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Abstract: Inflammatory bowel disease (IBD), classified primarily between Crohn’s disease and
ulcerative colitis, is a collection of chronic gastrointestinal inflammatory conditions that cause multiple
complications because of systemic alterations in the immune response. One major player is microRNA
(miRNA), which is found to be associated with multiple pathways in mediating inflammation,
especially those of a chronic nature in IBD, as well as irritable bowel syndrome. Although there have
been studies linking miRNA alterations in IBD, even differentiating Crohn’s disease and ulcerative
colitis, this review focuses mainly on how miRNAs cause and mechanistically influence the pathologic
complications of IBD. In addition to its role in the well-known progression towards colorectal cancer,
we also emphasize how miRNA manifests the many extraintestinal complications in IBD such as
cardiovascular diseases; neuropsychiatric conditions such as depression and anxiety disorders; and
others, including various musculoskeletal, dermatologic, ocular, and hepatobiliary complications. We
conclude through a description of its potential use in bettering diagnostics and the future treatment
of IBD and its systemic symptoms.

Keywords: Crohn’s disease; ulcerative colitis; non-coding RNA; extraintestinal manifestations;
colitis-associated cancer

1. Introduction

Inflammatory bowel disease (IBD) is a class of chronic inflammatory conditions pre-
dominantly arising in the colon and lower gastrointestinal tract that is classified principally
between Crohn’s disease (CD) and ulcerative colitis (UC). The incidence of IBD has risen
globally in both Western and Eastern countries with suspected attribution in part to global-
ization and a Western-influenced diet [1,2]. Still, the pathophysiology of IBD remains a field
under intense study, detailed as a complex association between genetics and epigenetics,
immune system aberrancies, gut dysbiosis, and other environmental factors [3,4]. Among
these are microRNAs (miRNAs), a unique class of single-stranded noncoding ribonucleic
acids, which alter gene expression via targeting mRNA post-transcriptionally. Many miR-
NAs are associated with crucial regulation of multiple inflammatory pathways affected in
IBD [5].

The class of miRNAs comprises 18-22 nucleotides that repress mRNA translation
via base pairing along sequence motifs such as those in the mRNA 3′UTR region [6].
They typically suppress gene expression via cleavage of specific target mRNAs, of which
there can be multiple targets per unique miRNA. Thus, a single mRNA sequence is often
regulated by multiple miRNAs, which normally assist in fine-tuning the complexity of gene
expression. Therefore, any imbalances, especially those in chronic inflammatory disease
states such as IBD and cancer, are often, in part, a result of imbalances in miRNA and
affected gene expressions.

Though recognized most for its effects on the gastrointestinal tract, IBD is well known
for harboring a multitude of complications, including extraintestinal. This largely stems
from the chronic and systemic inflammatory state IBD induces via pathways such as NF-κB,
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STAT3, the NOD2 receptor family, and toll-like receptors (TLRs), which alter regulatory
mediators such as cytokines and various miRNAs [5,7]. Perhaps the most well-studied
is the strong association between IBD-induced colitis and increased colon cancer risk,
arguably the most lethal complication of IBD [8]. However, IBD has also been linked
with increased cardiovascular disease and heart failure risk; psychological manifestations,
including depression and anxiety; and further complications including uveitis, arthropathy,
rash, and cholangitis [9,10]. Overall, miRNAs play major roles in IBD and its chronic
inflammatory complications with potential for clinical applications in differentiating CD
and UC, indicators for prognosis, and potential suggestions in therapeutic use.

2. Dysregulated miRNAs in Patients with UC

UC is one of the main branches of IBD characterized by inflammation of the superficial
mucosal and submucosal layers, classically beginning rectally and capable of ascending
continuously [11]. Wu et al. first observed the dysregulation of miRNA within IBD and
found that miR-192 targets macrophage inflammatory peptide 2α and is downregulated in
active UC compared to healthy controls [12]. Since then, multiple miRNAs across various
tissue samples have been found to be significantly dysregulated in UC (Table 1). In the
human colon, Guz et al. noted five significantly upregulated miRNAs—miRs-21-3p, -31-3p,
-125b-1-3p, -146a-3p, and -155-5p—in inflamed UC colonic tissue as opposed to normal-
looking adjacent tissue [13]. Using healthy controls, Schaefer et al. found miRs-21 and
-31 significantly upregulated in UC colon tissue and additionally noted increased miRs-19a
and -101 [14]. Wu et al. conducted an extensive study noting miRNA dysregulation in
colon tissue between both active and inactive UC versus healthy patients [12]. Specifically,
they found eight miRNAs significantly upregulated in active UC including miRs-16, -23a,
-24, -29a, -126, -195, let-7f, and, again, miR-21. In addition, three miRNAs, namely miRs-192,
-375, and -422b, were significantly downregulated in active UC. Interestingly, differential
miRNA expression exists between active and inactive UC. For example, although miRs-375
and -422b are downregulated in active UC colon, they are upregulated in inactive UC colon.
An additional six miRNAs in colon biopsies can also be differentiated between active and
inactive UC: miRs-16, -21, -24, -126, -203, and -200b.

Table 1. miRNAs dysregulated in UC across various tissue samples.

Scheme 16. miRNAs Upregulated miRNAs Downregulated References

Ileal/colonic tissue miRs-16, -19a, -21(-3p), -23a, -24, -29a, -31(-3p), -101,
-125b-1-3p, -126, -146a-3p, -155(-5p), -195, let-7f miRs-192, -375, -422b [12–14]

Peripheral blood
miRs-19a, -28-5p, -30e, -101, -103-2, -142-5p, -146-5p, -146b-5p,
-151-5p, -199a-5p, -215, -223, -340, -362-3p, -374b, -375, -494,

-532-3p, -598, -638, -642, miRplus-E1271
miRs-21, -31, -146a, -505 [14–17]

Fecal matter miRs-16, -21, -126, -155, -203, -223, -1246 miRs-192, -320 [18–20]

Saliva miRs-21, -31, -142-3p miR-142-5p [14]

Sample types listed include ileum/colon tissue biopsies, peripheral blood, fecal matter, and saliva from UC patient
studies compared to healthy sample controls.

Peripheral blood serves as another sample type in which miRNAs are dysregulated
compared to healthy individuals. Schaefer et al. noted six significantly upregulated miR-
NAs in the peripheral blood of UC versus healthy patients: miRs-19a, -101, -142-5p, -223,
-375, and -494 [14]. Again, it is important to distinguish miRNA expression variability de-
pending on sample type. Although miR-375 is downregulated in active UC colon biopsies,
it is upregulated in the peripheral blood of UC patients [12,14]. Wu et al. additionally
found twelve miRNAs significantly upregulated in active UC peripheral blood including
miRs-28-5p, -30e, -103-2, -151-5p, -199a-5p, -215, -340, -362-3p, -374b, -532-3p, -638, and
miRplus-E1271 [15]. Again, there may be utility in distinguishing miRNAs in the peripheral
blood of active versus inactive UC patients, specifically with the five miRs-28-5p, -151-5p,
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-199a-5p, -340, and miRplus-E1271 upregulated only in active UC. Downregulated miRNAs
in UC peripheral blood interestingly included miRs-21, -31, -146a, and -505 [14,15]. Again,
the first three listed are a direct contrast to colon tissue upregulation, emphasizing the
variation among sample types, though some studies did note elevated serum miR-21 in
more severe active disease [13,14,19]. Using next-generation sequencing, we identified
20 plasma exosomal miRNAs differentially expressed in patients with UC vs. healthy
control subjects, 13 of which (miRs-29b-3p, 96-Sp, 624-Sp, 186-Sp, 1,303, 4,487, 20b-Sp,
503-Sp, 363-3p, 194-Sp, 548au-5p, 942-3p, and 218-Sp) were upregulated and 7 (miRs-31-
Sp, 3130-3p, 7851-3p, 4433b-3p, 485-3p, 202-Sp, and 224-Sp) downregulated [21].

miRNA dysregulation has also been found in stool samples of UC patients. Verdier et al.
noted significantly elevated fecal miRs-223 and -1246 in active UC patients compared to
healthy controls [18]. Schönauen et al. similarly found miR-223 upregulated by over 67-fold
in active UC patient feces and also significantly increased miRs-16 and -155 [19]. Ahmed
et al. observed upregulated miRs-21, -126, -203, and, again -16, as well as downregulated
miRs-192 and -320 [20]. In addition to fecal miRNAs, salivary miRNAs provide yet another
non-invasive method of discernment. Schaefer et al. noted significantly upregulated miRs-
21, -31, and -142-3p with downregulated miR-142-5p in UC saliva samples compared to
normal controls [14]. Clearly, miRNAs have much potential to help discern patients with
UC outside of only colon biopsies—in peripheral blood, stool, and saliva samples.

Briefly, we summarize the pathogenesis that may be involved with several key miR-
NAs. It has been found that miRs-21 and -155 are associated with regulating the activity
of various TLRs and potentially have the capacity of binding TLRs [22], which play a
major role in proper interaction with gut microbiota and immune activation via NF-κB,
among others [23,24]. miR-21 upregulation in IBD encourages T cell activation in UC
remission patients and may potentially reduce tumor suppressor PDCD4 expression in
CD3+ T cells, promoting inflammatory progression and eventual cell proliferation towards
cancer [25]. Upregulated levels of miRs-31 and -155 in UC have been shown to regulate
increased IL-13 levels by downregulating expression of IL13Rα1, the primary receptor
subunit for IL-13 [26]. Increased IL-13 levels in Th2-mediated UC are involved in epithelial
barrier dysfunction via altered claudin-2 expression in tight junctions and an increased
rate of apoptosis [27,28]. E-cadherin expression is also downregulated by miR-155, further
decreasing mucosal stability in UC and increasing metastatic cancer risk with future pro-
gression [13]. Finally, miR-375 downregulation in colon biopsies is directly associated with
reduced targeted regulation of CTGF-EGFR with subsequent upregulated tissue growth
contributing towards cancer progression [29].

3. Dysregulated miRNAs in Patients with CD

In contrast to UC, CD classically involves transmural inflammation, which can impact
the entire GI tract, though not necessarily continuously, with skip lesions often affecting
the terminal ileum and colon [30,31]. It was found that miRs-21-3p, -31-3p, -146a-3p, and
-155-5p were significantly overexpressed in inflamed CD ileal and colonic tissue compared
to normal-looking adjacent tissue [13]. Schaefer et al. supported the dysregulated increase
in miRs-31 and -146a in CD patients, but additionally noted miR-101 upregulation [14].
miRNAs are variably expressed depending on regional location [32]. Wu et al. determined
three miRNAs were significantly upregulated in sigmoid colon biopsies of Crohn’s colitis
patients versus healthy adults—miRs-23b, -106a, and -191. Four miRNAs were upregu-
lated in Crohn’s ileitis patients including miRs-16, -223, -594, and, as supported, miR-21.
Downregulated miRNAs in CD patients comprised miRs-19b, -375, and -629 [14,32]. Of
note, miR-29 was also downregulated in CD mucosa along stricture regions [33].

In the peripheral blood of CD patients, Schaefer et al. noted only significantly up-
regulated miRs-101 and -375 [14]. Another study from Wu et al. revealed significant
upregulation of the five miRs-199a-5p, -340, -362-3p, -532-3p, and miRplus-E1271 in the
peripheral blood of active CD patients compared to healthy controls [15]. However, similar
to distinguishing active from inactive UC, only miR-340 was significantly upregulated in
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inactive CD peripheral blood, and therefore can be differentiated from the active form
by the presence or absence of the other four miRNAs. Nijhuis et al. noted significantly
upregulated sera miR-29 [33]. Six downregulated miRNAs in the peripheral blood of CD
patients included miRs-21, -31, -146a, -149, -155, and miRplus-F1065 [14,15]. Again, miR-21
serum elevation in other studies is somewhat dependent on active disease [19].

For fecal CD samples, Wohnhaas et al. distinguished nine significantly upregulated
miRNAs consisting of miRs-15a-5p, -16-5p, -24-3p, -27a-3p, -128-3p, -142-5p, -223-3p,
-223-5p, and -3074-5p compared to healthy controls [34]. Another study by Schönauen et al.
additionally noted significantly upregulated fecal miRs-155 and -223 alongside miR-16 [19].
Wohnhaas et al. also recognized significant downregulation of eight fecal miRNAs in-
cluding miRs-10a-5p, -10b-5p, -141-3p, -192-5p, -200a-3p, -375, -378-3p, and let-7g-5p [34].
Similar to UC, salivary samples in CD patients may be used, as miRs-26a and -101 were
found to be significantly upregulated [14]. Dysregulated miRNAs in patients with CD are
summarized in Table 2.

Table 2. miRNAs dysregulated in CD across various tissue samples.

miRNAs Upregulated miRNAs Downregulated References

Ileal/colonic tissue miRs-16, -21(-3p), -23b, -31(-3p), -106a, -146a-3p,
-155(-5p), -191, -195, -223, -594 miRs-19b, -375, -629 [13,14,32,33]

Peripheral blood miRs-29, 101, 146-5p, -146b-5p -199a-5p, -340,
-362-3p, -375, -532-3p, -598, -642, miRplus-E1271

miRs-21, -31, -146a,
-149, miRplus-F1065 [14–17,33]

Fecal matter miRs-15a-5p, -16-5p, -24-3p, -27a-3p, -128-3p,
-142-5p, -155, -223(-3p and -5p), -3074-5p

miRs-10a-5p, -10b-5p, -141-3p, -192-5p,
-200a-3p, -375, -378-3p, let-7g-5p [19,34]

Saliva miRs-26a, -101 [14]

Sample types listed include intestinal biopsies from both the ileum and colon, peripheral blood samples, fecal
matter, and saliva samples from CD patients (vs. healthy sample controls).

miRNAs play major roles in CD pathogenesis and inflammatory regulation, com-
parable to UC. It was found that miR-192 served to suppress NOD2 receptor activity in
colonocytes, thus reducing inflammatory activation [35]. However, miR-192 downreg-
ulation may contribute toward NOD2 overactivation via muramyl dipeptide and, thus,
influence CD progression. Another study found that NOD2 signaling raised miR-29 levels,
which helped modulate IL-12p40 expression, a component of the cytokines IL-12 and IL-23,
reducing Th1 and Th17 stimulation [36]. However, in CD, NOD2 mutations resulted in
reduced miR-29, increased inflammatory response, and worsened colitis. Additionally,
miR-29b downregulation is related to increased TGF-β signaling, which promotes profi-
brotic activity and stricture formation in CD [33]. Downregulation of miR-200 is associated
with epithelial to mesenchymal transition (EMT) dysregulation via loss of E-cadherin in
CD [37], similar to the actions of miRs-31 and -155 [13].

4. miRNAs in the Pathogenesis of Complications Associated with IBD

Both CD and UC are systemic chronic inflammatory diseases, which may lead to both
intestinal and extraintestinal complications. General complications in IBD include colitis-
associated cancer, cardiovascular diseases, neuropsychiatric illnesses, and other systemic
complications (Figure 1). For many of these IBD-associated complications, miRNAs are
implicated in many facets, including the potential modulation of its onset, progression, and
prognosis. The ever-emerging evidence that miRNAs are important regulators in disease
processes increases their viability of becoming diagnostic indicators and therapeutic targets.
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4.1. miRNAs in Colitis-Associated Colorectal Cancer

Colitis-associated colorectal cancer (CAC) is a major complication that accounts for
10–15% of deaths among IBD patients and favors a worse prognosis compared to spon-
taneous colorectal cancer (CRC) [38]. While surgical procedures such as mucosectomy
and proctocolectomy lower the risk of CAC, these measures do not completely ameliorate
the risk, with one-sixth of UC patients suffering mortality from CAC [8,39]. The chronic
inflammation in UC and CD increases the risk of CAC as dysregulated cytokines, miR-
NAs, transcription factors, inflammatory mediators, and gut dysbiosis participate in the
process of transforming chronic colonic injury into neoplasia [40–43]. Numerous studies
have shown that miRNAs may significantly influence cancer tumorigenesis, proliferation,
invasion, and metastasis [41,44,45]. Increased expression of TLR4 is a distinctive char-
acteristic of CAC that co-occurs with miR-155 upregulation alongside downregulation
of suppressor of cytokine signaling 1 (SOCS1) and Src homology 2 domain-containing
inositol-5′-phosphatase 1 in SW480 and HCT116 cancer cells [42,46]. This increased ac-
tivation leads to constitutive STAT3 activation. Upregulated TLR4 signaling alongside
upregulated miR-9, miR-25, miR-92a, and miR-301A may ultimately induce epithelial to
mesenchymal transition (EMT) by targeting E-cadherin, a cell adhesion protein, to promote
tumor invasion and metastasis [38,46,47].

miR-19a contributes to tumor initiation by activating NF-κB signaling through TNF-α-
induced protein 3 [48]. miR-20a from stromal cells directly represses the 3′UTR of CXCL8,
an inflammatory chemokine secreted from interstitial fibroblasts, and its dysregulation
was postulated to modulate tumor genesis, but not influence tumor outcome [49]. Butin-
Israeli et al. found that polymorphonuclear neutrophils (PMNs) may be involved in
inducing genomic instability through double-strand breaks in colonic inflammation and
potentially neoplasia [50]. PMN infiltration of colonic mucosa was followed by the release
of miR-23a and miR-155, which may increase the collapse of replication forks through
lamin-B1 downregulation and interfere with homologous recombination through targeting
regulator RAD51, which also assists in the repair of DNA double-strand breaks.

Feedback loops involving miRNAs are implicated in the fast progression of CAC as
compared to spontaneous CRC (Figure 2). miR-21 is a major upregulated miRNA that plays
a variety of roles in tumor genesis and development. Lai et al. illuminated how miR-21
affects the major pathways of PI3K/AKT, IL-6/JAK/STAT3, and PDCD4/NF-κB/TNF-α
during carcinogenesis within a zebrafish model [45]. miR-21 is activated through gut
dysbiosis and targets tumor suppressors PDCD4, BTG2, and TPM1, along with modulating



Int. J. Mol. Sci. 2022, 23, 8751 6 of 17

the PI3K/AKT pathway by repressing PTEN to activate ERK and AKT, which induces
the downstream NF-κB pathway to release inflammatory cytokines TNF-α, IL-6, and
IL-1β [45,51]. IL-6 is then able to use the JAK signaling pathway to activate STAT3, which
enables it to create a positive feedback loop by activating the promoter region of miR-21.
Upregulation of miR-18a in CRC/CAC colon tissues was also able to induce a positive
feedback loop of inflammation through downregulating PIAS3 to increase NF-κB and
STAT3 activation, which, in turn, increases miR-18a expression [52]. miR-222 and miR-221
undergo a similar feedback loop mechanism through targeting PDZ and LIM domain 2 to
increase the stability of RELA and STAT3 proteins by directly binding to RELA to increase
its stability to further activate the NF-κB/STAT3 pathways [53].
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Figure 2. miRNAs involved in CAC-associated canonical signaling pathways. In the development of
CAC, major signaling pathways involve the upregulation and downregulation of several miRNAs.
miRNA upregulation leads to the increased expression of proinflammatory cytokines, morphological
changes, and increased epithelial barrier permeability. Feedback contributes to CAC progression by
further exacerbating these changes. After activation of the proinflammatory state, these associated
changes go back and stimulate miRNAs to create positive feedback mechanisms. The loss of major
downregulated miRNAs leads to increased proinflammatory pathway activation, leading to the
compounding effects of inflammation on accelerating tumor development. Black arrow: activation.
Brown arrow: positive feedback. Created with Biorender.com.

A few miRNAs that help control the inflammatory response include miR-148, miR-143,
miR-145, miR-452, and miR-26a. miR-148 targets IKKα, IKKβ, IL1R1, GP130, and TNFR2
to decrease NF-κB pathway activation and was downregulated through promoter hyper-
methylation in dextran sodium sulfate- (DSS)/azoxymethane- (AOM) treated mice [54].
Members of the miR-148/152 family in the DSS-/AOM-treated mice suppress the TNF-
α/NF-κB signaling pathway by decreasing matrix metalloproteinase 10 (MMP10) and
MMP13 expression [55]. miR-143 and miR-145 were also found to inhibit tumor devel-
opment and progression and suppress A Disintegrin and Metalloproteinase17, a known
tumor development promoter, in DSS-/AOM-treated mice [56]. Lamichhane et al. found
that miR-452, a miRNA with differential expression patterns reported based on cancer type,
directly targets IL20RA in CRC cell lines to decrease inflammatory protein regulators such
as JAK1, STAT1, and STAT3, but interestingly, the inhibition of miR-452 did not rescue
STAT1 levels, indicating that miR-452 does not directly modulate it [57]. miR-26a over-
expression in myeloid cells was able to suppress IL-6 production, as well as NF-κB and
STAT3 activation in macrophages to ameliorate DSS-induced colitis, though the exact target
of miR-26a remains unknown [58]. Furthermore, while Chen et al. reported that IL-6 did
not have a transcript for direct miR-26a binding, possible explanations may be the use of
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different cell lines in the experiment or the presence of divergent modulatory mechanisms
within different cancers [59]. Because current research is uncovering a wealth of important
roles that miRNA plays within CAC, which are summarized in Table 3, future directions
for research may focus on therapeutic and diagnostic uses of miRNA.

Table 3. miRNAs significantly upregulated or downregulated within CAC and their respective roles.

miRNA Regulation Role in CAC Reference

miR-155 Upregulated Invasion, transformation, tumor genesis [42,46,50]

miR-18a Upregulated Tumor development [52]

miR-19a Upregulated Tumor genesis [49]

miR-21 Upregulated Tumor genesis, invasion, development [45,60]

miR-221 Upregulated Tumor development [53]

miR-222 Upregulated Tumor development [53]

miR-23a Upregulated Tumor genesis [50]

miR-25 Upregulated EMT, invasion [38,46]

miR-301A Upregulated EMT, invasion [38,46,47]

miR-9 Upregulated EMT [38,46]

miR-92a Upregulated EMT, invasion [38,46]

miR-143 Downregulated Inhibits tumor development, progression [55,56]

miR-145 Downregulated Inhibits tumor development, progression [55,56]

miR-148 Downregulated Inhibits tumor development, progression [55]

miR-26a Downregulated Suppresses inflammatory cytokines [58,59]

miR-452 Downregulated Inhibits inflammatory protein regulators [57]

4.2. miRNAs in Cardiovascular Complications of IBD

IBD is associated with an increased incidence of heart failure and concurrent hos-
pitalization, atrial fibrillation, venous/arterial thrombosis, coronary artery disease, and
myocardial infarction (MI) [61]. There is emerging evidence that the systemic inflammatory
processes of IBD may contribute to the pathogenesis of cardiovascular diseases through
increasing inflammatory mediators such as reactive oxygen species, C-reactive protein
(CRP), and pro-inflammatory cytokines [61,62]. miRNAs are being implicated as signaling
molecules in pathogenic mechanisms, as well as potential players in gut–heart crosstalk
(Figure 3).

Vikram et al. reported how gut microbiota can promote atherosclerosis through
remotely regulating miR-204 in mouse aorta endothelium [63]. Upregulated miR-204
decreases Sirt1, a class III histone deacetylase that acts on endothelial nitric oxide syn-
thase, which leads to decreased endothelial nitric oxide to ultimately impair endothelium-
dependent vasorelaxation. Impaired vasorelaxation is a marker for early atherosclerosis,
and it is proposed that phosphorylated STAT3, a repressor of miR-204, is a potential gut–
heart signaling target as it was subsequently downregulated in mice with high-fat diets,
though it is potentially not the only target, as Sirt1 knockout did not completely ameliorate
miR-204 upregulation. Gut dysbiosis may also impact hypothalamic miR-204, as studies
show an association between decreased hypothalamic miR-204 and increased hypothala-
mic brain-derived naturopathic factor (BDNF) [64]. Increased BDNF in the hypothalamic
paraventricular nucleus is associated with arrhythmia, hypertension, and sympathetic ac-
tivity, which indicates that gut dysbiosis may alter cardiovascular activity through indirect
neurogenic pathways.
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Exosomes carrying miRNA are another potential route in how colitis remotely affects
different organs [21]. We found that inflammatory mediators TNF-α, IL-1β, and H2O2 in
colonic epithelial cells can increase exosomal miR-29b, which modulates several genes cod-
ing for cardiac growth and homeostatic factors including BDNF and MYLPF to ultimately
facilitate cardiac remodeling. We also found that chronic colitis increases several cardiac
miRNAs, including miR-155, which targets BDNF, a neurotrophin that displays diverse
protective effects on cardiac function such as endothelial cell survival, post-MI ischemic
tissue neovascularization, antioxidant function, and angiogenesis [65,66]. While TNF-α
inhibitors are a mainstay treatment for IBD, there may be therapeutic potential for inflam-
matory cytokine blockers such as the anti-IL-1β antibody to decrease miRNA mediators
and ameliorate cardiac remodeling, but more research will need to be conducted on the
mechanisms involved. It is postulated that the epithelial barrier dysfunction induced by
chronic colitis creates a leaky gut, which can transport the endotoxins, cytokines, proteases,
miRNAs, and other inflammatory stimuli from gut dysbiosis through the bloodstream and
activate systemic inflammatory processes, but future research will need to elucidate the
precise mechanisms.

4.3. miRNAs in Mental Health Complications of IBD

Neuropsychiatric disorders such as anxiety and depression are closely comorbid with
IBD and gut dysbiosis [67]. Multiple studies have shown that gut microbiome/brain
dysregulation creates bidirectional alterations in gut mechanics, stress modulation, and
cognitive processing [68–70]. miRNAs are implicated in proper gut microbiome mainte-
nance, as the elimination of the DICER processing enzyme creates alterations in intestinal
epithelial integrity and gut microbiota diversity [69]. The gut and brain also display re-
motely mediated crosstalk, as Jang et al. showed that fecal microbiota transplant (FMT)
from patients with IBD with or without depression significantly increased anxiety-like
behaviors within mice, and mice transplanted with FMTs from patients with IBD and
depression showed depression-like behaviors as well [71]. There is also evidence that
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IBD can facilitate organizational changes within neurological structures, which could be
mediated by miRNAs [64].

One neurological mediator that miRNAs modulate so far is BDNF. BDNF is an im-
portant neurotrophic factor that affects several neurological functions such as cellular
proliferation, synaptic functioning, and neuronal survival [72,73]. Huan et al. found that
miR-155 increased, while BDNF and lncRNA MIR155HG decreased within the hippocam-
pus in mice with chronic unpredictable mild stress (CUMS) and that miR-155 suppresses
BDNF expression through direct binding [74]. MIR155HG was also shown to repress
miR-155, and MIR155HG overexpression ameliorates depression-like behaviors within
mice. While this may be a future therapeutic target, further research needs to be performed
on miR-155 expression in neuropsychiatric disorders within a colitis model. Antagomirs
have been able to reduce depression-like behavior, and Yang et al. showed that an miR-124
antagomir was able to rescue reduced BDNF and CREB1 in rat hippocampi and subse-
quently increase norepinephrine, dopamine, and serotonin levels in the mice undergoing
CUMS [75]. Future directions of IBD research may focus on illuminating how miRNAs are
involved in neuropsychiatric manifestations and their potential in ameliorating IBD and its
systemic complications.

4.4. miRNAs in Other Complications of IBD

Extraintestinal manifestations (EIMs) in IBD are extremely common with estimations
that approximately 5–50% of IBD patients experience at least one EIM, which may signifi-
cantly impact a patient’s prognosis and quality of life (Figure 1) [76]. The most common
EIMs include musculoskeletal, cutaneous, ocular, hepatobiliary, and visceral pain [77,78].
Knowledge about miRNA involvement in EIMs is limited, which highlights a growing
need for illuminating the mechanisms behind the systemic pathogenesis of IBD. Inter-
estingly, 75% of patients with primary sclerosing cholangitis (PSC) are diagnosed with
IBD, indicating that the underlying pathological mechanisms between them may intersect,
leading to their strong comorbid relationship [76]. It has also been shown that this disease
combination carries a significant risk for CAC and displays a significant increase of miR-155
and TLR4 expression, accompanied by a significant downregulation of SOCS1 protein in
PSC peripheral blood mononuclear cells [46]. miR-155 may be potentially involved in
the pathogenesis of PSC through downregulation of SOCS1, but further research will be
needed to clarify the exact mechanism. Visceral pain is another complication that can
severely impact quality of life for affected IBD patients. Lu et al. found that miR-146a-
5p directly targets the 3′UTR of CCL8, which prevents CCL8 from activating receptor
CCR5 for visceral hyperalgesia in a model of trinitrobenzene-sulfonic-acid-induced colitis [77].
Emerging evidence is starting to recognize the role of miRNAs as mediators in the systemic
manifestations of IBD, and future research will be needed to fully elucidate the role of
miRNAs in extraintestinal pathogenic mechanisms.

5. miRNAs in IBD-Associated Diagnostics

IBD is currently diagnosed through a multitude of different assessments including
clinical history, radiology, endoscopy, colonoscopy, and histology [79,80]. However, these
invasive procedures carry risks such as perforation and bleeding. Diagnostic challenges
remain in differentiating between UC and CD when lesions are solely limited to the colon
and in differentiating between IBD and irritable bowel syndrome (IBS) [80]. Endoscopy
represents the main method of differentiation between organic IBD, and more functional
IBS disorder though inflammatory markers such as TNF-α [81] and calprotectin [82,83] has
also been used. miRNAs are found to be stable in peripheral blood, saliva, and feces and
have been suggested as diagnostic biomarkers of IBD [80]. There is also research indicating
that miRNAs can serve as sensitive and specific biomarkers for disease onset, prognosis,
and remission [79,80].
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5.1. Differentiating UC and CD with miRNAs

While distinguishing between UC and CD remains a diagnostic challenge, newer
biomarkers such as human alpha defensin 5 and miRNAs may aid in diagnosis, especially
in histologically indeterminate scenarios [84]. Forming a miRNA panel may help serve as a
potential tool to distinguish between CD and UC and evaluate complications of IBD, as
discussed. In addition, utilizing differential miRNAs for diagnosis is much less invasive
than classic endoscopy, and yet as specific [14,15]. Based on the literature, we created
Venn diagrams showing common differentially dysregulated miRNAs in the ileal/colonic
tissue (Figure 4A), peripheral blood (Figure 4B), feces (Figure 4C), and saliva (Figure 4D) of
patients with UC or CD. Albeit that further validation is needed, different miRNA panels
could be established and utilized for differential diagnosis of UC and CD.
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Figure 4. Venn diagrams showing significantly dysregulated miRNAs in ileal/colonic tissue (A),
peripheral blood (B), fecal matter (C), and saliva (D) of patients with ulcerative colitis (UC) or
Crohn’s disease (CD). Green denotes upregulated miRNAs, and red denotes downregulated miRNAs
compared to healthy controls.

One study from Wu et al. noted eight confirmed miRNAs in peripheral blood that were
distinguishable between active UC and active CD: miRs-28-5p, -103-2, -149, -151-5p, -340,
-532-3p, and miR-plus-E1153 were all significantly elevated in active UC when compared to
active CD, and miR-505 was significantly decreased in active UC versus active CD [15]. The
study also noted these miRNA “signatures” were more homogenous in the peripheral blood
samples of active disease patients as opposed to inactive remission patients. Another study
determined after screening assays that miRs-598 and -642 were significantly upregulated
in the UC patients’ plasma in comparison to CD patients’, though both were significantly
elevated in UC and CD compared to healthy controls [16]. Furthermore, miRs-16, -21, and,
in particular, -223 were more prominently increased in active CD sera versus that of active
UC [19].

In fecal matter, miRs-223 and -1246 were significantly upregulated in UC indi-
viduals with fecal calprotectin > 250 mg/kg compared to CD individuals with fecal
calprotectin < 250 mg/kg [18]. Studies from Ahmed et al. and Wohnhaas et al. seem to
suggest upregulation of miRs-21, -126, and -203 and downregulation of miR-320 may
distinguish UC from CD [20,34]. In general, it seems proinflammatory miRNA expression
is higher-fold in feces of UC patients compared to CD patients, though this depends on
other variables as well, including disease activity [19]. Salivary miRNAs are still quite



Int. J. Mol. Sci. 2022, 23, 8751 11 of 17

novel, though from our review, it seems miRs-26a and -101 may be more prominent in CD
patients [14].

Even with colonic tissue biopsies, a more specific and complementary miRNA panel
may better support histology if colonoscopy is to be undertaken. For example, although
miR-29a is significantly upregulated in UC colon samples, miR-29 family members in
CD colon tissue are not, with downregulation even occurring along strictures via TGF-
β-mediated fibrosis [33]. Furthermore, miR-125b-1-3p was determined by Schaefer et al.
as only significantly upregulated in UC colon tissue [14]. Other miRNAs to consider
may include miRs-31, -106a, -146a, -192, and -375, though further research with larger
sample sizes with attention toward disease activity may improve the knowledge of various
miRNAs involved in either UC or CD.

One diagnostic difficulty in IBD is the differentiation between clinical and endoscopic
remission, where clinical remission is the absence of symptoms, but endoscopic remission
is the absence of detectable mucosal lesions and is associated with better clinical progno-
sis [79]. miR-320a was found to be increased in the peripheral blood of CD patients with
active disease flares compared to those with quiescent disease; was directly correlated with
disease severity; was associated with endoscopic disease activity in the setting of mild
or absent clinical symptoms; was increased in CD patients with extensive intestinal in-
volvement; and was elevated compared to patients with C. difficile-associated colitis [79,85].
While miR-320a is a candidate for being a diagnostic biomarker for detecting differentiation
of active colitis, Cordes et al. showed that it does not correlate with histological colitis
activity, and larger cohort studies are needed to fully assess the diagnostic value [17]. For
serum miR-146b-5p, CD and UC patients had levels 2.87-fold higher and 2.72-fold higher
than age- and gender-matched healthy controls. Chen et al. found that miR-146-5p had
potential diagnostic value as its expression had similar sensitivity to CRP, a marker that is
associated with disease activity in UC/CD, and displayed increased specificity compared
to CRP (92.31% vs. 46.15%).

5.2. Differentiating IBS and IBD with miRNAs

miRNAs may help differentiate IBS from IBD and its complications. One study noted
significant upregulation of miRs-23a, -375, and -422b in IBS colonic tissue compared to
healthy controls [12]. Zhou et al. found upregulated miRs-29a and -29b in the small
intestinal and colonic tissue of IBS-D patients [86]. In colonic mucosa, miRs-219a-5p and
-338-3p were found downregulated in IBS patients [87]. miR-375 may also be useful for
IBS/IBD differentiability exhibiting downregulation in IBD colonic tissue, in contrast
to IBS upregulation. For CD specifically, miR-29b may distinguish CD versus IBS with
downregulation and upregulation, respectively.

In serum studies, proinflammatory miRs-23a and -181b are upregulated in IBS patients
compared to healthy controls [88]. Moreover, miRs-150 and -342-3p were also found upreg-
ulated in IBS patients [89]. Conversely, serum miR-199b levels were downregulated [90].
Another study identified miRs-21 and -92a upregulated in UC compared to IBS patients [91].
Just like miRNAs can distinguish UC and CD, more research may help solidify differential
miRNAs in IBS patients with consideration for specific disease variation amongst IBS-C,
IBS-D, and IBS-M.

5.3. Challenges and Future Indications for miRNA-Based Diagnostics

Some challenges that miRNAs face as a diagnostic profiling tool is the challenge of
normalizing peripheral fluid data to obtain standard cut-off values, low sensitivities and
specificities in current detection methods, and creating point-of-care assays to decrease
diagnostic latency [80,92,93]. While miRNAs may prove to be useful diagnostic prog-
nosticators, more information is needed with regard to tissue/sera normalization across
a cohort with a wide variety of patient backgrounds to increase validity. Furthermore,
because of the multiplicity of roles that a single miRNA is involved in, it may be useful to
try using a panel-based approach, as discussed above, for future research and diagnostic
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purposes. Current detection methods of miRNAs include traditional methods such as
Northern blotting, microarrays, and RT-qPCR, while newer detection methods include
nanomaterial-based miRNA detection, nucleic acid amplification techniques, rolling circle
amplification, fluorescent in situ hybridization, strand displacement amplification, loop-
mediated isothermal amplification, and enzyme-free amplification [92]. While traditional
RNA detection methods are predominantly employed, these methods suffer from limita-
tions such as low specificity and sensitivity and applications requiring technical expertise
and can be time consuming. Newer detection techniques display increased sensitivity and
specificity and increased discriminatory ability and can potentially be more cost-effective.
These technologies may play a role in point-of-care settings as microfluidic chip- and
electrochemical-based systems augment these newer detection routes to become more
portable than current diagnostics modalities [93]. However, these newer techniques still
display limitations such as cost and complexity, as well as require further sensitivity and
specificity validation. The future of miRNA detection will require a widespread validation
of newer techniques, as well as the employment of a combination of existing techniques to
utilize miRNA diagnostics in a cost-effective, widespread manner.

6. miRNAs in IBD-Associated Therapeutics

Current therapeutic interventions for IBD include aminosalicylates, thiopurines, cor-
ticosteroids, and biologics [94]. Therapeutic use of miRNAs is being considered within
research as a novel treatment agent due to the ability of miRNAs to simultaneously mod-
ulate multiple gene targets [95]. Currently, there are two main strategies of treatment:
miRNA antagonists and miRNA mimics.

miRNA antagonists are composed of antisense oligonucleotides that preferentially in-
hibit miRNA’s “seed regions” to induce silencing of downstream pathways with antagomirs
including functional groups for nuclease degradation [96,97]. Suri et al. also reported that
a variety of interventions that inhibited miR-29a, miR-26b, miR-233, miR-19a, miR-146-5p,
and miR-122a were able to restore epithelial barrier integrity and alleviate symptoms of
IBD [97]. miR-214 may serve as a potential therapeutic target, as it is overexpressed in UC
and CAC colonic tissue and it decreases PTEN and PDLIM2 to activate the NF-κB and AKT
signaling pathways and amplify the inflammatory response [98]. miRNA antagomirs may
also augment existing clinical therapies with let-7a inhibition increasing Fas and Fas ligand
in bone-marrow-derived mesenchymal stem cells to induce T cell migration and apoptosis
to ultimately maximize mesenchymal stem cell cytotherapy benefits [99]. miRNAs may
be a candidate for future therapeutic usage, and currently, Miravirsen is an antimir used
for treating the hepatitis C virus (HCV) through targeting miR-122-HCV inhibition and is
currently in phase II clinical drug trials [94]. However, antagomir therapy faces hurdles
including a lack of specificity for target cells, potential hepatotoxicity, and potential side
effects due to vast miRNA gene modulation [94,97]. While liposomal packaging and serum
exosomal therapy are suggested as potential solutions, experiments must be replicated in
larger cohorts and the variety of animal models increased to ascertain true clinical viability.

Agomirs or miRNA mimics are useful for rescuing the downregulation of miRNA
in certain pathological states. However, agomir therapy faces additional hurdles such
as a larger dosage requirement and the challenge of incorporating the miRNA into the
fully functional RISC complex [94]. miRNA mimics are also being used as burgeoning
treatments in oncology with MRX34, a liposomal encapsulated miR-34a mimic, currently
in phase I clinical drug trials.

miRNAs may also have a role in predicting individual drug therapy response with a
study finding significant downregulation of miR-16-2-3p, miR-30e-3p, miR-32-5p, miR-642a-
5p, miR-150-5p, and miR-224-5p within a cohort displaying resistance to glucocorticoid
therapy [100]. These results had specificities of 97.30%, 89.20%, 59.50%, 73.00%, 97.30%,
and 97.30%, respectively, and displayed sensitivities of 74.40%, 84.60%, 97.40%, 92.30%,
66.70%, and 89.70%. Interestingly, phosphoinositide-3-kinase adaptor protein 1, which
affects histone deacetylase activity, was found to be a common gene target for miR-30e-
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3p, miR-32-5p, and miR-16-2-3-3p and may activate the PI3K/AKT signaling pathway to
induce glucocorticoid resistance. Limitations of this study include a small sample size
of 18 individuals and a homogenous population. Replication of this study with larger
heterogenous cohorts would increase the clinical validity and further strengthen these
exciting results.

7. Conclusions

Wu et al.’s pioneering study of comparatively looking at miRNAs in UC opened the
field of looking at miRNA expression within IBD, including its pathogenic mechanisms and
associated complications, and may potentially play a large role in future diagnostic and
therapeutic directions [12]. Their ability to post-transcriptionally alter the expression of a
multitude of genes makes them attractive targets for drug manipulation, and their stability
and presence in a multiplicity of peripheral tissues gives them promise to be non-invasive
diagnostic indicators. While there are still many questions within the realm of miRNAs in
IBD, this dynamic and rapidly expanding field continues to produce exciting results and
provide clinical potential for the future.
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