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Abstract

The aim of Jscatter is the processing of experimental data and physical models with the

focus to enable the user to develop/modify their own models and use them within experi-

mental data evaluation. The basic structures dataArray and dataList contain matrix-like data

of different size including attributes to store corresponding metadata. The attributes are

used in fit routines as parameters allowing multidimensional attribute dependent fitting. Sev-

eral modules provide models mainly applied in neutron and X- ray scattering for small angle

scattering (form factors and structure factors) and inelastic neutron scattering. The intention

is to provide an environment with fit routines, data handling routines (based on NumPy

arrays) and a model library to allow the user to focus onto user-written models for data anal-

ysis with the benefit of convenient documentation of scientific data evaluation in a scripting

environment.

Introduction

Most computer programs used for data evaluation allow to read data files, provide models for

fitting with an appropriate fit algorithm and storage of the results. Some allow inclusion of

user-defined models for fitting. A less common feature is that during the fit procedure multiple

datasets are fitted simultaneously taking the experimental parameters (metadata) into account.

As a general example we might think about a set of dynamic light scattering experiments

(DLS) measuring the intensity correlation function of colloidal particles dispersed in a solvent.

This experiment can be done at various temperatures and at multiple scattering vectors that

influence the measured correlation functions, which depend on solvent viscosity (respectively,

on temperature) and scattering vector. To fit all data together the model may include the tem-

perature dependent viscosity of the solvent to allow fitting of a hydrodynamic radius directly.

Jscatter implements correct usage of these experimental parameters by storing related meta-

data (e.g. temperature or wavevector) as attributes of a dataArray and automatic usage of these

e.g. in a fit procedure. Complex evaluations are possible as e.g. combined fit of neutron and X-

ray scattering data. Based on an open platform as Python with NumPy/SciPy[1] as basis, Jscat-

ter allows fast reliable development of physical models also for non-experts in programming.

The computation can be sped up by usage of multi core computers through the standard
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Python libraries multiprocessing and/or compiled code through various open projects (e.g.

f2py, numba) if necessary. Usage of scripts or Jupyter Notebooks [2] allows a step-by-step

development of reusable models and evaluation procedures. This allows also an easy evalua-

tion of large datasets e.g. from timeseries and simultaneous document evaluation of experi-

ments from raw measured data to final conclusions. In special the documentation is difficult

in common GUI based programs.

Models are based on standard Python function usually defined in a script. These can be

standard functions allowing longer more complicated calculations or lambda functions as

short one-line anonymous functions with a single expression as e.g. f = lambda x,a,b:x�a+b. If

the parameter names of the model are found in the actual fitted dataArray/dataList as attri-

butes they are automatically used as fixed parameters. Results can be stored as human readable

ASCII file. The file format allows retrieving of the data attributes without loss of information.

An extensible model library is provided which contains currently mainly models as form

factors for small angle scattering (formfactor), fluid and crystalline structure factors (structure-
factor) and inelastic neutron scattering models (dynamic). Additional modules contain vector-

oriented quadrature routines and material data related to scattering length densities (formel).
The module sas provides methods for smearing and desmearing (according to the Lake algo-

rithm) of small angle scattering data (neutron and X-ray) and evaluation of 2D detector

images. Beside the Beginners Guide the module examples contains more than 30 executable

examples to learn Jscatter usage and build a basis for user scripts.

Jscatter is available under the terms of the GNU General Public License (GPLv3) and hosted

at https://gitlab.com/biehl/jscatter. Full documentation including installation instructions, a

Beginner’s Guide and explicit examples is hosted at http://jscatter.readthedocs.io. A set of Jupy-

ter notebooks is included in the examples that can be run in a mybinder[3] live demonstration

for testing/evaluation of Jscatter (see [4] for the direct link to open amybinder instance). Jscat-

ter can be installed from the Python Package Index (PyPI, https://pypi.org/project/jscatter/)

repository by “pip install jscatter” on Linux/macOS/Windows as described in the

documentation.

In the following basic usage of Jscatter with short examples will be given demonstrating the

basic functionality. Then main modules are described with a more detailed description for

models that are less common, unique or deviate with respect to other programs providing sim-

ilar models.

Basic usage

For convenience Ipython, a command shell for interactive computing with code completion,

history and syntax highlighting, is recommended. Alternatively, Jupyter Notebooks can be

used. A typical example for the analysis of neutron spinecho spectroscopy (NSE) measurement

is shown in Fig 1. The workflow contains reading of data from a file, handling of data, defining

a model function, fitting the model showing intermediate results in a residual plot (see Fig 2)

and saving of the results (see Fig 3). The script can be developed step-by-step in a text editor

by copy-and-paste to a Python shell. Later the script can be executed by run scriptname.py.
Models can be extended or changed by changing the script and rerun it to find a suitable

model describing the data. The script can be run at a later time and documents the evaluation

of scientific experiments from measured experimental data up to a figure published in a scien-

tific journal.

Model functions used during fitting are by intention defined by the user. Simple fit models

can be defined in scripts or as lambda function in one line in an interactive command shell.

Complex models may have several contributions with different physical origins or combine
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different experimental techniques described by a model. For instance, the example How to
build a more complex model illustrates how to combine an ellipsoidal form factor and a struc-

ture factor including the particle density to get the scattering in absolute units. To allow maxi-

mum flexibility the modules included in Jscatter contain only basic models without

backgrounds or other contributions that depend on the explicit experimental setup. In this

way the user can adopt physical models to the explicit experiment and e.g. use a polynomial

background fit, included a smoothed background or include parameter distributions e.g. to

include particle size polydispersity. Additionally, the user can develop a user library off his

own models in a Python module independent of Jscatter.

Modules

DataArray/DataList

The basis of Jscatter is Python with the main libraries NumPy for array related methods and

SciPy for mathematical functions and the basic fit routines. Jscatter implements dataArray as

subclass of NumPy ndarrays, with the ability to use attributes for storage of metadata as tem-

perature or wavevector related to a measurement or result of a simulation. dataList is a sub-

class of list (part of Python base libraries) which allows to store multiple dataArray of different

size. Together dataArray and dataList allow storage of experimental data with multiple param-

eters, as it is typical for measurements or simulations spanning a variety of dependent parame-

ters. The advantage of NumPy ndarrays over other data structures is that ndarrays implement

methods common to users with a basic knowledge of matrix algebra. dataArray/dataList reside

in the module dataArray and can be accessed from the top level as jscatter.dA and jscatter.dL.

Treatment of read data stored in dataArray can be done by standard NumPy ndarray func-

tionality accessing individual elements or slicing to access subparts of arrays as block, columns

or lines. Attributes can be set to store metadata or results of computations.

Fig 1. A script showing the workflow using Jscatter. The resulting plot is shown in Fig 2.

https://doi.org/10.1371/journal.pone.0218789.g001
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Reading and interpretation of data from ASCII text files is done on basis of the first words

in a line. Two numbers are interpreted as matrix-like data. A string followed by a number that

can be interpreted as float is regarded as an attribute name with the remainder of the line as

content. Anything else is handled as a comment, which is also stored with the dataArray and

can be processed later if needed. Files containing multiple matrix-like datasets can be read as

dataList. Here a new dataArray is started, if attributes or empty lines follow matrix-like data or

a specified keyword. Reading multiple files into a single dataList is possible using wildcard

characters (�?) or by appending a new read dataList. A dataListmay contain hundreds of

dataArray which can be later filtered according to attributes to build subsets. Options allows

reading of most matrix-like ASCII text files e.g. by replacing characters/words or selecting/

ignoring columns. dataArray‘s can also be created directly from ndarrays as result of a simula-

tion or from external libraries reading data formats as HDF5[6] adding corresponding attri-

butes after dataArray creation. Automatic attributes as X, Y, eY simplify plotting routines and
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Fig 2. Residual plot showing data with the model calculation and respective residuals. The initial output has slightly

changed adding correct axis titles, shortening and moving the legend and adjusting the scale using the Grace graphical user

interface.

https://doi.org/10.1371/journal.pone.0218789.g002
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define the columns for fitting in multi column dataArrays. The column indices for up to 3

dimensions with errors can be set during reading of data or changed later. In simulation multi

column dataArray’s allow to add intermediate output to be stored together with the final data.

E.g. the scattering intensity of particles as the product of form factor F(q) and structure factor

S(q) can be stored with columns [q, S(q)F(q), F(q), S(q)] for later evaluation.

Jscatter implements several fit algorithms (from scipy.optimize) as method of dataArray/
dataList on the basis of chi-square minimization. The fastest is ‘leastsquare’, a Levenberg-Mar-

quardt algorithm as a wrapper around MINPACK’s lmdif and lmder algorithms, compared to

the other implemented methods as ‘BFGS’ or ‘Nelder-Mead’[7–9]. As a method to find a global

minimum a differential evolution algorithm is implemented selecting candidate solutions with

stepwise improvement[10]. An extensive description of the algorithms is given in scipy.
optimize.

The fit algorithms allow fitting with the ability to access data attributes as fixed parameters

for each dataArray just by using the name of the attribute in the model. Fit parameters can be

common in a dataList or be independent fit parameters for each dataArray in a dataList with

optional limiting conditions or explicit limits. The behavior is changed by simply setting a sin-

gle value or a list of values as start parameter invoking the fit process. Fitting was tested for

large datasets e.g. with a series of 300 time resolved SAXS measurements and fitting of several

independent and common parameters. Fit results are accessible as attribute lastfit including
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Fig 3. Result for the effective diffusion Deff(Q) together with the expectation according to a rigid protein structure. A common

amplitude A was fitted. The upturn in diffusion is due to the additional effect of rotational diffusion if the scattering vector reaches

the length scale of the protein (here hemoglobin)[5]. Axis legend and legends are inserted in Grace after plotting.

https://doi.org/10.1371/journal.pone.0218789.g003
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best parameter estimates, corresponding error bars, covariance matrix and other fit related

quantities as e.g. model name and can be saved as dataList/dataArray in an ASCII text file.

The fit procedure accepts models defined as Python functions (including lambda) which

return the function values as ndarray vector or as dataArray with Y defined. If data contain X,

Z,W columns 2D/3D fits as e.g. for 2D image data with the function value in Y are possible

(see help of dataList.fit for examples). If dataArray/dataList have defined eY columns these are

used as 1-sigma errors to weight Y. After a successful fit, the model can be simulated with

changed parameters to elucidate the effect of parameter variation. Models returning dataAr-
ray’s may include additional attributes calculated inside of the model that can be used later for

evaluation as these are included in lastfit.
Large dataLists can be filtered according to attributes to select subsets (filter), dataArrays

can be reduced by averaging in intervals with a linear or logarithmic separation scale (prune),
interpolated linear, polynominal or by bispline.

Grace/Mpl

For plotting the default is Grace, a free 2D graph plotting tool for Unix-like systems[11]. The

module is GracePlot and a shortcut to open a plot is p = jscatter.grace(). Grace allows plotting

from the command line but also adjusting the graph from a GUI interface to produce publica-

tion quality figures. Grace figures are stored in an ASCII format that can later be reused and

changed. Export to usual graphic formats for publication is included. Additionally, a rudimen-

tary interface mpl to matplotlib is included that simplifies plotting using X, Y, eY for a first fast

draft output. Matplotlib, as a quasi-standard in plotting with Python, can be used directly and

is needed for 3D plots[1].

Formel

“Formel” is the German word for formulary. This module contains useful models or methods

that may be used in the other modules or are standalone models (not justifying an additional

module). Different quadrature rules as Simpson rule, adaptive Gaussian quadrature, fixed

Gaussian quadrature and spherical average in vectorized form are included. Vectorized inte-

gration speeds up quadrature as NumPy compiled functions are used more efficient. Adaptive

Gaussian quadrature, fixed Gaussian quadrature allow parallel computation of the integrand.

The function parDistributedAverage computes a function with a parameter distributed by sta-

tistical distribution as ‘normal’, ‘lognorm’, ‘gamma’, ‘lorentz’, ‘uniform’, ‘poisson’, ‘duniform’.

Sedimentation profiles as solutions to the Lamm-equation including and excluding the bottom

equilibrium distribution can be calculated[12,13]. Material data as scattering length density,

water compressibility, water dielectric constant are given. For physical constants the SciPy

module constants is advised. For numerical integration Fibonacci lattices and pseudo random

grids can be computed.

Parallel

To speed up computations on a multiprocessor machine the module parallel offers an easy

interface to the standard Python module multiprocessing within a single command. This pro-

vides parallel processing of a function for a list of values in case of embarrassingly parallel

problems. Additionally, a function for a parallel spherical averaging using a Fibonacci lattice

or a pseudorandom distribution on the sphere is implemented. For Monte Carlo Integration

of new functions the pseudorandom Halton sequence is given as a choice for random samples

[14].
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DLS

This module contains a wrapper around the original CONTIN algorithm for the evaluation of

dynamic light scattering data. It calls the original FORTRAN code from S. Provencher[15].

Small angle scattering

The module smallanglescattering (shortcut sas) allows smearing/desmearing of SAS data accord-

ing to Pedersen[16] and for Kratky cameras as described by Lake[17]. Desmearing is implemented

according to the Lake algorithm[17] with an improvement proposed by Vad introducing a

smoothing and an automatic convergence criterion to stop the iterative desmearing algorithm

[18]. Additional functions include silver behenate (AgBe) reference spectrum for Q calibration

[19] and absolute water reference including anorganic components to calibrate the absolute scat-

tering for SAXS[20]. To access raw data from SAXS cameras stored as TIFF files, these files can be

read, masked and displayed in 2D format as sasImage. Basic mathematical functions can be used

for evaluation in 2D as well as filters (e.g. gaussian kernel for smoothing). Calibration with AgBe

allows recalibration of the detector distance, defining the beam center and radial averaging. 2D fit-

ting of sasImages by 2D structure factors is demonstrated in an example.

Form factors

The formfactormodule (shortcut ff) and later mentioned structurefactor module contain mod-

els also available in other common small angle scattering programs like SASfit or SasView

[21,22]. The scattering intensity I(Q) of N equal particles in a volume V is I(Q) = nF(Q)S(Q)

with particle form factor FðQÞ ¼ hFaðQÞ; F�aðQÞi ¼ hjFaðQÞj
2
i, structure factor S(Q) and parti-

cle density n = N/V. h�i indicates the ensemble average and � the complex conjugate. The single

particle scattering amplitude is FaðQÞ ¼
R

Vp
bðrÞeiqrdr ¼

P
Nbi e

iqri with continuous scattering

length b(r) and particle volume Vp or related to discrete subparticles (atoms) with scattering

length bi. Alternatively, for homogenous particles a normalized scattering amplitude may be

defined as F̂aðQÞ ¼ FaðQÞ=
R

Vp
bðrÞdr ¼ FaðQÞ=

P
Nbi. This leads to the additional factor I0 ¼

V2
pr

2
p as particle forward scattering with average scattering length density rp ¼

1

Vp

R

Vp
bðrÞdr. In

general, the scattering length density of a solvent ρs is considered by the difference of particle

scattering length density and solvent scattering length density ρ = ρp−ρs.
In the formfactormodule the formfactor F(Q) is calculated to allow easier description of

particles with inhomogeneous scattering length densities (e.g. multishell particles). For for-

mfactors that don’t reference an explicit material scattering length density as for example the

Beaucage formfactor, the normalized formfactor F̂ aðQÞ is given.

Standard models as Beaucage model, generalized Guinier model, cube, superball, sphere

with fuzzy surface, Teubner-Strey model, Gaussian chain, wormlike chain or ring polymers

are implemented[23–30]. Standard geometrical models as sphere, ellipsoid of revolution, disc

and cylinder are implemented as multishell shapes with unlimited number of shells[31]. This

allows shapes with hollow core, core shell particles or gradual changing shells approximated as

multiple thin shells. The cylinder model allows caps with diameter larger than the cylinder

(barbell shape) or smaller (lens shape)[32,33]. For disordered multilamellar vesicles the model

of Frielinghaus is used[34]. The scattering of a cylinder filled with ellipsoids is calculated in

ellipsoidFilledCylinder[35]. To simulate polydispersity or multimodal distributions integration

functions for a size parameter are given.

The scattering of arbitrary shaped particles can be calculated by cloudScattering. The

desired shape is represented by a cloud of subparticles representing the desired shape as a kind

Jscatter
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of volume integration. The subparticle itself may be described by a subparticle formfactor bi(q)
as sphere, gaussian or any explicitly given subparticle formfactor[36]. In the same way distri-

butions of particles as e.g. clusters of particles or nanocrystals can be calculated including sub-

particle asymmetry and random position fluctuations by a Gaussian distribution as Debye-

Waller factor (see structure factors). In addition, the asymmetry factor of the particle is calcu-

lated to be included as a correction for the structure factor[37]. Oriented particles can be simu-

lated by orientedCloudScattering limiting the orientational average to an oriented cone and

calculating a 2D scattering pattern. On one hand, the resolution of a subparticle grid is a kind

of volume integration over the particle that needs finer grains if the resolution is increased. On

the other hand, the substructure of any particle lattice leading to Bragg peaks is observed (like

atoms in a crystal). This allows to examine the crossover from particle shape scattering to

internal structure as shown later in a structure factor example.

Methods to build clouds of scatterers e.g. a cube decorated with spheres at the corners can

be found in Examples module.

Structure factors

The module structurefactor (shortcut sf) contains several structure factors for crystals with a

long-range order and for particle suspensions without long range order. Structure factors for

crystals with cubic symmetry (sc, bcc, fcc), diamond lattice, hexagonal lattice (hcp, hex) or gen-

eral rhombic lattices with multi atom unit cells can be calculated. Bragg peak broadening due

to limited domain size [38], peak asymmetry, Debye-Waller factor and asymmetry of the parti-

cles[37] can be included in the structure factor as described extensively by Förster[39].

As the previous analytical treatment of the lattice structure factor does not account for

incomplete unit cells or arbitrary lattice shapes (e.g. for spherical or cubic nanoparticles) and

does not represent the low Q behavior satisfactorily (see discussion in [39]) the explicit calcula-

tion from a grid of particles by explicit calculation allows to compute the structure factor of

arbitrary shaped clusters. Therefore an explicit grid with the desired geometry is constructed

and the function ff.cloudScattering is used to calculate the structure factor. Examples for cubic

lattices with a comparison to the analytical model are shown in Figs 4 and 5.

Non-crystalline structure factors are derived from the pair interaction potential between parti-

cles. The simplest model results from the hard-core potential represented in the Percus-Yevick

structure factor in 3D[40,41]. This potential is additionally given for the case of 2 and 1 dimen-

sional problems[42,43]. An attractive interaction with a hard core can in the simplest case be repre-

sented by a potential well in the sticky hard sphere or adhesive hard sphere structure factor [44,45].

The structure factor of a critical system is described by Chen as calculated in criticalSystem [46].

The interaction potential between charged spheres with a screening due to an ionic solvent

is described by the repulsive screened Coulomb pair potential. The resulting structure factor in

rescaled mean spherical approximation (RMSA) was original published by Hansen and Hayter

[47] and Hayter released an algorithm in Fortran 77 (1981, ILL Grenoble). Today most pro-

grams implement code directly derived from the original code translated to C or other lan-

guages. The rescaling of the MSA solution is necessary as it yields a negative value for the

radial distribution function g(r) at r = R at low volume fractions [47]. The Python code here is

also derived from the original Hayter Fortran code with an important deviation. The original

algorithm determines the root of a quartic Fw(w1,w2,w3,w4) by an estimate (named “P-W esti-

mate” in the source code), refining the estimate by a Newton algorithm to find one of the cen-

tral roots of 4 roots. Dependent on the used parameters, the “P-W estimate” is not good

enough resulting in an arbitrary root of the quartic in the Newton algorithm. This results in

the correct solution, a solution with g(r<R)6¼0 or no solution. Fig 6 shows exemplary a

Jscatter
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comparison for Γ = 3, R = 3.1,F = 0.4 and 0.1<ak<58. We apply here the original idea from

Hayter[47] to calculate G(r<0) for all four roots of Fw(w1,w2,w3,w4) and select the physical

solution with g(r<R) = 0. The roots are directly calculated by numpy.roots determining the

eigenvalues of the companion matrix[48] and g(r) is calculated by the sin-transform. Because of

the inversion problem related to a limited Q range and number of points[49], the solution with

a minimal g(r�R/2) is chosen (see Fig 6 lines). The shoulder observed for small ak around

2QR = 1 in Fig 6 is already described by Hansen and represents the change from the long range

repulsion to the short range hard core repulsion[47]. The second set of solutions with too high

structure factor values at low Q represent the unphysical solution due to the wrong root.

The hydrodynamic function H(Q) describes the hydrodynamic pair interaction between

spherical particles in solution for finite concentrations. It is required within a correction of the

observed collective translational diffusion coefficient Deff from the single particle translational

diffusion coefficient D0 as Deff(Q) = D0H(Q)/S(Q) with the structure factor S(Q) [50,51]. The

correction can also be applied to describe the translational diffusion of rigid proteins at finite

concentrations[52]. We apply the theory from Beenakker and Mazur as given by Genz and

Klein to calculate the δγ-expansion for many body hydrodynamic interaction within a renor-

malization approach [53–55]. Within the δγ–expansion the hydrodynamic function H(Q) can

be calculated based on a structure factor S(q). Additionally, the self-diffusion coefficient DS is

calculated. For a description of the function see Genz and Klein for details[55].

Dynamic

This module contains various models describing dynamic processes mainly used in context of

inelastic neutron scattering to describe backscattering, time of flight experiments (BS, TOF,
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both measure in the frequency domain) or neutron spinecho spectroscopy (NSE, measures in

time domain). Models describe generally the intermediate scattering function I(q,t) in the time

domain or the dynamic structure factor S(Q,w) as the Fourier transform of the previous. The

Fourier transform is implemented in the function time2frequencyFF from time domain to fre-

quency domain. The advantage of the time domain is that the combination of different pro-

cesses is done by multiplication, including instrument resolution. In the frequency domain

this is realized by a convolution, which needs more computing time. A function for the bin-

ning in frequency intervals is given to implement averaging over different channels.

Common models in the time domain include simple diffusion, stretched exponential, jump

diffusion or methyl rotation [56,57]. Diffusion in a harmonic potential for 1,2 and 3 dimen-

sions is implemented[58]. diffusionPeriodicPotential describes fractal diffusion with a fast in

trap diffusion and a long time diffusion in periodic potentials[59].

Finite Rouse and Zimm model for polymers including internal friction[60–62], the Zil-

mann-Granek model for bicontinuous and lamellar emulsions for coherent scattering are

implemented[63]. Rotational diffusion of an object like a protein described as a cloud of scat-

terers can be computed[64,65].

In the frequency domain the diffusion in a sphere, diffusion in a harmonic potential, rota-

tional diffusion and n-site jump diffusion are implemented additional to elastic scattering,

translational diffusion and jump diffusion[58,64,66,67]. Fig 7 shows a comparison of the half

width at half maximum (HWHM) for different diffusion processes computed in the frequency

domain and in the time domain with FFT to frequency domain.
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As an example, we may look at the dynamics expected for a protein in solution with rota-

tional and translational diffusion and additional internal mobility of protons in a harmonic

potential. The model is similar to the investigation of alcohol dehydrogenase in solution by

Monkenbusch et al. It was found that protons close to the surface show a fast localized diffu-

sion[68]. The dynamic structure factor S(ω,Q) can be described by the convolution of the

respective processes:

Stotalðo;QÞ ¼ Stranlationðo;QÞ � Srotationðo;QÞ � ðð1 � fsurf Þ þ fsurf Sharmonicðo;QÞÞ

The restricted motion in the harmonic potential may be added only to the fraction of pro-

tons fsurf that are close to the surface of the protein. The protein general shape is reconstructed

from the Calpha atoms in the atomic structure from ribonuclease A (entry 3rn3 in protein data

bank, PDB) with the assumption that all amino acids scatter in a similar way as protons domi-

nate the incoherent scattering. The proton surface fraction is approximated as fraction outside

of a distance from the center of mass for the globular Ribonuclease A. The definition of the

corresponding model is shown in Fig 8 and the results is shown in Fig 9.

Examples

Models and functions contain an Example section in the documentation that shows basic

usage and explains the parameters. Additionally, the module examples shows use-cases to

allow easy adaption for the user. For example “Analyse SAS data” explains how to extract form

and structure factor from a concentration series in small angle scattering by extrapolating to

zero concentration. Examples are provided as scripts including example data to allow direct

execution and inspection of the results. They allow to simulate experiments as in the previous

example to test which concentrations are needed for a good extrapolation to zero concentra-

tion. Included are examples that demonstrate basic usage of Jscatter e.g. how to build simple

and more complex models, smoothing of X-ray data, how to include resolution smearing for

0.1 1 1e+01
2RQ

10
-3

10
-2

10
-1

10
0

S(
Q

)

10
0

10
1

ak = 2R/κ

10
-3

10
-2

10
-1

S(
2Q

R
=

0)

jscatter.sf.RMSA

original Hayter

wrong root

ak increasing

Fig 6. Comparison of the original algorithm of Hayter (dots) with the improved algorithm selecting the best

solution of all 4 roots in Fw(wi) (lines) for a contact potential Γ = 3 kT, volume fractionF = 0.4 and dimensionless

screening ak = 0.1–58. We observe the second set of solutions representing the wrong solutions (only dots) and some

solutions missing in the original solution (only line). The inset shows the respective S(Q = 0) values for the improved

solution (black) compared to the original solution (blue). Here some points are missing as no solution was returned

others show the wrong solution.

https://doi.org/10.1371/journal.pone.0218789.g006

Jscatter

PLOS ONE | https://doi.org/10.1371/journal.pone.0218789 June 24, 2019 11 / 18

https://doi.org/10.1371/journal.pone.0218789.g006
https://doi.org/10.1371/journal.pone.0218789


SANS data or diffusion of proteins in solution to demonstrate fitting to a diffusion model.

These examples show how to plot and the basic capabilities. Sinusoidal fits and multishell cyl-

inder models present fit capabilities by the Levenberg-Marquardt fit algorithm. Smearing and

desmearing of SAXS and SANS data is demonstrated. Different models are shown to describe

the variety of samples that might be described by the models as e.g. multilamellar vesicles. The

examples will be extended to more use cases. Most of the examples with corresponding figures

are included in the Examples section of the online documentation.

Requirements/Extending

The most common libraries for scientific computing in Python are NumPy and SciPy. These

are the only obligatory dependencies for Jscatter beside matplotlib for plotting and Pillow for
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reading of images. Python in combination with NumPy can be quite fast if the ndarraysmeth-

ods are used consequently instead of explicit for loops as NumPy methods use compiled code.

E.g. the numpy.einsum function immediately uses compiled C to do the computation. SciPy

offers mathematical functions, e.g. optimization, special function or quadrature, and opti-

mized algorithms also from blas/lapack. For advanced users common packages as Numba or

computation on Graphic card can be integrated within user-supplied model functions. As

these are more specialized and not easy to implement for most users they are currently not

described. Speeding up Jscatter by Fortran code is applied in the function ff.cloudscattering
whereas prerequisite the gfortran compiler is needed which is common on Unix-like systems.

The Python interface to compiled Fortran code is automatically generated by f2py (a part of

NumPy) if Fortran90 code is placed in the specified folder of Jscatter. Using OpenMP, an API

that supports multi-platform shared-memory multiprocessing (www.openmp.org), inside of

the Fortran code allows usage of shared memory and multiprocessing reaching the advantages

Fig 8. A script snippet showing how to define a function for fitting. Here the model includes a cloud of points describing amino acid positions in Ribonuclease A,

translational and rotational diffusion and the diffusion in a harmonic potential for a fraction of the surface amino acids. The resolution may depend on Q.

Alternatively a resolution measurement can be used. The full example script is shown in Jscatter module examples including reading of the corresponding protein

structure file saving the protein coordinates in cloud.

https://doi.org/10.1371/journal.pone.0218789.g008
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of pure compiled code on multi CPU machines. Fortran usage is explained in the documenta-

tion and used in ff.cloudscattering. The speed up compared to compiled C code implemented

in Numpy (e.g. numpy.einsum) is by a factor of 6 in the used example.

Users can write their own modules and import them in Python. Contribution of modules

or single models is welcome and can be incorporated in Jscatter or published as separate pack-

age importing Jscatter.

Perspectives

Jscatter implements a data structure with metadata access to allow users data treatment, model

building and fitting in a simple fashion using an open scripting language without the need of

deep knowledge of programming languages. An extensible environment with a model library

currently focused on scattering is provided. Additional to the implemented models more form

factors will be included and the structurefactormodule will be extended to allow more complex

structure factors as multi Yukawa potentials[69,70].

In the tradition of utilization of Python as a glue[71] additional capabilities based on exter-

nal open projects will be added. E.g. Bayesian analysis as used for SAS or DLS analysis would

enhance the optimization capabilities beyond Χ2-minimazation and provide an alternative to

the CONTIN algorithm in the dls module [72]. To allow modelling of structure and dynamics

of proteins with atomic detail e.g. from PDB data bank or MD simulations with respect to scat-

tering measurements a module for handling atomic PDB structures will be included[73]. Sim-

plified interfaces as software wrapper to well-known software in Fortran (like the jscatter.dls
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https://doi.org/10.1371/journal.pone.0218789.g009

Jscatter

PLOS ONE | https://doi.org/10.1371/journal.pone.0218789 June 24, 2019 14 / 18

https://doi.org/10.1371/journal.pone.0218789.g009
https://doi.org/10.1371/journal.pone.0218789


module for the CONTIN algorithm) may provide an opportunity for less advanced users and

integrate well developed software in a joined workflow. Additional examples will illustrate

how to use external libraries in addition to Jscatter to read common file formats. E.g. the

NeXus format widespread in neutron and X-ray scattering may be read using the NeXpy
library and transferred to a dataArray/dataList including metadata for fitting[74,75].

Designed as an open source project contribution of models, new topics or tasks (e.g. coarse

grain simulation) are welcome and will be included into Jscatter to extend the covered scien-

tific areas and techniques.
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