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Phosphorelays are extended two-component signalling systems found in diverse bacteria,
lower eukaryotes and plants. Only few of these systems are characterized, and we still lack
a full understanding of their signalling abilities. Here, we aim to achieve a global understand-
ing of phosphorelay signalling and its dynamical properties. We develop a generic model,
allowing us to systematically analyse response dynamics under different assumptions.
Using this model, we find that the steady-state concentration of phosphorylated protein at
the final layer of a phosphorelay is a linearly increasing, but eventually saturating function
of the input. In contrast, the intermediate layers can display ultrasensitivity. We find that
such ultrasensitivity is a direct result of the phosphorelay biochemistry; shuttling of a
single phosphate group from the first to the last layer. The response dynamics of the phos-
phorelay results in tolerance of cross-talk, especially when it occurs as cross-deactivation.
Further, it leads to a high signal-to-noise ratio for the final layer. We find that a relay
length of four, which is most commonly observed, acts as a saturating point for these dynamic
properties. These findings suggest that phosphorelays could act as a mechanism to reduce
noise and effects of cross-talk on the final layer of the relay and enforce its input–response
relation to be linear. In addition, our analysis suggests that middle layers of phosphorelays
could embed thresholds. We discuss the consequence of these findings in relation to why
cells might use phosphorelays along with enzymatic kinase cascades.

Keywords: two-component signalling; ultrasensitivity; computational modelling;
cross-talk; noise
1. INTRODUCTION

Organisms employ a variety of signalling systems to
sense and react to their environment. One of these,
commonly found in bacteria, lower eukaryotes and
plants, is the so-called phosphorelays [1,2]. Phosphore-
lays are extended two-component systems [3] where
there are several intermediate proteins between a histi-
dine kinase (HK) and a response regulator (RR),
resulting in a structurally linear cascade (figure 1a).
Histidine kinases are signalling proteins with auto-
phosphorylation ability, which is usually controlled
directly or indirectly by external signalling molecules.
Once autophosphorylated, an HK can transfer this
phosphate group to an intermediate protein in a
phosphorelay. These intermediate proteins are usually
His-containing phosphotransfer proteins (Hpt) or
proteins with receiver domains (REC) similar to those
orrespondence (o.s.soyer@exeter.ac.uk; csikasz@cosbi.eu).
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found on RRs [3]. In some systems, such as that
controlling virulence in Bordetella [4], the relay function
is achieved with a single protein that contains these
multiple domains. Phosphorelays terminate with an
RR, which in its phosphorylated form is involved
in the generation of a physiological response. Such
responses mediated by phosphorelays include the
control of sporulation [5], virulence [4], stress responses
[6] and cytokinin signalling [7], appearing in both
prokaryotes and eukaryotes. Interestingly, all these
characterized systems have a similar structure
composed of four layers usually arranged as
HK–REC–Hpt–RR, despite differences in biophysical
implementation [8]. In each case, the intermediate
proteins (or protein domains) shuttle a single phosphate
group all the way from an initial HK down to a
final RR.

Despite their widespread use, we are still far from a
full understanding of the signal-processing capabilities
of phosphorelays. What dynamical advantages, if any,
do phosphorelays offer? Why are there structural simi-
larities among different systems, especially with regard
This journal is q 2010 The Royal Society
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Figure 1. Dynamics of linear phosphorelays. (a) Cartoon representation of the linear phosphorelay considered. The phosphotrans-
fer reactions among each layer are shown for a four-layer relay. Note that other configurations of specific proteins (RR, HK, etc.)
are possible that would lead to the same dynamical effects. The generic relay structure is indicated by referring to different layers
as L1, L2, etc. (b) Steady-state input–response curves are shown for each layer in relays with increasing relay length (number of
relays indicated on top of each panel). Dark blue lines, L1p; brown lines, L2p; green lines, L3p; purple lines, L4p; light blue lines,
L5p. (c) Time course showing system response (phosphorylated form of each layer), obtained from deterministic (middle) and
stochastic (bottom) models of a four-layer system. Changes in input during the time course of simulation are shown in the
upper panel. For the stochastic model, the input values are multiplied by 100 (§4).
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to relay length? Why are phosphorelays employed in
processing certain signals, while other signals are pro-
cessed by a single HK–RR pair? Similarly, why do
certain eukaryotes use these systems in conjunction
with enzymatic kinase cascades? While intermediate
proteins in a phosphorelay can provide additional
points for signal integration [5], there are other systems
where phosphorelays clearly lack any known signal inte-
gration function [4]. It is not clear how these differences
translate to functional roles or dynamical properties of
these systems. Towards a better ability to answer
these questions, our aim here is to achieve a general
understanding of structure and dynamics in phospho-
relay signalling. To this end, we develop a generic
model of a phosphorelay and characterize its steady-
state response dynamics at each layer. We repeat this
analysis for relays of different length and under different
assumptions regarding the functionality of the kinase at
the top of the relay (i.e. a bifunctional kinase, see
J. R. Soc. Interface (2011)
below). Further, we run deterministic and stochastic
simulations to analyse how relay length alters the
effects of cross-talk and noise in these signalling
systems.
2. RESULTS

Phosphorelays starting with an HK and ending with an
RR constitute one of the signalling systems found in
microbes and plants. Here, we analyse the properties
of these diverse systems from a response dynamics per-
spective. As the number of larger systems that can be
constructed using the modular structure of two-com-
ponent systems is immense, we concentrate here only
on linear relays where no transcriptional (or other) feed-
backs occur (figure 1a). We construct generic
mathematical models for relays of varying lengths
(§4). Using these models, we first analyse the response
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dynamics of these systems. In particular, we derive
steady-state response levels (i.e. phosphorylated protein
concentrations) at each input level, resulting in
so-called input–response curves (also known as
signal–response or dose–response curves). Interest-
ingly, we find that increasing relay length leads to
increasingly more ultrasensitive responses at intermedi-
ate layers (figure 1b). As one would expect from
ultrasensitive responses, the intermediate layers show
a switch-like response, generating low (high) responses
for inputs below (above) a threshold (figure 1c, top
two panels). The response coefficient of the most
ultrasensitive layer (which measures the ratio between
input levels resulting in 10% and 90% activation at
this layer) saturates with relay length and already
gets close to the minimum possible value of one (maxi-
mal ultrasensitivity) at a relay length of four (electronic
supplementary material, figure S1). Unlike the inter-
mediate layers, the phosphorylated protein
concentration at the final layer is increasing with
increasing input before it saturates. With increasing
relay length, the input–response curve for this layer
becomes linear, while its transition from linear to
saturated sharpens (figure 1b). The latter effect results
in increasing sensitivity, calculated as DL4p/Dinput
summed over the signal (i.e. input) range from 0 to 2.
Both effects seem to saturate around four to five
layers (electronic supplementary material, figure S2).

The ultrasensitivity at intermediate layers is a sur-
prising feature of the phosphorelay and is in contrast
to eukaryotic kinase cascades, where any ultrasensitiv-
ity that can be achieved is shown to increase towards
the end of the cascade and is maintained at the final
layer [9,10]. We find that the reason for these differences
lies with the fact that phosphorelays shuttle a single
phosphate group among different proteins rather than
using separate ATP for each layer, as enzymatic
kinase cascades do. At low input levels, the phosphate
group from the HK at the top of the relay is shuttled
all the way down to the last layer. In other words, at
these input levels, the relay simply acts as a phosphate
channel; all the intermediate layers are pushed back to
their unphosphorylated state simply by transferring the
phosphate group to lower layers. Once the input level
reaches a point where the last layer is saturated, the
layer above it starts to accumulate in its phosphorylated
state. This dynamics cascades backwards through
the relay with proteins at layers closer to the top
of the pathway being the last to accumulate in
their phosphorylated form. The result is nonlinear
input–response curves (i.e. ultrasensitivity) for phos-
phorylated forms of the proteins at intermediate
layers (figure 1b). In other words, for each protein in
the relay, those below it act as a threshold generator
by removing its activating phosphate group. Perform-
ing an extensive robustness analysis (as in Barkai &
Leibler [11]), we find that this effect is achieved under
a large range of parameters (electronic supplementary
material, figures S3 and S4). In particular, the second
layer of a four-layer system maintains ultrasensitivity
under a wide range of kinetic rates and protein concen-
trations, suggesting that relay structure rather than
kinetic parameters is the key factor in the emergence
J. R. Soc. Interface (2011)
of ultrasensitivity in the system. Lowering the total
protein concentration in the first layer has a strong
negative effect on ultrasensitivity (electronic sup-
plementary material, figure S3B), but this effect is
due to resulting slow input, and could be compensated
for (i.e. ultrasensitivity can be regained) by decreasing
self-dephosphorylation of the last layer.

In line with the mechanism of how ultrasensitivity is
generated in the relay, we find that the threshold and
sharpness of the input–response curves at intermediate
layers can be tuned by the dephosphorylation rate of
the last layer (electronic supplementary material,
figure S5). Dephosphorylation of the last layer can
occur through hydrolysis activity intrinsic to RRs and
through dephosphorylation by a specific phosphatase
or a bifunctional HK. In particular, bifunctional HKs
are common in single HK–RR pairs, where they can
both phosphorylate and dephosphorylate the RR [12].
There is one reported case of bifunctional HKs in phos-
phorelays, where the HK at the top of the relay transfers
its phosphate group to the next layer but dephosphory-
lates the RR at the bottom of the relay [7]. Based on
that study, we model the effect of a bifunctional HK
at the top of the relay as an enzymatic dephosphoryla-
tion of the final layer (L4p) by the first layer (L1) (§4
and figure 2). We find that increasing the efficiency of
this enzymatic reaction flattens input–response curves
of all layers and pushes the threshold point to higher
input values (figure 2). This in turn reduces sensitivity
of the final layer in the same input regime (from 0 to 2),
but extends the range of inputs where the system can
respond. Slowing down dephosphorylation of the last
layer (either by making L1 less efficient or by reducing
the self-dephosphorylation rate of L4p) has the exact
opposite effects and reduces the effective signalling
regime but makes the system more sensitive in this
reduced regime (figure 2 and electronic supplementary
material, figure S5). Bifunctional HKs are also shown
to be important for ensuring robustness in the output
of a signalling system, against variations in protein con-
centrations [13,14]. In particular, inclusion of a
bifunctional enzyme in a phosphorelay can allow the
system to satisfy certain structural features that
ensure ‘absolute concentration robustness’, that is
robustness of the output to variations in the concen-
trations of system parts [15]. In line with this theory,
we find that the inclusion of a bifunctional HK in the
presented model allows absolute concentration robust-
ness if the self-dephosphorylation rate of the last layer
is small compared with dephosphorylation by the
bifunctional enzyme (electronic supplementary
material, figure S6).

One possible use for ultrasensitivity only at inter-
mediate layers in the phosphorelay is to limit or
exploit the effects of cross-talk. To explore this
possibility, we considered all potential cross-talks in a
four-layer linear phosphorelay (with a mono-functional
HK). At each layer, cross-talk can occur as activation or
inhibition, resulting in two cross-talk points for each
layer. Cross-activation corresponds to cellular phos-
phate donors or proteins from other pathways
phosphorylating any of the layers of the original phos-
phorelay (e.g. another relay ‘talks in’ to the
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Figure 2. Effects of a bifunctional HK. (a) Cartoon representation of a four-layer relay, with a bifunctional HK sitting at the
top and capable of dephosphorylating L4p (§4 and electronic supplementary material, equation (S1)). (b) Effect of the Michaelis
constants (Km) of the bifunctional HK on input–response curves. Dashed arrows show the trend how the responses in each layer
(noted on each panel) are changing with increasing dephosphorylation efficiency of the bifunctional HK. Km¼0.1 (dark blue
lines), 1 (orange lines), 10 (light blue lines), 100 (brown lines), NO (black lines). (c) Sensitivity in L4p as Km of the bifunctional
enzyme is varied. Sensitivities were calculated between input levels 0–2 (left panel) and 2–10 (right panel) from the changes in
the response and input (i.e. DL4p/Dinput) in the investigated input regimes. In other words, sensitivity corresponds to
the slope of the input–response curve for L4p (as shown in (b)). (d) Heat map of input–response relation of a four-layer
relay, with varying values of the Michaelis constant (Km) of the bifunctional HK in layer 1 (§4 and electronic supplementary
material, equation (S1)). Bottom plot with the NO label shows the heat map for a system without the phosphatase activity
of the HK.
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investigated one via phosphorylation). Cross-inhibition
corresponds to proteins from the original relay losing
their phosphate to hydrolysis or transferring it to
other pathways (i.e. investigated relay ‘talks out’ to
another pathway). We modelled such cross-talk reac-
tions as self-phosphorylation (reaction rates k23, k33,
k43 in equation (4.1)) and self-dephosphorylation (reac-
tion rates k22, k32, k42 in equation (4.1)) and quantified
its effects by considering the system response in the
presence of both the primary (i.e. coming from the
HK at the top of the relay) and secondary (i.e.
coming from cross-talk) inputs (figure 3a). We find
that cross-inhibition is better tolerated in general com-
pared with cross-activation (figure 3b and electronic
supplementary material, figure S7). This is in line
with the above-described general dynamics of the phos-
phorelay. Cross-activation adds on top of the primary
input and causes the final layer to reach saturation at
lower primary input levels (figure 3b, top row). This
J. R. Soc. Interface (2011)
saturation effect is worsened as cross-talk happens
closer to the final layer (electronic supplementary
material, figure S7). Hence, for ‘talk-in’ to have any
potential use as signal integration, it should operate
closer to the final layer of the relay. In contrast to
cross-activation, cross-inhibition reduces the rate of sat-
uration at the final layer and allows the system to
respond to the primary inputs in a wider range
(figure 3b, bottom row). This effect is enhanced as inhi-
bition occurs lower in the relay, but overall the effect of
cross-inhibition remains milder compared with cross-
activation (figure 3b and electronic supplementary
material, figure S7). Hence, cross-inhibition might
offer the possibility for signal branching (i.e. the phos-
phorelay producing secondary outputs, talking to
other systems) without altering the response of the
final layer. The best implementation for such a strategy
would be to have phosphotransfer to other systems
occur at higher layers of the relay. To further elucidate
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the effects of cross-talk on the steady-state response, we
derived the sensitivity to the primary input under
different points and strengths of cross-talk (electronic
supplementary material, figure S8). We find that sensi-
tivity is reduced both under cross-activation and cross-
inhibition. In line with the above summary, this effect
gets stronger as cross-activation (inhibition) occurs
further up (down) the relay. These findings extend in
general to systems with shorter relay length (electronic
supplementary material, figure S8).

Ultrasensitivity at intermediate layers of a relay might
also affect the noise properties of the system. Similar to
noise in gene regulation [16], noise in signalling systems
can result from the phosphorylation reactions inside
the system (intrinsic noise), but also from amplification
of any input noise (extrinsic noise). Previous studies
have shown that such noise in a signalling system is
directly proportional to its gain g, i.e. per cent change
in response over per cent change in input [17]. In par-
ticular, intrinsic noise in a signalling protein X (i.e.
fluctuations in its concentration) is expected to scale as
g � �X , where �X denotes the mean concentration level. It
is not clear how these findings translate to phosphore-
lays. Moreover, it is not known how the relay structure
affects the signal-to-noise ratio (SNR), a measure that
could be thought of as the ability of a signalling system
to convey meaningful information above background
noise. Calculated as temporal mean concentration of a
signalling entity ( �X) over noise (i.e. its standard devi-
ation, s), a low SNR would mean that such an entity
fluctuates so widely that its mean value could not be
taken as a reliable signal.

To analyse noise properties in phosphorelays, we con-
struct stochastic versions of the generic model presented
J. R. Soc. Interface (2011)
above and run a large number of simulations at differ-
ent input levels. This allows us to derive input–
response curves as obtained previously from the
deterministic models (§4 and figure 4a). Noting that
this analysis shows that response dynamics in this
system is well approximated by a deterministic model
(compare figures 4a and 1b), we focus the analysis on
noise properties. Using the data from figure 4a, we cal-
culate noise and SNR for each layer and at different
input levels. In line with earlier findings [17], we find
that noise scales as g � Lip, where Lip corresponds to
the mean concentration of the phosphorylated protein
from layer i (figure 4c and electronic supplementary
material, figure S9). At low input levels, noise from
the final layer tracks that of the input, while noise
from intermediate layers is low. This is because at
these input levels the relay acts as a phosphate channel
as explained above, and there is no significant amounts
of phosphorylated proteins in intermediate layers. As
the input level increases, Lip of intermediate layers
starts to increase, leading to increase in noise. This
increase peaks at the threshold, resulting in high
fluctuations in intermediate layers for these input
levels (figure 1c). Interestingly, the increase in noise
at intermediate layers leads to a decrease in the noise
from the final layer and results in a significant jump
in SNR (figure 4b). We find that these improvements
in the SNR of the final layer appears first within a
three-layer system and seems to saturate at a relay
length of four (electronic supplementary material,
figure S10).

In summary, the noise in a relay is literally being
pushed from layer to layer (figure 4c) as the input
level increases. Just before the threshold point is
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reached, the noise in the final layer becomes lowest,
while those of intermediate layers are highest. This
noise peak at intermediate layers coincides with the
input level where their response increases rapidly with
small increases in input (i.e. ultrasensitivity). These
noise dynamics translate into SNR for the final layer
being always better than expected from a random
Poisson process (black curve in figure 4b), while SNR
of the intermediate layers improves only after the
threshold input level is crossed.
J. R. Soc. Interface (2011)
3. DISCUSSION

We undertook a systematic analysis of response
dynamics in phosphorelays. Our key finding is that
phosphorelays result in ultrasensitivity (i.e. input–
response curves embedding thresholds) at intermediate
layers of the relay. That ultrasensitivity could arise in
two-component systems has been suggested before on
grounds of specific mechanisms of dimerization and
complex formation [18,19], but this study provides the
first extensive description of this dynamics arising in
linear phosphorelays. We note that this mechanism is
significantly different from that described by Goldbeter
and Koshland [20], where a target protein is activated
and deactivated by a dedicated kinase and phosphatase,
respectively, and in enzymatic fashion. In that mechan-
ism, ultrasensitivity arises when both enzymes are
highly efficient and act in the zero-order regime (i.e.
are saturated). In contrast, the model presented here
does not require enzymatic reactions. Rather, ultrasen-
sitivity arises from the structure of the relay and from
the fact that a single phosphate group is shuttled
among different proteins.

We find that specific properties of the input–response
curves in a phosphorelay can be tuned by the relay
length and dephosphorylation rate of the last layer. At
low input levels, the relay shuttles phosphate groups
from the first to the final one, while above a certain
threshold, saturation effects result in ultrasensitive
responses at intermediate layers. This response dynamics
reduces noise in the final layer over a wide range of input
levels and increases noise at intermediate layers for
input levels around the threshold point. Interestingly,
a four-layer relay seems to be a saturating point for
both increased sensitivity (at intermediate layers) and
reduced noise (at the final layer), with longer relays
not providing much improvement. In addition to these
dynamic properties, we find that phosphorelays offer
both the ability to tolerate and exploit cross-talk. In par-
ticular, we find that cross-inhibition at higher layers of
the relay could allow signal branching without affecting
response to primary inputs.

These findings are in agreement with several empiri-
cal observations from few characterized phosphorelays.
In particular, they might provide an explanation for
the observations that all relays described to date are
four-layer systems [4,7,8] and that some relays contain
phosphatases targeting at intermediate layers [8]. Fur-
thermore, this analysis provides several interesting
suggestions for how and why cells might be using phos-
phorelays. Firstly, the finding of ultrasensitive responses
at intermediate layers suggests that these layers might
act in their own right as a secondary output from the
relay. Supporting this possibility, we find that in the
phosphorelay controlling Bacillus subtilis sporulation,
the second layer has the highest number of interaction
partners (electronic supplementary material). Com-
bined with the fact that ultrasensitive responses
embed high noise, it is tempting to speculate that
such secondary outputs, when combined with a feed-
back, could involve in stochastic switching at the
population level and underlie bet-hedging strategies
[21,22]. Secondly, the relay structure might have
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evolved to provide a more linear input–response
relation at the final layer (figure 1b). While most
biochemical processes introduce nonlinearities in
input–response relation, it might be desirable that
certain responses are linear in relation to the input.
There is experimental indication, for example, that a
linear increase in the final RR Spo0A is essential for
proper response in the case of B. subtilis sporulation
[23]. Thirdly, our findings on cross-inhibition suggest
that phosphorelays might be highly suitable for allowing
signal branching (i.e. phosphors being transferred to
another relay) without detrimental effects to primary sig-
nalling. Alternatively, they might offer a mechanism for
increasing signalling fidelity against unwanted cross-inhi-
bition (e.g. loss of phosphors to hydrolysis). Finally, the
existence of phosphorelays might relate to the fact that
they use only one ATP molecule in contrast to most
eukaryotic signalling cascades that consume high levels
of ATP. Especially in adverse environmental situations
that cause significant reduction in cellular ATP levels,
phosphorelays might still be functional where enzymatic
cascades might not be. This is an intriguing proposition
given the observation that most phosphorelays found in
microbes and plants to date are involved in stress-related
responses [1]. The presented analysis shows that despite
this key difference in ATP use, phosphorelays can still
embed key dynamical properties as seen in eukaryotic
systems, such as ultrasensitivity [20,24].

Experimental studies will be needed to further vali-
date the findings and suggestions from this study. In
particular, we envision that it could be possible to
measure phosphorylation levels at intermediate layers
of a phosphorelay to validate ultrasensitivity. Similarly,
experiments can be devised to measure the effects of
cross-inhibition. This would be an interesting avenue,
as most works on cross-talk so far have concentrated
only on cross-activation [12,25]. In addition to these
specific directions, there are other potentially interesting
avenues to be explored both theoretically and exper-
imentally. For example, biochemical processes such as
dimerization and regulation of total protein amounts
at different layers of a phosphorelay might introduce
additional response dynamics into the system as seen
before [26–28]. Similarly, it would be interesting to ana-
lyse how feedbacks, as seen in some relays [29], could
alter the global dynamical properties described here.

As with any other biological system, phosphorelays
are intrinsically complex and the result of evolutionary
processes. These two facts make it a daunting task to
distil their key design properties that are significant
for their functional role. Using generic mathematical
models and theoretical analysis of response dynamics
can play a useful and important part in this quest.
4. METHODS

We construct generic models of phosphorelays by con-
sidering the core reactions of HK autophosphorylation
and phosphate transfer. While modelling these reac-
tions, we assume that protein complexes during
phosphotransfer reactions are short-lived and are pre-
sent only in negligible amounts. Hence, the core
J. R. Soc. Interface (2011)
reactions we consider are autophosphorylation of an
HK and subsequent phosphotransfer between HK,
Hpt, REC and an RR.

We combine these core reactions to form relays of
differing length; for a system with four layers (L1–L4),
for example, we have L1 ¼ HK, L2 ¼ REC, L3 ¼ Hpt
and L4¼ RR:

L1þATP ���!k1 ðinputÞ
L1pþADP;

L1pþ L2�!k2 L1þ L2p;

L2pþ L3�!k3 L2þ L3p;

L3pþ L4�!k4 L3þ L4p;

L4p O
k5

k43

L4þ phos;

L3p O
k42

k33

L3þ phos;

L2p O
k32

k23

L2þ phos

and L1pO
k22

L1þ phos:

Besides the shuttling of the phosphate group (the top
five reactions), these reactions also include cross-talk
reactions represented as self-dephosphorylation and self-
phosphorylation at each layer (except for the first layer
where we consider only self-dephosphorylation). Note
that for the main model, these reactions are considered
to be negligible (i.e. the corresponding rates are set to
zero). Based on these reactions, we write down ordinary
differential equations and stochastic models describing
system dynamics (electronic supplementary material).
While writing these equations for the main model, we
assume that the rate of autophosphorylation of HK is
mediated by an external signal (input), ATP is not rate
limiting, all reactions are unidirectional and the total
level of proteins at each layer do not change during the
time course of signalling. The final assumption would
be satisfied if the phosphorylated and unphosphorylated
forms of proteins at each layer have comparable degra-
dation rates [30]. These assumptions allow us to write
the ordinary differential equations describing a four-
layer system as shown above as (using the L notation):

dL1p
dt
¼ k1 � ðL1tot�L1pÞ

� k2 �L1p � ðL2tot�L2pÞ� k22 �L1p;

dL2p
dt
¼ ðk2 �L1pþ k23Þ � ðL2tot�L2pÞ

� k3 �L2p � ðL3tot�L3pÞ� k32 �L2p;

dL3p
dt
¼ ðk3 �L2pþ k33Þ � ðL3tot�L3pÞ

� k4 �L3p � ðL4tot�L4pÞ� k42 �L3p

and
dL4p

dt
¼ ðk4 �L3pþ k43Þ � ðL4tot�L4pÞ� k5 �L4p;

9>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>;
ð4:1Þ
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where Li and Lip denote the unphosphorylated and
phosphorylated form of the protein at the ith layer and
Litot denotes total protein concentration at that layer.
For numerical simulations of equation (4.1), we set the
total level of proteins at each layer to 10 and all reaction
rates to 1.0 (arb. units). Implementation of equation
(4.1) as an ODE model, executable by the XPPAUT
(http://www.math.pitt.edu/~bard/xpp/xpp.html) or
Oscill8 (http://sourceforge.net/projects/oscill8) software
packages, is provided in the electronic supplementary
material.

We analyse input–response dynamics of relays of
varying length using the Oscill8 package. We numeri-
cally integrate the system to steady state at a fixed
input (k1) level. We then numerically ‘follow’ this
steady state, while changing the input, and trace the
response (i.e. phosphorylated protein concentration) of
the system. This analysis is equal to allowing the
system to reach steady state under different input
values. From the resulting input–response curves, we
calculate the total system sensitivity and response coef-
ficient. The former gives sensitivity (DL4p/Dinput)
summed over the signal (i.e. input) range from 0 to 2
(figure 2), while the latter gives the ratio of input
needed to reach 90 per cent of maximum response
over the input needed to reach 10 per cent of response
(i.e. the steepness of the response).

To test the effect of parameter choices on input–
response curves and ultrasensitivity, we first derived
an analytical steady-state solution of equation (4.1)
by setting self-phosphorylation (k23, k33, k43) and self-
dephosphorylation rates (k22, k32, k42) to zero (electronic
supplementary material, equation (S2)). We then gen-
erated random parameter sets where total protein
concentrations are drawn from a uniform distribution
in the interval [0.01, 10] and kinetic rates are drawn
from a uniform distribution in the interval [0.01, 2].
For each parameter set, we used the analytical solution
to derive the input–response curve for L2p and calcu-
lated the response coefficient. In order to do so, we
keep the total protein concentration of the second
layer constant. This analysis shows that the system
can achieve low response coefficients (i.e. high ultrasen-
sitivity) for most kinetic rates and total protein
concentrations (electronic supplementary material,
figures S3 and S4).

Based on experimental evidence [7], we implement a
bifunctional HK as one that, when in a non-phosphory-
lated form, de-phosphorylates the final layer (figure 2).
We assume that dephosphorylation by a bifunctional
HK occurs through complex formation and follows
enzyme kinetics. The ordinary differential equations
for the system with a bifunctional enzyme are
shown in electronic supplementary material, equation
(S1). To see the effect of a bifunctional HK with
increasing enzymatic efficiency, we analyse system
dynamics by varying the rate of HK–RRp complex
formation (e.g. we set Km to 0.1, 1, 10 and 100 by
changing k51).

We implement cross-talk at various layers by increas-
ing the corresponding self-phosphorylation (k23, k33,
k43) and self-dephosphorylation rates (k22, k32, k42)
(equation (4.1)).
J. R. Soc. Interface (2011)
To analyse noise in the system, we convert the above
model to a stochastic reaction scheme, excluding
the self-dephosphorylation and self-phosphorylation
reactions and explicitly modelling HK activation by
a signalling molecule (electronic supplementary
material). We do so by using the SPiM modelling
suite [31], which implements the Gillespie algorithm
[32]. We set the number of proteins at each layer to
100 and correspondingly set the stochastic rates at
1.0 s21 (for unimolecular reactions) and 0.1 s21 (for
bimolecular reactions; electronic supplementary
material, equation (S5)). We set a lower rate for HK
activation by the signal, to be able to more gradually
increase the (discrete-level) input during stochastic
simulation (note that this has no effect other than
requiring a factor of 10 higher amount of input). To
observe the equilibrium response of the phosphorelay,
we progressively increase the amount of a signalling
molecule from 0 to 200 (note that this corresponds to
the 0–2 regime in the input in the deterministic
model), reaching quasi-stability at each input level
(each simulation produces approx. 80 000 000 data
points). We then compute statistics of the correspond-
ing data points, such as the SNR of the various
layers. This analysis allows us to derive the behaviour
of the system under just the irregular fluctuations
intrinsic to any stochastic system (i.e. intrinsic noise).
To analyse the behaviour of the system under external
noise (i.e. a noisy input), we use a two-step signalling
mechanism: a signalling molecule induces release of a
second signalling molecule, which is subject to degra-
dation and which acts as input and activates L1
(electronic supplementary material, equation (S6)).
This set-up allows us to generate Poisson-distributed
noise in the input, with mean increasing from 0 to 200
(as the first signalling molecule is increased from 0 to
200). The analysis of noise properties with and without
extrinsic noise indicate that under the model par-
ameters and extrinsic noise characteristics used here,
the system is dominated by intrinsic noise (electronic
supplementary material, figure S10). It should be
noted, however, that this analysis considers only one
specific type of external noise (Poisson). Scripts for
both the stochastic models, executable with SPiM, are
included in the electronic supplementary material.
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26 Blüthgen, N., Bruggeman, F. J., Legewie, S., Herzel, H.,
Westerhoff, H. V. & Kholodenko, B. N. 2006 Effects of
sequestration on signal transduction cascades. FEBS J.
273, 895–906. (doi:10.1111/j.1742-4658.2006.05105.x)

27 Buchler, N. E. & Cross, F. R. 2009 Protein sequestration
generates a flexible ultrasensitive response in a genetic
network. Mol. Syst. Biol. 5, 272. (doi:10.1038/msb.2009.30)

28 Soyer, O. S., Kuwahara, H. & Csikász-Nagy, A. 2009
Regulating the total level of a signaling protein can vary
its dynamics in a range from switch like ultrasensitivity
to adaptive responses. FEBS J. 276, 3290–3298. (doi:10.
1111/j.1742-4658.2009.07054.x)

29 Bischofs, I. B., Hug, J. A., Liu, A. W., Wolf, D. M. &
Arkin, A. P. 2009 Complexity in bacterial cell–cell
communication: quorum signal integration and subpopu-
lation signaling in the Bacillus subtilis phosphorelay.
Proc. Natl Acad. Sci. USA 106, 6459–6464. (doi:10.
1073/pnas.0810878106)

30 Csikász-Nagy, A. & Soyer, O. S. 2008 Adaptive dynamics
with a single two-state protein. J. R. Soc. Interface
5(Suppl. 1), S41–S47. (doi:10.1098/rsif.2008.0099.focus)

31 Phillips, A. & Cardelli, L. 2007 Computational methods in
systems biology. Berlin, Germany: Springer.

32 Gillespie, D. T. 1977 Exact stochastic simulation
of coupled chemical reactions. J. Phys. Chem. 81,
2340–2361. (doi:10.1021/j100540a008)

http://dx.doi.org/doi:10.1016/S0966-842X(03)00156-2
http://dx.doi.org/doi:10.1016/0092-8674(91)90238-T
http://dx.doi.org/doi:10.1016/0092-8674(91)90238-T
http://dx.doi.org/doi:10.1016/S0092-8674(00)80162-2
http://dx.doi.org/doi:10.1016/S0092-8674(00)80162-2
http://dx.doi.org/doi:10.1016/j.tplants.2007.11.005
http://dx.doi.org/doi:10.1016/S0092-8674(00)80158-0
http://dx.doi.org/doi:10.1126/science.280.5365.895
http://dx.doi.org/doi:10.1073/pnas.93.19.10078
http://dx.doi.org/doi:10.1073/pnas.93.19.10078
http://dx.doi.org/doi:10.1046/j.1365-2958.2003.03344.x
http://dx.doi.org/doi:10.1073/pnas.0234782100
http://dx.doi.org/doi:10.1073/pnas.0706792104
http://dx.doi.org/doi:10.1126/science.1183372
http://dx.doi.org/doi:10.1073/pnas.162041399
http://dx.doi.org/doi:10.1073/pnas.0403350102
http://dx.doi.org/doi:10.1073/pnas.0403350102
http://dx.doi.org/doi:10.1111/j.1365-2958.2008.06221.x
http://dx.doi.org/doi:10.1016/j.compbiolchem.2006.09.004
http://dx.doi.org/doi:10.1073/pnas.78.11.6840
http://dx.doi.org/doi:10.1016/j.cell.2008.09.050
http://dx.doi.org/doi:10.1126/science.1140818
http://dx.doi.org/doi:10.1101/gad.1335705
http://dx.doi.org/doi:10.1101/gad.1335705
http://dx.doi.org/doi:10.1038/nrm1838
http://dx.doi.org/doi:10.1038/nrm1838
http://dx.doi.org/doi:10.1016/j.jmb.2009.05.007
http://dx.doi.org/doi:10.1111/j.1742-4658.2006.05105.x
http://dx.doi.org/doi:10.1038/msb.2009.30
http://dx.doi.org/doi:10.1111/j.1742-4658.2009.07054.x
http://dx.doi.org/doi:10.1111/j.1742-4658.2009.07054.x
http://dx.doi.org/doi:10.1073/pnas.0810878106
http://dx.doi.org/doi:10.1073/pnas.0810878106
http://dx.doi.org/doi:10.1098/rsif.2008.0099.focus
http://dx.doi.org/doi:10.1021/j100540a008

	Response dynamics of phosphorelays suggest their potential utility in cell signalling
	Introduction
	Results
	Discussion
	Methods
	We thank Steve Porter and Ferenc Jordán for useful comments. O.S.S. acknowledges the support of University of Exeter, Science Strategy. A.C.N. is supported by Italian Ministry of University and Research, FIRB (RBPR0523C3). All authors designed and performed research and wrote the paper.
	REFERENCES


