool and EBV for
Actin/EBV pool) for 15 minutes. Stimulated and dasatinib-
treated samples stained with control dextramers were used to
determine the gating strategy. All surface markers were then
stained at a final volume of 100µL with titrated amounts of
monoclonal antibodies in the presence of Super Bright Staining
Buffer (eBiosciences). Cells were then permeabilized using a
fixation/permeabilization kit (BD) according to the
manufacturer’s instructions and stained with titrated amounts
of monoclonal antibodies for 45 min at 4°C. After the final
washes cell were resuspended in 1% PFA/PBS and acquired in a
BDSymphony® flow cytometer. Analysis was performed with
FlowJo v10.6.2. Further information about the antibodies and
dextramers can be found in Supplementary Tables 2, 3.

Proliferation Assay
Fifteen samples with available Leukopak where included for the
proliferation assay. PBMCs were thawed, washed in CTL Anti-
Aggregate™ medium (Cellular Technology Limited, CTL) and
rested for 2h at 37°C in CTL Test Plus™ medium (Cellular
TABLE 1 | Characteristics of the cohort.

Flow cytometry Ex vivo ELISpot p

n 100 89
Sex (% Female) 38/100 (38%) 44/89 (49.4%)
Age 48 [35 - 57] 44 [33 – 54] NS1

Race (% Asian) 81/100 (81%) 76/89 (85.4%)
AVT2 21/100 (21%) 13/89 (14.6%)
AVT (years) 5 [3.5 – 7.8] 5 [3.5 – 8.7] NS
HBeAg (% Negative)
AVT(-) 49/79 (62.0%) 36/76 (47.4%)
AVT(+) 18/21 (85.7%) 10/13 (76.9%)

ALT (U/mL) 30 [23 - 58] 29 [22 – 63] NS
ULN3 ≤ 1.3X
AVT(-) 54/79 (68.4%) 49/76 (64.5%)
AVT(+) 18/21 (85.7%) 13/13 (100%)

Log HBV DNA 4.0 [1.3 – 8.0] 5.8 [2.3 – 8.2] NS
HBsAg (IU/mL) 2803 [683 - 12176] 5181 [1023 – 45385] NS
HBsAg (% ≤10)
AVT(-) 6/68 (8.8%) 4/64 (6.3%)
AVT(+) 1/20 (5.0%) 0/13 (0.0%)

Clinical groups4

Immune Tolerant (IT) 19/100 (19%) 27/89 (30.3%)
HBeAg+ Immune Active (IA+) 12/100 (12%) 13/89 (14.6%)
Immune Control (IC) 34/100 (34%) 21/89 (23.6%)
HBeAg- Immune Active (IA-) 14/100 (14%) 15/89 (16.9%)
Antiviral Therapy (AVT) 21/100 (21%) 13/89 (14.6%)
1NS, Not significant; p > 0.1. 2AVT, Antiviral Therapy. 3ULN, ALT upper limit of normal. 4All
HBeAg-negative patients in this category spontaneously seroconvert. IT = HBeAg (+) and
ULN ≤ 1.3X; HBeAg+ IA = HBeAg (+) and ULN > 1.3X; IC = HBeAg (-) and ULN ≤ 1.3X;
HBeAg- IA = HBeAg (-) and ULN > 1.3X. Dichotomic variables are expressed as number/
total number (frequency). Continuous variables are expressed as median [Interquartile
range, IQR].
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Technology Limited, CTL). After resting PBMCs were counted
and transferred to 50mL conical tubes and resuspended at 1E6/
mL in PBS with titrated amounts of Cell Trace™ Violet Cell
proliferation (ThermoFisher Scientific). After a 20min
incubation at 37°C the staining was stopped with PBS 10%
FCS at 1:4 ratio. PBMCs stained with the Violet Cell Trace™

were cultured at 2E6/mL, in duplicate, in the presence of 20 IU of
IL-2 and 2µg/peptide/mL of the appropriate stimuli (HBV Core,
HBV Pool, HBV Capsid, CMV, EBV, Actin or CEFX peptide
pools as described in the ELISpot section) in the presence of
either 1) IgG control, 2) MEDI2790, 3) 0.1 mM Mitotempo
(Sigma Aldrich), 4) 10 ng/mL IL-12 and 5) MEDI2790 + 0.1
mM Mitotempo (Sigma Aldrich) + 10 ng/mL IL-12. Media (with
IL-2) was changed at day 5 and proliferation was assessed on day
10 by flow cytometry.

MEDI2790 Antibody Generation
MEDI2790 generation has been previously described (20, 54).
Briefly, IgG2 and IgG4 XenoMouse animals were immunized
with human PD-L1-Ig or CHO cells expressing human PD-L1.
Hybridomas were established and supernatants screened for
binding to human PD-L1-transfected HEX 293 cells and
inhibition of PD-1 binding to PD-L1 expressing CHO cells.
MEDI2790 was selected based on affinity, activity and specificity
profile. The constant domain of the antibody was then exchanged
for a human IgG1 triple-mutant domain containing three-point
mutations that reduce binding to C1q and Fc gamma receptors,
resulting in reduced antibody-dependent cellular cytotoxicity
(ADCC) and complement-dependent cytotoxicity (CDC).

Statistical Analysis
GraphPad Prism (PRISM 8 for macOS v8.3.0) was used to
perform statistical analyses and to create graphs. Data is shown
as number of cases, individual points or bars depicting the
mean ± standard error (SEM). Variables were analyzed using
non-parametric tests as appropriate: Mann-Whitney U test for
unpaired variables, Wilcoxon matched-pairs signed rank test for
paired variables and Kruskal-Wallis one-way analysis of variance
for the simultaneous comparison of 3 or more groups.
Associations were analyzed by linear regression and 95%
Frontiers in Immunology | www.frontiersin.org 13
confident interval (CI). Analysis and graphical representation
of the distribution of inhibitory (iR) and activating (aR) receptors
on the different CD8 T cell populations was performed using the
Simplified Presentation of Incredibly Complex Evaluations
(SPICE v6) as previously described (55).
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