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'e detection performance of high-frequency surface-wave radar (HFSWR) is closely related to the suppression effect of sea
clutter. To effectively suppress sea clutter, a sea clutter suppression method based on radial basis function neural network
(RBFNN) optimized by improved gray wolf optimization (IGWO) algorithm is proposed. Firstly, according to shortcomings of
the standard gray wolf optimization (GWO) algorithm, such as slow convergence speed and easily getting into local optimum, an
adaptive division of labor search strategy is proposed, which makes the population have abilities of both large-scale search and
local exploration in the entire optimization process. 'en, the IGWO algorithm is used to optimize RBFNN, finally, establishing a
sea clutter prediction model (IGWO-RBFNN) and realizing the prediction and suppression of sea clutter. Experiments show that
the IGWO algorithm has significantly improved convergence speed and optimization accuracy. Compared with the particle
swarm algorithm with linear decreasing weight strategy (LDWPSO) and the GWO algorithm, the RBFNN prediction model
optimized by the IGWO algorithm has higher prediction accuracy and has a better suppression effect on sea clutter of HFSWR.

1. Introduction

High-frequency surface-wave radar (HFSWR) transmits high-
frequency (3–30MHz) electromagnetic waves with vertical
polarization antenna, and short waves propagate along the
surface of the conductive ocean without being affected by the
curvature of the Earth. It can achieve all-weather and over-
horizon detection of maritime targets, such as vessels and low-
flying aircraft [1–3]. Nowadays, HFSWR is widely used in
coastal warning, maritime rescue, marine resource develop-
ment, and many other fields, and it plays an important role in
military and civilian areas [4–6]. Also, a series of innovative
research on radar systems made by Ranger, the marine traffic
detection EU project, makes the long-distance maritime sur-
veillance radar have a better practical effect [7, 8].

When HFSWR is used to detect marine targets, the
resonance effect between electromagnetic waves and ocean
waves will produce a large number of interference signals,
namely, “sea clutter.” 'e first-order componen clutter

superposing in the echo often submerges some target signals,
so the effective suppression of sea clutter becomes the key to
the accurate detection of marine targets [9, 10]. 'e multi-
target tracking algorithm based on deep learning has made
great achievements in sea target detection [11, 12]. However,
from the perspective of signal processing, it is still an urgent
problem to eliminate sea clutter from measured signals. At
present, the suppressionmethods of sea cluttermainly include
the cyclic iterative cancellation method [13–15], subspace
estimation method [16–18], and neural network method
[19–21]. 'e cyclic iterative cancellation method constructs
sinusoidal signals by estimating parameters and then sub-
tracts the sinusoidal signals from the echo to realize the sea
clutter suppression. 'e iterative steps of this method are set
through experience, which is likely to cause some problems of
incomplete suppression of sea clutter and false cancellation of
target signals. 'e subspace estimation method realizes the
suppression of sea clutter through its clustering characteristics
in the subspace. However, existing suppression methods
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based on subspace estimation are likely to cause the problem
of target spectral peak migration and affect the detection of
target signals [22]. 'e theoretical basis of applying neural
network methods is the chaotic characteristic of sea clutter
[23, 24]. It is probable to predict and suppress sea clutter
accurately if we can learn its inherent dynamics laws. On this
basis, the nonlinear prediction equation of sea clutter was
proposed by Haykin [25], and scholars want to approximate
this complex mapping relationship by establishing neural
network models, to realize the prediction and suppression of
sea clutter. At present, the deep learning method is booming,
and it has made a series of encouraging results in machine
vision and engineering applications [26, 27]. In terms of
interdisciplinary, deep learning also makes a lot of out-
standing contributions with its advantages [28, 29]. Deep
learning methods are mainly used in the field of image
processing, which needs a lot of training data and a large
amount of calculation. 'is paper aims at the signal field,
unlike the image field, which involves a large amount of data,
so a shallow neural network is adopted. Because of its simple
structure and strong nonlinear mapping ability, the radial
basis function neural network (RBFNN) becomes the pref-
erence to learn the sea clutter prediction equation. 'e initial
parameters of the network will affect the final prediction
accuracy of the model, so it is necessary to optimize them
effectively. At present, various metaheuristic algorithms have
achieved good results in optimizing the initial parameters of
RBFNN [30–32]. 'e gray wolf optimization (GWO) algo-
rithm was proposed by Mirjalili et al. in 2014 [33], and it has
the advantages of fewer adjustment parameters and fast
convergence speed [34, 35], compared with other optimiza-
tion algorithms. However, when facingmultimodal functions,
it is likely to fall into the local optimal, and its convergence
speed and optimization ability are still inadequate [36].

'is paper presents a sea clutter suppression method
based on an improved GWO (IGWO) algorithm opti-
mizing RBFNN. With greatly improved in convergence
speed and the precision of optimization, the IGWO al-
gorithm can significantly optimize RBFNN, which con-
tributes to upgrading the prediction accuracy of sea
clutter. Compared with the RBFNN prediction model
optimized by the LDWPSO and GWO algorithms, the
model proposed in this paper can save calculation time or
energy, and it has a better suppression effect on sea
clutter.

2. GWO Algorithm and Its Improvement

2.1. Standard GWO Algorithm. 'e mathematical model of
the GWO algorithm is established by imitating the hunting
methods of the gray wolf population in nature. During the
whole hunting process, all gray wolf individuals are divided
into four categories, namely, α, β, δ, and ω. Under the
leadership of α-wolf, the population approaches the prey in
an organized way and then surrounds and attacks the prey.
In the mathematical model, the position vector of each gray
wolf individual is a solution in the solution space. 'e
schematic diagram of the GWO algorithm for optimizing is
shown in Figure 1.

Assuming that the population size is N and the di-
mension of the search space is D, the position vector of the
ith gray wolf is Xi � [xi1, xi2, . . . , xi D]. 'e position
updating formulas of gray wolves are given by

Dα � C1 · Xα(t) − X(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

Dβ � C2 · Xβ(t) − X(t)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

Dδ � C3 · Xδ(t) − X(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

X1(t + 1) � Xα(t) − A1 · Dα ,

X2(t + 1) � Xβ(t) − A2 · Dβ,

X3(t + 1) � Xδ(t) − A3 · Dδ,

⎧⎪⎪⎨

⎪⎪⎩
(2)

X(t + 1) �
X1(t + 1) + X2(t + 1) + X3(t + 1)

3
, (3)

where X (t) represents the current position of the ω-wolf,
Xα(t), Xβ(t), and Xδ(t) represent the positions of α, β, and
δ wolves, and A and C are random coefficient vectors:

A � a 2r1 − 1( 􏼁,

C � 2r2,
(4)

where r1 and r2 are random number vectors between [0, 1]
and a is the convergence factor.'e population can search in
any direction around the optimal value because of A and C
[37]. 'e position vector of the last generation α-wolf is the
global optimal solution.

In the GWO algorithm, the convergence factors of gray
wolves follow the same decreasing strategy. In the early
stage, all individuals are used in a large-scale search, which
makes the population lack the ability of fine searching and
the search space is easily missed; in the later period, all
individuals are used in local exploration, which makes the
information of the surrounding solution space be ignored,
and this is likely to fall into the local optimal. During the
entire iteration process, the population cannot search by a
division of labor and cannot balance the ability of large-scale
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Figure 1: 'e schematic diagram of gray wolves for optimizing.
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search and local exploration, which has a bad effect on the
overall performance of the algorithm.

2.2. Improved GWOAlgorithm. To increase the flexibility of
searching, the population is divided into two subpopulations
adaptively, implementing different convergence factor
strategies, respectively.We set the fitness threshold ε, and the
population is divided into elite wolves and nonelite wolves
by ε, and the threshold expression is given by

ε � μ ·
1
N

􏽘

N

i�1
fi, (5)

where μ represents the screening weight, which is used to
control the number of elite gray wolves, and fi represents
the current fitness value of the ith gray wolf. If the fitness
value is less than the threshold, it is classified as an elite gray
wolf, otherwise, it is classified as a nonelite gray wolf.

'e elite gray wolves are closer to the global optimum, so
the local search should be kept, and the strategy of con-
vergence factor is given by (6); the nonelite gray wolves
should keep searching in a wide range because it is far away
from the global optimum, and the strategy of convergence
factor is given by

a1 � 1 − t ·
1

tmax
, (6)

a2 � 2 − t ·
1

tmax
, (7)

where t represents the current iteration step and tmax rep-
resents the maximum iteration steps. To ensure that most
individuals can conduct a large-scale search in the early stage
and most of them can invest in local exploration in the later
stage, we set a dynamic screening weight strategy, which
given by

μ � μmin + μmax − μmin( 􏼁 ·
t

tmax
, (8)

where μmax is the maximum screening weight, with a value of
0.8, and μmin is the minimum screening weight, with a value
of 0.2. 'e IGWO algorithm is given in Figure 2.

'e fitness average in each generation is different, and
the fitness threshold changes adaptively along with the fit-
ness average. 'ere is always a clear division of labor within
the population, which improves the search flexibility.

2.3.3ePerformanceTest of IGWOAlgorithm. We choose six
test functions to test the performance of the IGWO algo-
rithm. To test the generalization ability of the IGWO al-
gorithm, the test functions selected include three categories:
F1 and F2 are unimodal functions; F3 and F4 are multimodal
functions; F5 and F6 are fixed-dimension multimodal
functions. 'e basic information of test functions is given in
Table 1.

Particle swarm optimization is a classic intelligent op-
timization algorithm with a simple structure and fast search
speed. To test the performance of the IGWO algorithm, the
particle swarm optimization with linearly decreasing weight
(LDWPSO) [38] and the GWO algorithm are used as
comparison algorithms. We set the population size to 30 and
the maximum iteration steps to 500. Figure 3 shows the
convergence curves of the optimization algorithms in
solving test functions.

From the experimental results, the IGWO algorithm has
outstanding performance in various test functions. 'e
IGWO algorithm has fast convergence and high accuracy
when solving test functions. To eliminate the influence of
randomness on the experimental results, 60 experiments are
conducted for each algorithm, and the average and standard
deviation of the results are taken. 'e experimental results
are given in Table 2.

Analyzing the data in Table 2, among the three algo-
rithms, the results calculated by the IGWO algorithm are
closer to the minimum value of test functions, so the IGWO
algorithm has higher optimization accuracy. Also, the
standard deviation of the calculation results of the IGWO
algorithm is significantly smaller than that of the compar-
ison algorithms in all kinds of test functions, which shows
that the IGWO algorithm has less volatility and stronger
stability.

3. Sea Clutter Suppression with IGWO-
RBFNN Model

3.1. Construction of IGWO-RBFNN Prediction Model. 'e
interior of sea clutter is a deterministic complex dynamical
system. If the intrinsic dynamical law of sea clutter can be
learned, we can realize the accurate prediction and sup-
pression of sea clutter. To fully demonstrate the internal law
of sea clutter, we extend the one-dimensional time series to
higher dimensions based on phase space reconstruction
theory. On this basis, Haykin proposed the prediction
equation of sea clutter [25]:

xi+mτ � f xi, xi+1, . . . , xi+mτ−1( 􏼁, (9)

where m and τ are reconstruction parameters of phase space,
which represent embedding dimension and time delay,
respectively.

We use RBFNN to learn the complex mapping rela-
tionship of the prediction equation. RBFNN is a simple
three-layer structure, and the input
X � [xi, xi+1, . . . , xi+mτ−1] and the output is 􏽢xi+mτ .
Gaussian kernel function maps the input layer to the hidden
layer, and the output of the kth hidden layer node is shown
in

Gk(X) � exp −
X − Ck

����
����
2

2σ2k
⎛⎝ ⎞⎠, (10)

where Ck and σk are the center and width of the hidden layer
node, respectively. 'e hidden layer and the output layer are
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connected by the network weight ω, and the output of the
network is given by

Y � 􏽘
n

k�1
ωk · Gk(X), (11)

where n represents the number of hidden layers. 'e net-
work structure of RBFNN is given in Figure 4.

'e initial parameters of the network include the data
center C, the data width σ, and the network weight ω. 'e
selection of the initial parameters will affect the accuracy of
the network, so we use the IGWO algorithm to optimize the
initial parameters of the network. 'e fitness function of the
IGWO algorithm is given by

F �
􏽐

S
i�1 Yi − 􏽢Yi􏼐 􏼑

2

S
, (12)

where S represents the number of samples when calculating the
fitness value and Yi and 􏽢Yi represent the expected output and
predicted output of the network.'e process of establishing the
sea clutter prediction model is shown in Figure 5.

Step 1: determine the topology of the network and
encode initial parameters into the position vector of
gray wolf individuals
Step 2: initialize population with the chaos method, use
IGWO algorithm to find the optimal solution, and save
position vector of the α-wolf in the last generation

Y N

Start

Initialize population with chaos method

Choose the first three best gray wolves α, β, δ and record their positions

Calculate the convergence factor by (7) Calculate the convergence factor by (6)

Update the screening weight by (8)

Update the position of each gray wolf by (1) ~ (4)

Meet the termination 
condition

Save the position of α -wolf

End

N

Y

Calculate the fitness value fi of the gray wolf and the mean f

fi ≥ μ·f

Figure 2: 'e flowchart of IGWO algorithm.

Table 1: Basic information of test functions.

Functions Dimension Range Fmin

F1(x) � 􏽐
n
i�1 x2

i 30 [−100, 100] 0
F2(x) � maxi |xi|, 1≤ i≤ n􏼈 􏼉 30 [−100, 100] 0
F3(x) � 􏽐

n
i�1 −xi sin(

���
|xi|

􏽰
) 30 [−500, 500] −2094.91

F4(x) � 􏽐
n
i�1[x2

i − 10 cos(2πxi) + 10] 30 [−5.12, 5.12] 0
F5(x) � − 􏽐

4
i�1 ci exp(− 􏽐

6
j�1 aij(xj − pij)

2) 6 [0, 1] −3.32
F6(x) � − 􏽐

5
i�1 [(X − ai)(X − ai)

T + ci]
− 1 4 [0, 10] −10.40
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Figure 3: Images of test functions and their convergence curves: (a–f) test functions F1–F6 and their convergence curves optimized by three
optimization algorithms.

Table 2: Results of different algorithms for solving test functions.

Functions
PSO GWO IGWO

Ave Std Ave Std Ave Std
F1 2.02E− 4 3.86E− 4 1.34E− 27 2.81E− 27 7.98E− 46 3.97E− 45
F2 1.15 0.22 6.89E− 7 5.91E− 7 1.05E− 11 1.85E− 11
F3 −5051.81 1288.74 −5875.91 781.83 −4823.45 666.83
F4 54.56 15.99 2.58 3.45 0.80 2.64
F5 −3.28 0.06 −3.27 0.07 −3.30 0.05
F6 −7.84 3.04 −8.13 2.98 −9.20 2.28
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Step 3: decode the saved position vector as the optimal
initial parameter of the network
Step 4: normalize sea clutter time series without targets
to construct training samples of the neural network
Step 5: train the network until it reaches the preset
precision or the maximum number of training steps
and finally obtain the sea clutter prediction model of
IGWO-RBFNN

'e prediction accuracy of the prediction model is
evaluated by ρ:

ρ � 1 −
var(err)
var(Y)

􏼢 􏼣 × 100%. (13)

In the formula, var(·) represents variance, err represents
errors between the output value and observed value, and Y

represents the observed value of sea clutter.

3.2. Suppression of Sea Clutter. 'e sea conditions in the
same maritime space are similar, and the internal dynamic
system of sea clutter generated by resonance between
electromagnetic waves and sea waves at different distances is
also similar. We use a prediction model to predict radar
echoes of the adjacent unit and then realize the suppression
of sea clutter by subtracting predicted value from radar echo
data. 'e suppression process is shown in Figure 6.

'e dynamic characteristics of sea clutter in radar echo
are different from that of target signals. 'e prediction
model can only predict sea clutter, and the target signal
becomes the main component of prediction error. After
subtracting the predicted value from radar echo, the target
signal is left, and the sea clutter suppression of radar echo
containing target signals is realized.

4. Experiment and Results Analysis

4.1. Analysis of Prediction Effect of Sea Clutter. A batch of
HFSWR sea clutter measured data is used for simulation
experiments. 'e operating frequency of radar is 3.7MHz,
and the sampling interval is 0.149 seconds. 'e radar echo

signal is complex, so it is necessary to establish prediction
models for the real part and the imaginary part (I channel
and Q channel), respectively. Here, we take the prediction of
real data as an example.

Reconstruction parameters of phase space are calculated by
the C-C algorithm [39], and we get time delay τ � 4 and
embedding dimension m � 3, so the input number of the
network ismτ � 12. Besides, we set the number of hidden layer
nodes to 4. To optimize the initial parameters of the network
with different optimization algorithms, we set the population
size to 25, the number of iteration steps to 300, and the
convergence curve of the fitness value is given in Figure 7.

It can be seen from Figure 7 that the IGWO algorithm
has the fastest convergence speed and the highest precision
for optimization among three optimization algorithms.

'e sea clutter data without target signals in the 48th
distance unit is used to construct training data, and 800 groups
of training samples are used to train the neural network for 1000
times with an accuracy of 0.0001. 'e unoptimized network
model is the RBFNNmodel, and the LDWPSO-RBFNNmodel,
the GWO-RBFNN model, and the IGWO-RBFNN model can
be obtained through using the LDWPSO algorithm, the GWO
algorithm, and the IGWO algorithm to optimize RBFNN. 'e
sea clutter data without target signals in the 54th distance unit is
used as test data, and eachmodel is trained independently for 50
times to predict the test data, the experimental results are shown
in Table 3. 'e data compared in the table includes the min-
imum fitness values (FV) of optimization algorithms, the
standard deviation of fitness value (FSTD), the average time
used in optimizing network (AVT), and the prediction accuracy
(PA) of models.

As shown in Table 3, the minimum fitness value and its
standard deviation of the IGWO-RBFNN model are the
smallest. 'e IGWO algorithm has the highest accuracy and
the best stability in the optimization of the network. Also, the
calculation speed of the IGWO algorithm has been im-
proved. In this experiment, the calculation speed of the
IGWO algorithm is 9.94 seconds faster than the LDWPSO
algorithm. Because the RBFNN model is not optimized, the
prediction accuracy is the lowest. 'e IGWO-RBFNN has
the highest prediction accuracy, which is 8.27% higher than
the RBFNN model, reaching 93.49%. 'e background noise
of sea clutter accounts for most of the prediction errors.

4.2.ComparisonandAnalysis of SeaClutterSuppressionEffect.
For the data of the imaginary part, prediction models are
constructed in the same way. Trained prediction models are
used to predict and suppress sea clutter in the 54th distance
unit without target signals. 'e effect of sea clutter sup-
pression is evaluated by the overall decline of echo power
and the highest amplitude decline in the Doppler spectrum.
'e result is shown in Table 4.

In Table 4, the suppression effect of the IGWO-RBFNN
model is the best among four models, whether from the per-
spective of power or the perspective of amplitude. After sup-
pressed by the IGWO-RBFNNmodel, themaximum amplitude
of sea clutter in the Doppler spectrum is reduced by 23dB.
However, after suppressed by the RBFNNmodel, themaximum

∑

Input layer
Hidden layer

Output layer

Y

xi

xi+1

xi+mτ–1

Gk

G2

G1

ω1

ω2

ωk

Figure 4: 'e structure of RBFNN.
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amplitude of sea clutter is only reduced by 15dB, which is 8 dB
less than the suppression effect of the IGWO-RBFNN model.
Also, the IGWO-RBFNN method reduces the overall power of
sea clutter by 83.45%, which is the most prominent among
comparison methods. A local magnification of sea clutter
suppression effects by different methods is shown in Figure 8.

It can be seen from Figure 8 that the amplitude of sea
clutter is significantly reduced after suppressed by the IGWO-
RBFNN model, which is basically equal to the amplitude of
background noise. However, after suppressed by other models,
the sea clutter still has residual. Next, simulated target signals
are added to the radar echo of the 54th distance unit, using the
IGWO-RBFNN model to suppress sea clutter in radar echo
containing target signals. 'e distance of Doppler frequency
between sea clutter and target signal is 0.35Hz and 0.09Hz,
respectively. 'e suppression effect of the IGWO-RBFNN
model on sea clutter is shown in Figure 9.

As shown in the calculation results, after using the
IGWO-RBFNN model to suppress sea clutter, the signal to

Determine the structure of the network

Get the optimal initial network parameters

Train the optimized network

Get the IGWO-RBFNN prediction model

Construct training samples

Encode initial parameters of 
network into the position 

vector of gray wolves

Use IGWO algorithm to 
optimize initial parameters

Network optimization

Figure 5: Establishment of the sea clutter prediction model.

Prediction 
model

∑

xk+mτ

–

Echo data

Echo data

Prediction value

Main component:
target signals

xk
xk+1

.

.

.
xk+mτ–1

ekxk+mτ

Figure 6: 'e flowchart of sea clutter suppression.
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Figure 7: Convergence curves of fitness values.

Table 3: Results of optimizing models and predicting data.

Models FV FSTD AVT (s) PA (%)
RBFNN — — — 85.22
LDWPSO-RBFNN 4.30E− 3 1.65E− 4 72.75 88.92
GWO-RBFNN 3.14E− 3 1.53E− 4 66.54 89.82
IGWO-RBFNN 2.30E− 3 1.06E− 4 62.81 93.49

Table 4: Suppression effect of different models on sea clutter.

Models Power decline (%) Amplitude decline (dB)
RBFNN 81.46 15
LDWPSO-RBFNN 82.21 19
GWO-RBFNN 82.95 20
IGWO-RBFNN 83.45 23
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clutter plus noise ratio (SCNR) is improved by 5.68 dB and
4.49 dB, respectively. Experimental results show that the
IGWO-RBFNN model can effectively suppress sea clutter
and retain target signals. After suppressing sea clutter, the
target signal can be effectively highlighted.

5. Conclusion

According to the sea clutter suppression in target detection of
HFSWR, this paper proposes a sea clutter suppression method
based on the RBFNN optimized by improved GWO algorithm.
'rough the establishment of the IGWO-RBFNN prediction
model, the sea clutter is predicted and suppressed.

'e division of labor search strategy proposed by the
IGWO algorithm makes the population have both large-
scale search and local exploration capabilities, which im-
proves the convergence speed and reduces the probability of
falling into local optimum. In the solution of six test
functions, the mean value and standard deviation of the
calculation results of the IGWO algorithm are smaller than
those of the comparison algorithms, and the accuracy and
stability of optimization are improved.

Using the IGWO algorithm to optimize parameters of
the network, the calculation time is reduced by 9.94 seconds
compared with the LDWPSO algorithm. After the sup-
pression of the IGWO-RBFNN method, the maximum
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Figure 8: Suppression effect of different models on sea clutter.
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Figure 9: 'e suppression effect of IGWO-RBFNN model on sea clutter. (a) 'e distance of Doppler frequency between sea clutter and
analog target signal is 0.35Hz; (b) 'e distance of Doppler frequency between sea clutter and analog target signal is 0.09Hz.

8 Computational Intelligence and Neuroscience



amplitude of sea clutter in the Doppler spectrum is reduced
by 23 dB, which is 3 dB more than the optimal result of
comparison methods. After suppressing sea clutter of two
radar echoes containing target signals by the IGWO-RBFNN
method, the SCNR increases by 5.68 dB and 4.49 d, re-
spectively. 'e above results show that the improved opti-
mization algorithm increases calculation speed.
Furthermore, compared with RBFNN, LDWPSO-RBFNN,
and GWO-RBFNNmodels, the IGWO-RBFNNmodel has a
better suppression effect on sea clutter, has better highlight
target signals, and provides a good prospect of application in
sea clutter suppression.
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