
RESEARCH ARTICLE

Jscatter, a program for evaluation and analysis

of experimental data

Ralf BiehlID*

Jülich Centre for Neutron Science & Institute of Complex Systems (JCNS-1&ICS-1), Forschungszentrum

Jülich, Jülich, Germany

* ra.biehl@fz-juelich.de

Abstract

The aim of Jscatter is the processing of experimental data and physical models with the

focus to enable the user to develop/modify their own models and use them within experi-

mental data evaluation. The basic structures dataArray and dataList contain matrix-like data

of different size including attributes to store corresponding metadata. The attributes are

used in fit routines as parameters allowing multidimensional attribute dependent fitting. Sev-

eral modules provide models mainly applied in neutron and X- ray scattering for small angle

scattering (form factors and structure factors) and inelastic neutron scattering. The intention

is to provide an environment with fit routines, data handling routines (based on NumPy

arrays) and a model library to allow the user to focus onto user-written models for data anal-

ysis with the benefit of convenient documentation of scientific data evaluation in a scripting

environment.

Introduction

Most computer programs used for data evaluation allow to read data files, provide models for

fitting with an appropriate fit algorithm and storage of the results. Some allow inclusion of

user-defined models for fitting. A less common feature is that during the fit procedure multiple

datasets are fitted simultaneously taking the experimental parameters (metadata) into account.

As a general example we might think about a set of dynamic light scattering experiments

(DLS) measuring the intensity correlation function of colloidal particles dispersed in a solvent.

This experiment can be done at various temperatures and at multiple scattering vectors that

influence the measured correlation functions, which depend on solvent viscosity (respectively,

on temperature) and scattering vector. To fit all data together the model may include the tem-

perature dependent viscosity of the solvent to allow fitting of a hydrodynamic radius directly.

Jscatter implements correct usage of these experimental parameters by storing related meta-

data (e.g. temperature or wavevector) as attributes of a dataArray and automatic usage of these

e.g. in a fit procedure. Complex evaluations are possible as e.g. combined fit of neutron and X-

ray scattering data. Based on an open platform as Python with NumPy/SciPy[1] as basis, Jscat-

ter allows fast reliable development of physical models also for non-experts in programming.

The computation can be sped up by usage of multi core computers through the standard

PLOS ONE | https://doi.org/10.1371/journal.pone.0218789 June 24, 2019 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Biehl R (2019) Jscatter, a program for

evaluation and analysis of experimental data. PLoS

ONE 14(6): e0218789. https://doi.org/10.1371/

journal.pone.0218789

Editor: Alejandro Fernandez-Martinez, Centre

National de la Recherche Scientifique, FRANCE

Received: March 28, 2019

Accepted: June 11, 2019

Published: June 24, 2019

Copyright: © 2019 Ralf Biehl. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: https://gitlab.com/

biehl/jscatter. https://doi.org/10.5281/zenodo.

2613610.

Funding: The author(s) received no specific

funding for this work.

Competing interests: The authors have declared

that no competing interests exist.

http://orcid.org/0000-0002-1999-547X
https://doi.org/10.1371/journal.pone.0218789
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0218789&domain=pdf&date_stamp=2019-06-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0218789&domain=pdf&date_stamp=2019-06-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0218789&domain=pdf&date_stamp=2019-06-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0218789&domain=pdf&date_stamp=2019-06-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0218789&domain=pdf&date_stamp=2019-06-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0218789&domain=pdf&date_stamp=2019-06-24
https://doi.org/10.1371/journal.pone.0218789
https://doi.org/10.1371/journal.pone.0218789
http://creativecommons.org/licenses/by/4.0/
https://gitlab.com/biehl/jscatter
https://gitlab.com/biehl/jscatter
https://doi.org/10.5281/zenodo.2613610
https://doi.org/10.5281/zenodo.2613610

Python libraries multiprocessing and/or compiled code through various open projects (e.g.

f2py, numba) if necessary. Usage of scripts or Jupyter Notebooks [2] allows a step-by-step

development of reusable models and evaluation procedures. This allows also an easy evalua-

tion of large datasets e.g. from timeseries and simultaneous document evaluation of experi-

ments from raw measured data to final conclusions. In special the documentation is difficult

in common GUI based programs.

Models are based on standard Python function usually defined in a script. These can be

standard functions allowing longer more complicated calculations or lambda functions as

short one-line anonymous functions with a single expression as e.g. f = lambda x,a,b:x�a+b. If

the parameter names of the model are found in the actual fitted dataArray/dataList as attri-

butes they are automatically used as fixed parameters. Results can be stored as human readable

ASCII file. The file format allows retrieving of the data attributes without loss of information.

An extensible model library is provided which contains currently mainly models as form

factors for small angle scattering (formfactor), fluid and crystalline structure factors (structure-
factor) and inelastic neutron scattering models (dynamic). Additional modules contain vector-

oriented quadrature routines and material data related to scattering length densities (formel).
The module sas provides methods for smearing and desmearing (according to the Lake algo-

rithm) of small angle scattering data (neutron and X-ray) and evaluation of 2D detector

images. Beside the Beginners Guide the module examples contains more than 30 executable

examples to learn Jscatter usage and build a basis for user scripts.

Jscatter is available under the terms of the GNU General Public License (GPLv3) and hosted

at https://gitlab.com/biehl/jscatter. Full documentation including installation instructions, a

Beginner’s Guide and explicit examples is hosted at http://jscatter.readthedocs.io. A set of Jupy-

ter notebooks is included in the examples that can be run in a mybinder[3] live demonstration

for testing/evaluation of Jscatter (see [4] for the direct link to open amybinder instance). Jscat-

ter can be installed from the Python Package Index (PyPI, https://pypi.org/project/jscatter/)

repository by “pip install jscatter” on Linux/macOS/Windows as described in the

documentation.

In the following basic usage of Jscatter with short examples will be given demonstrating the

basic functionality. Then main modules are described with a more detailed description for

models that are less common, unique or deviate with respect to other programs providing sim-

ilar models.

Basic usage

For convenience Ipython, a command shell for interactive computing with code completion,

history and syntax highlighting, is recommended. Alternatively, Jupyter Notebooks can be

used. A typical example for the analysis of neutron spinecho spectroscopy (NSE) measurement

is shown in Fig 1. The workflow contains reading of data from a file, handling of data, defining

a model function, fitting the model showing intermediate results in a residual plot (see Fig 2)

and saving of the results (see Fig 3). The script can be developed step-by-step in a text editor

by copy-and-paste to a Python shell. Later the script can be executed by run scriptname.py.
Models can be extended or changed by changing the script and rerun it to find a suitable

model describing the data. The script can be run at a later time and documents the evaluation

of scientific experiments from measured experimental data up to a figure published in a scien-

tific journal.

Model functions used during fitting are by intention defined by the user. Simple fit models

can be defined in scripts or as lambda function in one line in an interactive command shell.

Complex models may have several contributions with different physical origins or combine

Jscatter

PLOS ONE | https://doi.org/10.1371/journal.pone.0218789 June 24, 2019 2 / 18

https://gitlab.com/biehl/jscatter
http://jscatter.readthedocs.io.a/
https://pypi.org/project/jscatter/
https://doi.org/10.1371/journal.pone.0218789

different experimental techniques described by a model. For instance, the example How to
build a more complex model illustrates how to combine an ellipsoidal form factor and a struc-

ture factor including the particle density to get the scattering in absolute units. To allow maxi-

mum flexibility the modules included in Jscatter contain only basic models without

backgrounds or other contributions that depend on the explicit experimental setup. In this

way the user can adopt physical models to the explicit experiment and e.g. use a polynomial

background fit, included a smoothed background or include parameter distributions e.g. to

include particle size polydispersity. Additionally, the user can develop a user library off his

own models in a Python module independent of Jscatter.

Modules

DataArray/DataList

The basis of Jscatter is Python with the main libraries NumPy for array related methods and

SciPy for mathematical functions and the basic fit routines. Jscatter implements dataArray as

subclass of NumPy ndarrays, with the ability to use attributes for storage of metadata as tem-

perature or wavevector related to a measurement or result of a simulation. dataList is a sub-

class of list (part of Python base libraries) which allows to store multiple dataArray of different

size. Together dataArray and dataList allow storage of experimental data with multiple param-

eters, as it is typical for measurements or simulations spanning a variety of dependent parame-

ters. The advantage of NumPy ndarrays over other data structures is that ndarrays implement

methods common to users with a basic knowledge of matrix algebra. dataArray/dataList reside

in the module dataArray and can be accessed from the top level as jscatter.dA and jscatter.dL.

Treatment of read data stored in dataArray can be done by standard NumPy ndarray func-

tionality accessing individual elements or slicing to access subparts of arrays as block, columns

or lines. Attributes can be set to store metadata or results of computations.

Fig 1. A script showing the workflow using Jscatter. The resulting plot is shown in Fig 2.

https://doi.org/10.1371/journal.pone.0218789.g001

Jscatter

PLOS ONE | https://doi.org/10.1371/journal.pone.0218789 June 24, 2019 3 / 18

https://doi.org/10.1371/journal.pone.0218789.g001
https://doi.org/10.1371/journal.pone.0218789

Reading and interpretation of data from ASCII text files is done on basis of the first words

in a line. Two numbers are interpreted as matrix-like data. A string followed by a number that

can be interpreted as float is regarded as an attribute name with the remainder of the line as

content. Anything else is handled as a comment, which is also stored with the dataArray and

can be processed later if needed. Files containing multiple matrix-like datasets can be read as

dataList. Here a new dataArray is started, if attributes or empty lines follow matrix-like data or

a specified keyword. Reading multiple files into a single dataList is possible using wildcard

characters (�?) or by appending a new read dataList. A dataListmay contain hundreds of

dataArray which can be later filtered according to attributes to build subsets. Options allows

reading of most matrix-like ASCII text files e.g. by replacing characters/words or selecting/

ignoring columns. dataArray‘s can also be created directly from ndarrays as result of a simula-

tion or from external libraries reading data formats as HDF5[6] adding corresponding attri-

butes after dataArray creation. Automatic attributes as X, Y, eY simplify plotting routines and

0

0.5

1
I(

q,
t)

/I
(q

,0
)

A =[0.9921]
D =[0.0864 0.08757 0.08638 0.08679 0.08729 0.08482 0.09104 0.08683 0.08699]
-----fixed-----
elastic =[0]

diffusion model residual plot
Model <lambda> with chi

2
=0.993523 (DOF = 301 points - 17 parameters)

0 20 40 60 80 100
times / ns

-0.06
-0.04
-0.02

0
0.02
0.04
0.06

re
si

du
al

s

Fig 2. Residual plot showing data with the model calculation and respective residuals. The initial output has slightly

changed adding correct axis titles, shortening and moving the legend and adjusting the scale using the Grace graphical user

interface.

https://doi.org/10.1371/journal.pone.0218789.g002

Jscatter

PLOS ONE | https://doi.org/10.1371/journal.pone.0218789 June 24, 2019 4 / 18

https://doi.org/10.1371/journal.pone.0218789.g002
https://doi.org/10.1371/journal.pone.0218789

define the columns for fitting in multi column dataArrays. The column indices for up to 3

dimensions with errors can be set during reading of data or changed later. In simulation multi

column dataArray’s allow to add intermediate output to be stored together with the final data.

E.g. the scattering intensity of particles as the product of form factor F(q) and structure factor

S(q) can be stored with columns [q, S(q)F(q), F(q), S(q)] for later evaluation.

Jscatter implements several fit algorithms (from scipy.optimize) as method of dataArray/
dataList on the basis of chi-square minimization. The fastest is ‘leastsquare’, a Levenberg-Mar-

quardt algorithm as a wrapper around MINPACK’s lmdif and lmder algorithms, compared to

the other implemented methods as ‘BFGS’ or ‘Nelder-Mead’[7–9]. As a method to find a global

minimum a differential evolution algorithm is implemented selecting candidate solutions with

stepwise improvement[10]. An extensive description of the algorithms is given in scipy.
optimize.

The fit algorithms allow fitting with the ability to access data attributes as fixed parameters

for each dataArray just by using the name of the attribute in the model. Fit parameters can be

common in a dataList or be independent fit parameters for each dataArray in a dataList with

optional limiting conditions or explicit limits. The behavior is changed by simply setting a sin-

gle value or a list of values as start parameter invoking the fit process. Fitting was tested for

large datasets e.g. with a series of 300 time resolved SAXS measurements and fitting of several

independent and common parameters. Fit results are accessible as attribute lastfit including

0 0.5 1 1.5 2 2.5 3
Q / nm

-1

0.06

0.08

0.1

0.12

0.14

D
ef

f /
nm

2 /n
s

average effective D
diffusion coefficient 1hho

diffusion coefficient of a protein in solution
the increase is due to rotational diffusion on top of translational diffusion at Q=0

Fig 3. Result for the effective diffusion Deff(Q) together with the expectation according to a rigid protein structure. A common

amplitude A was fitted. The upturn in diffusion is due to the additional effect of rotational diffusion if the scattering vector reaches

the length scale of the protein (here hemoglobin)[5]. Axis legend and legends are inserted in Grace after plotting.

https://doi.org/10.1371/journal.pone.0218789.g003

Jscatter

PLOS ONE | https://doi.org/10.1371/journal.pone.0218789 June 24, 2019 5 / 18

https://doi.org/10.1371/journal.pone.0218789.g003
https://doi.org/10.1371/journal.pone.0218789

best parameter estimates, corresponding error bars, covariance matrix and other fit related

quantities as e.g. model name and can be saved as dataList/dataArray in an ASCII text file.

The fit procedure accepts models defined as Python functions (including lambda) which

return the function values as ndarray vector or as dataArray with Y defined. If data contain X,

Z,W columns 2D/3D fits as e.g. for 2D image data with the function value in Y are possible

(see help of dataList.fit for examples). If dataArray/dataList have defined eY columns these are

used as 1-sigma errors to weight Y. After a successful fit, the model can be simulated with

changed parameters to elucidate the effect of parameter variation. Models returning dataAr-
ray’s may include additional attributes calculated inside of the model that can be used later for

evaluation as these are included in lastfit.
Large dataLists can be filtered according to attributes to select subsets (filter), dataArrays

can be reduced by averaging in intervals with a linear or logarithmic separation scale (prune),
interpolated linear, polynominal or by bispline.

Grace/Mpl

For plotting the default is Grace, a free 2D graph plotting tool for Unix-like systems[11]. The

module is GracePlot and a shortcut to open a plot is p = jscatter.grace(). Grace allows plotting

from the command line but also adjusting the graph from a GUI interface to produce publica-

tion quality figures. Grace figures are stored in an ASCII format that can later be reused and

changed. Export to usual graphic formats for publication is included. Additionally, a rudimen-

tary interface mpl to matplotlib is included that simplifies plotting using X, Y, eY for a first fast

draft output. Matplotlib, as a quasi-standard in plotting with Python, can be used directly and

is needed for 3D plots[1].

Formel

“Formel” is the German word for formulary. This module contains useful models or methods

that may be used in the other modules or are standalone models (not justifying an additional

module). Different quadrature rules as Simpson rule, adaptive Gaussian quadrature, fixed

Gaussian quadrature and spherical average in vectorized form are included. Vectorized inte-

gration speeds up quadrature as NumPy compiled functions are used more efficient. Adaptive

Gaussian quadrature, fixed Gaussian quadrature allow parallel computation of the integrand.

The function parDistributedAverage computes a function with a parameter distributed by sta-

tistical distribution as ‘normal’, ‘lognorm’, ‘gamma’, ‘lorentz’, ‘uniform’, ‘poisson’, ‘duniform’.

Sedimentation profiles as solutions to the Lamm-equation including and excluding the bottom

equilibrium distribution can be calculated[12,13]. Material data as scattering length density,

water compressibility, water dielectric constant are given. For physical constants the SciPy

module constants is advised. For numerical integration Fibonacci lattices and pseudo random

grids can be computed.

Parallel

To speed up computations on a multiprocessor machine the module parallel offers an easy

interface to the standard Python module multiprocessing within a single command. This pro-

vides parallel processing of a function for a list of values in case of embarrassingly parallel

problems. Additionally, a function for a parallel spherical averaging using a Fibonacci lattice

or a pseudorandom distribution on the sphere is implemented. For Monte Carlo Integration

of new functions the pseudorandom Halton sequence is given as a choice for random samples

[14].

Jscatter

PLOS ONE | https://doi.org/10.1371/journal.pone.0218789 June 24, 2019 6 / 18

https://doi.org/10.1371/journal.pone.0218789

DLS

This module contains a wrapper around the original CONTIN algorithm for the evaluation of

dynamic light scattering data. It calls the original FORTRAN code from S. Provencher[15].

Small angle scattering

The module smallanglescattering (shortcut sas) allows smearing/desmearing of SAS data accord-

ing to Pedersen[16] and for Kratky cameras as described by Lake[17]. Desmearing is implemented

according to the Lake algorithm[17] with an improvement proposed by Vad introducing a

smoothing and an automatic convergence criterion to stop the iterative desmearing algorithm

[18]. Additional functions include silver behenate (AgBe) reference spectrum for Q calibration

[19] and absolute water reference including anorganic components to calibrate the absolute scat-

tering for SAXS[20]. To access raw data from SAXS cameras stored as TIFF files, these files can be

read, masked and displayed in 2D format as sasImage. Basic mathematical functions can be used

for evaluation in 2D as well as filters (e.g. gaussian kernel for smoothing). Calibration with AgBe

allows recalibration of the detector distance, defining the beam center and radial averaging. 2D fit-

ting of sasImages by 2D structure factors is demonstrated in an example.

Form factors

The formfactormodule (shortcut ff) and later mentioned structurefactor module contain mod-

els also available in other common small angle scattering programs like SASfit or SasView

[21,22]. The scattering intensity I(Q) of N equal particles in a volume V is I(Q) = nF(Q)S(Q)

with particle form factor FðQÞ ¼ hFaðQÞ; F�aðQÞi ¼ hjFaðQÞj
2
i, structure factor S(Q) and parti-

cle density n = N/V. h�i indicates the ensemble average and � the complex conjugate. The single

particle scattering amplitude is FaðQÞ ¼
R

Vp
bðrÞeiqrdr ¼

P
Nbi e

iqri with continuous scattering

length b(r) and particle volume Vp or related to discrete subparticles (atoms) with scattering

length bi. Alternatively, for homogenous particles a normalized scattering amplitude may be

defined as F̂aðQÞ ¼ FaðQÞ=
R

Vp
bðrÞdr ¼ FaðQÞ=

P
Nbi. This leads to the additional factor I0 ¼

V2
pr

2
p as particle forward scattering with average scattering length density rp ¼

1

Vp

R

Vp
bðrÞdr. In

general, the scattering length density of a solvent ρs is considered by the difference of particle

scattering length density and solvent scattering length density ρ = ρp−ρs.
In the formfactormodule the formfactor F(Q) is calculated to allow easier description of

particles with inhomogeneous scattering length densities (e.g. multishell particles). For for-

mfactors that don’t reference an explicit material scattering length density as for example the

Beaucage formfactor, the normalized formfactor F̂ aðQÞ is given.

Standard models as Beaucage model, generalized Guinier model, cube, superball, sphere

with fuzzy surface, Teubner-Strey model, Gaussian chain, wormlike chain or ring polymers

are implemented[23–30]. Standard geometrical models as sphere, ellipsoid of revolution, disc

and cylinder are implemented as multishell shapes with unlimited number of shells[31]. This

allows shapes with hollow core, core shell particles or gradual changing shells approximated as

multiple thin shells. The cylinder model allows caps with diameter larger than the cylinder

(barbell shape) or smaller (lens shape)[32,33]. For disordered multilamellar vesicles the model

of Frielinghaus is used[34]. The scattering of a cylinder filled with ellipsoids is calculated in

ellipsoidFilledCylinder[35]. To simulate polydispersity or multimodal distributions integration

functions for a size parameter are given.

The scattering of arbitrary shaped particles can be calculated by cloudScattering. The

desired shape is represented by a cloud of subparticles representing the desired shape as a kind

Jscatter

PLOS ONE | https://doi.org/10.1371/journal.pone.0218789 June 24, 2019 7 / 18

https://doi.org/10.1371/journal.pone.0218789

of volume integration. The subparticle itself may be described by a subparticle formfactor bi(q)
as sphere, gaussian or any explicitly given subparticle formfactor[36]. In the same way distri-

butions of particles as e.g. clusters of particles or nanocrystals can be calculated including sub-

particle asymmetry and random position fluctuations by a Gaussian distribution as Debye-

Waller factor (see structure factors). In addition, the asymmetry factor of the particle is calcu-

lated to be included as a correction for the structure factor[37]. Oriented particles can be simu-

lated by orientedCloudScattering limiting the orientational average to an oriented cone and

calculating a 2D scattering pattern. On one hand, the resolution of a subparticle grid is a kind

of volume integration over the particle that needs finer grains if the resolution is increased. On

the other hand, the substructure of any particle lattice leading to Bragg peaks is observed (like

atoms in a crystal). This allows to examine the crossover from particle shape scattering to

internal structure as shown later in a structure factor example.

Methods to build clouds of scatterers e.g. a cube decorated with spheres at the corners can

be found in Examples module.

Structure factors

The module structurefactor (shortcut sf) contains several structure factors for crystals with a

long-range order and for particle suspensions without long range order. Structure factors for

crystals with cubic symmetry (sc, bcc, fcc), diamond lattice, hexagonal lattice (hcp, hex) or gen-

eral rhombic lattices with multi atom unit cells can be calculated. Bragg peak broadening due

to limited domain size [38], peak asymmetry, Debye-Waller factor and asymmetry of the parti-

cles[37] can be included in the structure factor as described extensively by Förster[39].

As the previous analytical treatment of the lattice structure factor does not account for

incomplete unit cells or arbitrary lattice shapes (e.g. for spherical or cubic nanoparticles) and

does not represent the low Q behavior satisfactorily (see discussion in [39]) the explicit calcula-

tion from a grid of particles by explicit calculation allows to compute the structure factor of

arbitrary shaped clusters. Therefore an explicit grid with the desired geometry is constructed

and the function ff.cloudScattering is used to calculate the structure factor. Examples for cubic

lattices with a comparison to the analytical model are shown in Figs 4 and 5.

Non-crystalline structure factors are derived from the pair interaction potential between parti-

cles. The simplest model results from the hard-core potential represented in the Percus-Yevick

structure factor in 3D[40,41]. This potential is additionally given for the case of 2 and 1 dimen-

sional problems[42,43]. An attractive interaction with a hard core can in the simplest case be repre-

sented by a potential well in the sticky hard sphere or adhesive hard sphere structure factor [44,45].

The structure factor of a critical system is described by Chen as calculated in criticalSystem [46].

The interaction potential between charged spheres with a screening due to an ionic solvent

is described by the repulsive screened Coulomb pair potential. The resulting structure factor in

rescaled mean spherical approximation (RMSA) was original published by Hansen and Hayter

[47] and Hayter released an algorithm in Fortran 77 (1981, ILL Grenoble). Today most pro-

grams implement code directly derived from the original code translated to C or other lan-

guages. The rescaling of the MSA solution is necessary as it yields a negative value for the

radial distribution function g(r) at r = R at low volume fractions [47]. The Python code here is

also derived from the original Hayter Fortran code with an important deviation. The original

algorithm determines the root of a quartic Fw(w1,w2,w3,w4) by an estimate (named “P-W esti-

mate” in the source code), refining the estimate by a Newton algorithm to find one of the cen-

tral roots of 4 roots. Dependent on the used parameters, the “P-W estimate” is not good

enough resulting in an arbitrary root of the quartic in the Newton algorithm. This results in

the correct solution, a solution with g(r<R)6¼0 or no solution. Fig 6 shows exemplary a

Jscatter

PLOS ONE | https://doi.org/10.1371/journal.pone.0218789 June 24, 2019 8 / 18

https://doi.org/10.1371/journal.pone.0218789

comparison for Γ = 3, R = 3.1,F = 0.4 and 0.1<ak<58. We apply here the original idea from

Hayter[47] to calculate G(r<0) for all four roots of Fw(w1,w2,w3,w4) and select the physical

solution with g(r<R) = 0. The roots are directly calculated by numpy.roots determining the

eigenvalues of the companion matrix[48] and g(r) is calculated by the sin-transform. Because of

the inversion problem related to a limited Q range and number of points[49], the solution with

a minimal g(r�R/2) is chosen (see Fig 6 lines). The shoulder observed for small ak around

2QR = 1 in Fig 6 is already described by Hansen and represents the change from the long range

repulsion to the short range hard core repulsion[47]. The second set of solutions with too high

structure factor values at low Q represent the unphysical solution due to the wrong root.

The hydrodynamic function H(Q) describes the hydrodynamic pair interaction between

spherical particles in solution for finite concentrations. It is required within a correction of the

observed collective translational diffusion coefficient Deff from the single particle translational

diffusion coefficient D0 as Deff(Q) = D0H(Q)/S(Q) with the structure factor S(Q) [50,51]. The

correction can also be applied to describe the translational diffusion of rigid proteins at finite

concentrations[52]. We apply the theory from Beenakker and Mazur as given by Genz and

Klein to calculate the δγ-expansion for many body hydrodynamic interaction within a renor-

malization approach [53–55]. Within the δγ–expansion the hydrodynamic function H(Q) can

be calculated based on a structure factor S(q). Additionally, the self-diffusion coefficient DS is

calculated. For a description of the function see Genz and Klein for details[55].

Dynamic

This module contains various models describing dynamic processes mainly used in context of

inelastic neutron scattering to describe backscattering, time of flight experiments (BS, TOF,

0.1 1 10

Q / A
-1

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

I(
Q

)

cube formfactor bcc Bragg peaks

diffusive scattering

bcc explicit
bcc analytic

Fig 4. Comparison of analytical structure factor model with an explicit calculation for a bcc lattice in cubic shape of same

dimension. At Q = 5 A-1we observe the onset of the (100) peak of the respective simple cubic lattice, which is forbidden in a bcc

lattice. At low Q we observe the form factor of the crystal shape as a cube.

https://doi.org/10.1371/journal.pone.0218789.g004

Jscatter

PLOS ONE | https://doi.org/10.1371/journal.pone.0218789 June 24, 2019 9 / 18

https://doi.org/10.1371/journal.pone.0218789.g004
https://doi.org/10.1371/journal.pone.0218789

both measure in the frequency domain) or neutron spinecho spectroscopy (NSE, measures in

time domain). Models describe generally the intermediate scattering function I(q,t) in the time

domain or the dynamic structure factor S(Q,w) as the Fourier transform of the previous. The

Fourier transform is implemented in the function time2frequencyFF from time domain to fre-

quency domain. The advantage of the time domain is that the combination of different pro-

cesses is done by multiplication, including instrument resolution. In the frequency domain

this is realized by a convolution, which needs more computing time. A function for the bin-

ning in frequency intervals is given to implement averaging over different channels.

Common models in the time domain include simple diffusion, stretched exponential, jump

diffusion or methyl rotation [56,57]. Diffusion in a harmonic potential for 1,2 and 3 dimen-

sions is implemented[58]. diffusionPeriodicPotential describes fractal diffusion with a fast in

trap diffusion and a long time diffusion in periodic potentials[59].

Finite Rouse and Zimm model for polymers including internal friction[60–62], the Zil-

mann-Granek model for bicontinuous and lamellar emulsions for coherent scattering are

implemented[63]. Rotational diffusion of an object like a protein described as a cloud of scat-

terers can be computed[64,65].

In the frequency domain the diffusion in a sphere, diffusion in a harmonic potential, rota-

tional diffusion and n-site jump diffusion are implemented additional to elastic scattering,

translational diffusion and jump diffusion[58,64,66,67]. Fig 7 shows a comparison of the half

width at half maximum (HWHM) for different diffusion processes computed in the frequency

domain and in the time domain with FFT to frequency domain.

0.01 0.1 1 10

Q / A
-1

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

I(
Q

)

cube formfactor

Bragg peaks

diffusive scattering

sc
bcc
fcc
sc diffusive
bcc diffusive
fcc diffusive
cube form factor

Fig 5. Simple cubic (sc), body centered cubic (bcc) and face centered cubic (fcc) lattices in a cubic cluster shape. At low Q

the analytic form factor of a cube is shown. The explicit calculation shows a reduction of the peak intensities due to the Debye-

Waller factor, which additional causes diffusive scattering at higher Q. Because of the incomplete lattice planes the extinction

rules of fcc and bcc lattice are not fulfilled completely resulting in additional small peaks at forbidden peak positions below the

first regular Bragg peak. Calculated within example 18 in Jscatter.

https://doi.org/10.1371/journal.pone.0218789.g005

Jscatter

PLOS ONE | https://doi.org/10.1371/journal.pone.0218789 June 24, 2019 10 / 18

https://doi.org/10.1371/journal.pone.0218789.g005
https://doi.org/10.1371/journal.pone.0218789

As an example, we may look at the dynamics expected for a protein in solution with rota-

tional and translational diffusion and additional internal mobility of protons in a harmonic

potential. The model is similar to the investigation of alcohol dehydrogenase in solution by

Monkenbusch et al. It was found that protons close to the surface show a fast localized diffu-

sion[68]. The dynamic structure factor S(ω,Q) can be described by the convolution of the

respective processes:

Stotalðo;QÞ ¼ Stranlationðo;QÞ � Srotationðo;QÞ � ðð1 � fsurf Þ þ fsurf Sharmonicðo;QÞÞ

The restricted motion in the harmonic potential may be added only to the fraction of pro-

tons fsurf that are close to the surface of the protein. The protein general shape is reconstructed

from the Calpha atoms in the atomic structure from ribonuclease A (entry 3rn3 in protein data

bank, PDB) with the assumption that all amino acids scatter in a similar way as protons domi-

nate the incoherent scattering. The proton surface fraction is approximated as fraction outside

of a distance from the center of mass for the globular Ribonuclease A. The definition of the

corresponding model is shown in Fig 8 and the results is shown in Fig 9.

Examples

Models and functions contain an Example section in the documentation that shows basic

usage and explains the parameters. Additionally, the module examples shows use-cases to

allow easy adaption for the user. For example “Analyse SAS data” explains how to extract form

and structure factor from a concentration series in small angle scattering by extrapolating to

zero concentration. Examples are provided as scripts including example data to allow direct

execution and inspection of the results. They allow to simulate experiments as in the previous

example to test which concentrations are needed for a good extrapolation to zero concentra-

tion. Included are examples that demonstrate basic usage of Jscatter e.g. how to build simple

and more complex models, smoothing of X-ray data, how to include resolution smearing for

0.1 1 1e+01
2RQ

10
-3

10
-2

10
-1

10
0

S(
Q

)

10
0

10
1

ak = 2R/κ

10
-3

10
-2

10
-1

S(
2Q

R
=

0)

jscatter.sf.RMSA

original Hayter

wrong root

ak increasing

Fig 6. Comparison of the original algorithm of Hayter (dots) with the improved algorithm selecting the best

solution of all 4 roots in Fw(wi) (lines) for a contact potential Γ = 3 kT, volume fractionF = 0.4 and dimensionless

screening ak = 0.1–58. We observe the second set of solutions representing the wrong solutions (only dots) and some

solutions missing in the original solution (only line). The inset shows the respective S(Q = 0) values for the improved

solution (black) compared to the original solution (blue). Here some points are missing as no solution was returned

others show the wrong solution.

https://doi.org/10.1371/journal.pone.0218789.g006

Jscatter

PLOS ONE | https://doi.org/10.1371/journal.pone.0218789 June 24, 2019 11 / 18

https://doi.org/10.1371/journal.pone.0218789.g006
https://doi.org/10.1371/journal.pone.0218789

SANS data or diffusion of proteins in solution to demonstrate fitting to a diffusion model.

These examples show how to plot and the basic capabilities. Sinusoidal fits and multishell cyl-

inder models present fit capabilities by the Levenberg-Marquardt fit algorithm. Smearing and

desmearing of SAXS and SANS data is demonstrated. Different models are shown to describe

the variety of samples that might be described by the models as e.g. multilamellar vesicles. The

examples will be extended to more use cases. Most of the examples with corresponding figures

are included in the Examples section of the online documentation.

Requirements/Extending

The most common libraries for scientific computing in Python are NumPy and SciPy. These

are the only obligatory dependencies for Jscatter beside matplotlib for plotting and Pillow for

1 10 100

(qR)
2

1

10

100

H
W

H
M

/(
D

/R
2)

jump diffusion

fre
e d

iff
us

ion

free
3D
sphere

2D

1D

free
in sphere
harmonic 3D
harmonic 2D
free fft
harmonic 1D fft
harmonic 2D fft
harmonic 3D fft

Fig 7. Half width half maximum (HWHM) determined from various dynamic models in comparison. Points show models in

frequency domain as indicated. Data resulting from time domain models using Fourier transform are shown by lines. The plateau at

low QR values demonstrates the effect from spatial restriction. At high Q a slope dependent on the dimensionality of the diffusion

type is observed. The model for 1D diffusion in a frequency model is missing as the corresponding function in the reference seems to

be wrong[58]. At very low QR determination of HWHM gets inaccurate. Calculated by Example 12 in Jscatter.

https://doi.org/10.1371/journal.pone.0218789.g007

Jscatter

PLOS ONE | https://doi.org/10.1371/journal.pone.0218789 June 24, 2019 12 / 18

https://doi.org/10.1371/journal.pone.0218789.g007
https://doi.org/10.1371/journal.pone.0218789

reading of images. Python in combination with NumPy can be quite fast if the ndarraysmeth-

ods are used consequently instead of explicit for loops as NumPy methods use compiled code.

E.g. the numpy.einsum function immediately uses compiled C to do the computation. SciPy

offers mathematical functions, e.g. optimization, special function or quadrature, and opti-

mized algorithms also from blas/lapack. For advanced users common packages as Numba or

computation on Graphic card can be integrated within user-supplied model functions. As

these are more specialized and not easy to implement for most users they are currently not

described. Speeding up Jscatter by Fortran code is applied in the function ff.cloudscattering
whereas prerequisite the gfortran compiler is needed which is common on Unix-like systems.

The Python interface to compiled Fortran code is automatically generated by f2py (a part of

NumPy) if Fortran90 code is placed in the specified folder of Jscatter. Using OpenMP, an API

that supports multi-platform shared-memory multiprocessing (www.openmp.org), inside of

the Fortran code allows usage of shared memory and multiprocessing reaching the advantages

Fig 8. A script snippet showing how to define a function for fitting. Here the model includes a cloud of points describing amino acid positions in Ribonuclease A,

translational and rotational diffusion and the diffusion in a harmonic potential for a fraction of the surface amino acids. The resolution may depend on Q.

Alternatively a resolution measurement can be used. The full example script is shown in Jscatter module examples including reading of the corresponding protein

structure file saving the protein coordinates in cloud.

https://doi.org/10.1371/journal.pone.0218789.g008

Jscatter

PLOS ONE | https://doi.org/10.1371/journal.pone.0218789 June 24, 2019 13 / 18

http://www.openmp.org/
https://doi.org/10.1371/journal.pone.0218789.g008
https://doi.org/10.1371/journal.pone.0218789

of pure compiled code on multi CPU machines. Fortran usage is explained in the documenta-

tion and used in ff.cloudscattering. The speed up compared to compiled C code implemented

in Numpy (e.g. numpy.einsum) is by a factor of 6 in the used example.

Users can write their own modules and import them in Python. Contribution of modules

or single models is welcome and can be incorporated in Jscatter or published as separate pack-

age importing Jscatter.

Perspectives

Jscatter implements a data structure with metadata access to allow users data treatment, model

building and fitting in a simple fashion using an open scripting language without the need of

deep knowledge of programming languages. An extensible environment with a model library

currently focused on scattering is provided. Additional to the implemented models more form

factors will be included and the structurefactormodule will be extended to allow more complex

structure factors as multi Yukawa potentials[69,70].

In the tradition of utilization of Python as a glue[71] additional capabilities based on exter-

nal open projects will be added. E.g. Bayesian analysis as used for SAS or DLS analysis would

enhance the optimization capabilities beyond Χ2-minimazation and provide an alternative to

the CONTIN algorithm in the dls module [72]. To allow modelling of structure and dynamics

of proteins with atomic detail e.g. from PDB data bank or MD simulations with respect to scat-

tering measurements a module for handling atomic PDB structures will be included[73]. Sim-

plified interfaces as software wrapper to well-known software in Fortran (like the jscatter.dls

0.1 1 10 100

ω / ns
-1

10
-3

10
-2

10
-1

10
0

10
1

I(
q,

ω
)

re
so

lu
tio

n

q=0.1 nm
-1

q=20 nm
-1

Variation
fixed/harmonic protons

exR=0
exR=1
exR=1.4

Fig 9. Dynamic structure factor for restricted harmonic proton motion at the surface of ribonuclease A with

contribution from translational and rotational diffusion as calculated from the model as defined in Fig 8. We

observe a characteristic change in intensities if the fraction of mobile protons is more reduced to the surface protons

with increasing exR as the radius from the center of mass with fixed protons. The resolution width is 1 ns-1. The

diffusion coefficients correspond to the expected values for Ribonuclease A in a D2O buffer at 20˚ C. Calculated by

Example 13 in Jscatter.

https://doi.org/10.1371/journal.pone.0218789.g009

Jscatter

PLOS ONE | https://doi.org/10.1371/journal.pone.0218789 June 24, 2019 14 / 18

https://doi.org/10.1371/journal.pone.0218789.g009
https://doi.org/10.1371/journal.pone.0218789

module for the CONTIN algorithm) may provide an opportunity for less advanced users and

integrate well developed software in a joined workflow. Additional examples will illustrate

how to use external libraries in addition to Jscatter to read common file formats. E.g. the

NeXus format widespread in neutron and X-ray scattering may be read using the NeXpy
library and transferred to a dataArray/dataList including metadata for fitting[74,75].

Designed as an open source project contribution of models, new topics or tasks (e.g. coarse

grain simulation) are welcome and will be included into Jscatter to extend the covered scien-

tific areas and techniques.

Author Contributions

Conceptualization: Ralf Biehl.

Data curation: Ralf Biehl.

Formal analysis: Ralf Biehl.

Funding acquisition: Ralf Biehl.

Investigation: Ralf Biehl.

Methodology: Ralf Biehl.

Project administration: Ralf Biehl.

Resources: Ralf Biehl.

Software: Ralf Biehl.

Supervision: Ralf Biehl.

Validation: Ralf Biehl.

Visualization: Ralf Biehl.

Writing – original draft: Ralf Biehl.

Writing – review & editing: Ralf Biehl.

References
1. SciPy: Open source scientific tools for Python [Internet]. 2001 [cited 5 Jul 2018]. Available: https://www.

scipy.org/

2. Jupyter [Internet]. 2015 [cited 5 Jul 2018]. Available: http://jupyter.org/

3. Panda Y, Forde J, Bussonnier M, Kelley K, Perez F, Pacer M, et al. Binder 2.0—Reproducible, interac-

tive, sharable environments for science at scale. Proceedings of the 17th Python in Science Confer-

ence. 2018. pp. 113–120. https://doi.org/10.25080/majora-4af1f417-011

4. Biehl R. jscatter/examples/notebooks/ [Internet]. [cited 4 Mar 2019]. Available: https://mybinder.org/v2/

gl/biehl%2Fjscatter/master?filepath=jscatter%2Fexamples%2Fnotebooks

5. Biehl R, Richter D. Slow internal protein dynamics in solution. J Phys Condens Matter. IOP Publishing;

2014; 26: 503103. https://doi.org/10.1088/0953-8984/26/50/503103 PMID: 25419898

6. The HDF Group. Hierarchical Data Format, version 5 [Internet]. [cited 20 May 2019]. Available: https://

www.hdfgroup.org/HDF5/

7. More J, Garbow B, Hillstrom K. User guide for MINPACK-1. [In FORTRAN]. 1980. https://doi.org/10.

2172/6997568

8. Gao F, Han L. Implementing the Nelder-Mead simplex algorithm with adaptive parameters. Comput

Optim Appl. Springer US; 2012; 51: 259–277. https://doi.org/10.1007/s10589-010-9329-3

9. Nocedal J, Wright S. Numerical optimization, series in operations research and financial engineering.

Springer. 2006.

Jscatter

PLOS ONE | https://doi.org/10.1371/journal.pone.0218789 June 24, 2019 15 / 18

https://www.scipy.org/
https://www.scipy.org/
http://jupyter.org/
https://doi.org/10.25080/majora-4af1f417-011
https://mybinder.org/v2/gl/biehl%2Fjscatter/master?filepath=jscatter%2Fexamples%2Fnotebooks
https://mybinder.org/v2/gl/biehl%2Fjscatter/master?filepath=jscatter%2Fexamples%2Fnotebooks
https://doi.org/10.1088/0953-8984/26/50/503103
http://www.ncbi.nlm.nih.gov/pubmed/25419898
https://www.hdfgroup.org/HDF5/
https://www.hdfgroup.org/HDF5/
https://doi.org/10.2172/6997568
https://doi.org/10.2172/6997568
https://doi.org/10.1007/s10589-010-9329-3
https://doi.org/10.1371/journal.pone.0218789

10. Storn R, Price K. Differential Evolution—A Simple and Efficient Heuristic for Global Optimization over

Continuous Spaces. J Glob Optim. Kluwer Academic Publishers; 1997; 11: 341–359. https://doi.org/10.

1023/A:1008202821328

11. Grace [Internet]. 2008 [cited 5 Jul 2018]. Available: http://plasma-gate.weizmann.ac.il/Grace/

12. Faxén H. Über eine Differentialgleichung aus der physikalischen Chemie: Mitteilung [1]. Ark. Mat. Astr.

Fys. 1929.

13. Behlke J, Ristau O. A new approximate whole boundary solution of the Lamm differential equation for

the analysis of sedimentation velocity experiments. Biophys Chem. 2002; 95: 59–68. https://doi.org/10.

1016/S0301-4622(01)00248-4 PMID: 11880173

14. Halton JH. Algorithm 247: Radical-inverse quasi-random point sequence. Commun ACM. ACM; 1964;

7: 701–702. https://doi.org/10.1145/355588.365104

15. Provencher SW. CONTIN: A general purpose constrained regularization program for inverting noisy lin-

ear algebraic and integral equations. Comput Phys Commun. 1982; 27: 229–242. https://doi.org/10.

1016/0010-4655(82)90174-6

16. Pedersen JS, Posselt D, Mortensen K. Analytical treatment of the resolution function for small-angle

scattering. J Appl Crystallogr. 1990; 23: 321–333.

17. Lake JA. An iterative method of slit-correcting small angle X-ray data. Acta Crystallographica. Interna-

tional Union of Crystallography; 1967. pp. 191–194.

18. Vad T, Sager WFC. Comparison of iterative desmearing procedures for one-dimensional small-angle

scattering data. J Appl Crystallogr. International Union of Crystallography; 2011; 44: 32–42. https://doi.

org/10.1107/S0021889810049721

19. Huang TC, Toraya H, Blanton TN, Wu Y. X-ray powder diffraction analysis of silver behenate, a possible

low-angle diffraction standard. J Appl Crystallogr. 1993; https://doi.org/10.1107/S0021889892009762

20. Orthaber D, Bergmann A, Glatter O. SAXS experiments on absolute scale with Kratky systems using

water as a secondary standard. J Appl Crystallogr. 2000; 33: 218–225. https://doi.org/10.1107/

S0021889899015216

21. Breßler I, Kohlbrecher J, Thünemann AF. SASfit: A tool for small-angle scattering data analysis using a

library of analytical expressions. J Appl Crystallogr. International Union of Crystallography; 2015; 48:

1587–1598. https://doi.org/10.1107/S1600576715016544 PMID: 26500467

22. Doucet, Mathieu; Cho, Jae Hie; Alina, Gervaise; Bakker, Jurrian; Bouwman, Wim; Butler, Paul; Camp-

bell, Kieran; Gonzales, Miguel; Heenan, Richard; Jackson, Andrew; Juhas, Pavol; King, Stephen; Kien-

zle, Paul; Krzywon, Jeff; Markvardsen, Anders; Nielsen, Tor A. SasView version 4.1. Zenodo. 2017;

https://doi.org/10.5281/zenodo.438138

23. Beaucage G. Approximations Leading to a Unified Exponential/Power-Law Approach to Small-Angle

Scattering. J Appl Crystallogr. International Union of Crystallography; 1995; 28: 717–728. https://doi.

org/10.1107/S0021889895005292

24. Hjelm RP, Schteingart C, Hofmann AF, Sivia DS. Form and structure of self-assembling particles in

monoolein-bile salt mixtures. J Phys Chem. American Chemical Society; 1995; 99: 16395–16406.

https://doi.org/10.1021/j100044a030

25. Pedersen JS. Analysis of small-angle scattering data from colloids and polymer solutions: modeling and

least-squares fitting. Adv Colloid Interface Sci. Elsevier; 1997; 70: 171–210. https://doi.org/10.1016/

S0001-8686(97)00312-6

26. Yager KG, Zhang Y, Lu F, Gang O. Periodic lattices of arbitrary nano-objects: Modeling and applica-

tions for self-assembled systems. Journal of Applied Crystallography. International Union of Crystallog-

raphy; 2014. pp. 118–129. https://doi.org/10.1107/S160057671302832X

27. Hammouda B. Analysis of the Beaucage model. J Appl Crystallogr. International Union of Crystallogra-

phy; 2010; 43: 1474–1478. https://doi.org/10.1107/S0021889810033856

28. Kholodenko AL. Analytical Calculation of the Scattering Function for Polymers of Arbitrary Flexibility

Using the Dirac Propagator. Macromolecules. American Chemical Society; 1993; 26: 4179–4183.

https://doi.org/10.1021/ma00068a017

29. Hammouda B. SANS from homogeneous polymer mixtures: A unified overview. Polymer Characteris-

tics. Berlin/Heidelberg: Springer-Verlag; 1993. pp. 87–133. https://doi.org/10.1007/BFb0025862

30. Stieger M, Pedersen JS, Lindner P, Richtering W. Are thermoresponsive microgels model systems for

concentrated colloidal suspensions? A rheology and small-angle neutron scattering study. Langmuir.

American Chemical Society; 2004; 20: 7283–7292. https://doi.org/10.1021/la049518x PMID: 15301516

31. Feigin LA, Svergun DI. Structure Analysis by Small-Angle X-Ray and Neutron Scattering. Taylor GW,

editor. Boston, MA: Plenum Press, New York; 1987. https://doi.org/10.1002/actp.1989.010400317

Jscatter

PLOS ONE | https://doi.org/10.1371/journal.pone.0218789 June 24, 2019 16 / 18

https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1023/A:1008202821328
http://plasma-gate.weizmann.ac.il/Grace/
https://doi.org/10.1016/S0301-4622(01)00248-4
https://doi.org/10.1016/S0301-4622(01)00248-4
http://www.ncbi.nlm.nih.gov/pubmed/11880173
https://doi.org/10.1145/355588.365104
https://doi.org/10.1016/0010-4655(82)90174-6
https://doi.org/10.1016/0010-4655(82)90174-6
https://doi.org/10.1107/S0021889810049721
https://doi.org/10.1107/S0021889810049721
https://doi.org/10.1107/S0021889892009762
https://doi.org/10.1107/S0021889899015216
https://doi.org/10.1107/S0021889899015216
https://doi.org/10.1107/S1600576715016544
http://www.ncbi.nlm.nih.gov/pubmed/26500467
https://doi.org/10.5281/zenodo.438138
https://doi.org/10.1107/S0021889895005292
https://doi.org/10.1107/S0021889895005292
https://doi.org/10.1021/j100044a030
https://doi.org/10.1016/S0001-8686(97)00312-6
https://doi.org/10.1016/S0001-8686(97)00312-6
https://doi.org/10.1107/S160057671302832X
https://doi.org/10.1107/S0021889810033856
https://doi.org/10.1021/ma00068a017
https://doi.org/10.1007/BFb0025862
https://doi.org/10.1021/la049518x
http://www.ncbi.nlm.nih.gov/pubmed/15301516
https://doi.org/10.1002/actp.1989.010400317
https://doi.org/10.1371/journal.pone.0218789

32. Kaya H, de Souza N-R. Scattering from capped cylinders. Addendum. J Appl Crystallogr. International

Union of Crystallography; 2004; 37: 508–509. https://doi.org/10.1107/S0021889804005709

33. Kaya H. Scattering from cylinders with globular end-caps. J Appl Crystallogr. International Union of

Crystallography; 2004; 37: 223–230. https://doi.org/10.1107/S0021889804000020

34. Frielinghaus H. Small-angle scattering model for multilamellar vesicles. Phys Rev E—Stat Nonlinear,

Soft Matter Phys. American Physical Society; 2007; 76: 051603. https://doi.org/10.1103/PhysRevE.76.

051603 PMID: 18233665

35. Siefker J, Biehl R, Kruteva M, Feoktystov A, Coppens MO. Confinement Facilitated Protein Stabilization

As Investigated by Small-Angle Neutron Scattering. J Am Chem Soc. American Chemical Society;

2018; 140: 12720–12723. https://doi.org/10.1021/jacs.8b08454 PMID: 30260637

36. Fraser RDB, MacRae TP, Suzuki E. An improved method for calculating the contribution of solvent to

the X-ray diffraction pattern of biological molecules. J Appl Crystallogr. International Union of Crystallog-

raphy; 1978; 11: 693–694. https://doi.org/10.1107/S0021889878014296

37. Kotlarchyk M, Chen S-H. Analysis of small angle neutron scattering spectra from polydisperse interact-

ing colloids. J Chem Phys. AIP Publishing; 1983; 79: 2461. https://doi.org/10.1063/1.446055

38. Patterson AL. The scherrer formula for X-ray particle size determination. Phys Rev. American Physical

Society; 1939; 56: 978–982. https://doi.org/10.1103/PhysRev.56.978

39. Förster S, Timmann A, Konrad M, Schellbach C, Meyer A, Funari SS, et al. Scattering curves of ordered

mesoscopic materials. J Phys Chem B. American Chemical Society; 2005; 109: 1347–1360. https://doi.

org/10.1021/jp0467494 PMID: 16851102

40. Percus JK. Equilibrium state of a classical fluid of hard rods in an external field. J Stat Phys. 1976; 15:

505–511. https://doi.org/10.1007/BF01020803

41. Wertheim MS. Exact Solution of the Percus-Yevick Integral Equation for Hard Spheres. Phys Rev Lett.

American Physical Society; 1963; 10: 321–323. https://doi.org/10.1103/PhysRevLett.10.321

42. Rosenfeld Y. Free-energy model for the inhomogeneous hard-sphere fluid in D dimensions: Structure

factors for the hard-disk (D = 2) mixtures in simple explicit form. Phys Rev A. 1990; 42: 5978–5989.

https://doi.org/10.1103/PhysRevA.42.5978 PMID: 9903877

43. Leutheusser E. Exact solution of the Percus-Yevick equation for a hard-core fluid in odd dimensions.

Phys A Stat Mech its Appl. 1984; 127: 667–676. https://doi.org/10.1016/0378-4371(84)90050-5

44. Menon SVG, Manohar C, Rao KS. A new interpretation of the sticky hard sphere model. J Chem Phys.

AIP Publishing; 1991; 95: 9186. https://doi.org/10.1063/1.461199

45. Regnaut C, Ravey JC. Application of the adhesive sphere model to the structure of colloidal suspen-

sions. J Chem Phys. AIP Publishing; 1989; 91: 1211. https://doi.org/10.1063/1.457194

46. Chen M. On the equivalence of the Ornstein–Zernike relation and Baxter’s relations for a one-dimen-

sional simple fluid. J Math Phys. AIP Publishing; 1975; 16: 1150. https://doi.org/10.1063/1.522648

47. Hansen J-P, Hayter JB. A rescaled MSA structure factor for dilute charged colloidal dispersions. Mol

Phys. Taylor & Francis Group; 1982; 46: 651–656. https://doi.org/10.1080/00268978200101471

48. Roger A. Horn CRJ. Matrix Analysis. Cambridge: Cambridge University Press; 1999.

49. Soper AK. On the determination of the pair correlation function from liquid structure factor measure-

ments. Chem Phys. North-Holland; 1986; 107: 61–74. https://doi.org/10.1016/0301-0104(86)85059-5

50. Pusey PN. The dynamics of interacting Brownian particles. J Phys A Math Gen. 1975; 8: 1433–1440.

http://dx.doi.org/10.1088/0305-4470/8/9/012

51. Ackerson BJ. Correlations for interacting Brownian particles. II. J Chem Phys. American Institute of

Physics; 1978; 69: 684–690. https://doi.org/10.1063/1.436634

52. Longeville S, Doster W, Kali G. Myoglobin in crowded solutions: structure and diffusion. Chem Phys.

2003; 292: 413–424.

53. Beenakker CWJ, Mazur P. Diffusion of spheres in a concentrated suspension II. Phys A Stat Mech its

Appl. 1984; 126: 349–370. https://doi.org/10.1016/0378-4371(84)90206-1

54. Beenakker CWJ, Mazur P. Self-diffusion of spheres in a concentrated suspension. Phys A Stat Mech its

Appl. 1983; 120: 388–410.

55. Genz U, Klein R. Collective diffusion of charged spheres in the presence of hydrodynamic interaction.

Phys A Stat Mech its Appl. 1991; 171: 26–42.

56. Teixeira J, Bellissent-Funel MC, Chen SH, Dianoux AJ. Experimental determination of the nature of dif-

fusive motions of water molecules at low temperatures. Phys Rev A. American Physical Society; 1985;

31: 1913–1917. https://doi.org/10.1103/PhysRevA.31.1913

57. Bée M. Quasielastic Neutron Scattering. Adam Hilger; 1988.

Jscatter

PLOS ONE | https://doi.org/10.1371/journal.pone.0218789 June 24, 2019 17 / 18

https://doi.org/10.1107/S0021889804005709
https://doi.org/10.1107/S0021889804000020
https://doi.org/10.1103/PhysRevE.76.051603
https://doi.org/10.1103/PhysRevE.76.051603
http://www.ncbi.nlm.nih.gov/pubmed/18233665
https://doi.org/10.1021/jacs.8b08454
http://www.ncbi.nlm.nih.gov/pubmed/30260637
https://doi.org/10.1107/S0021889878014296
https://doi.org/10.1063/1.446055
https://doi.org/10.1103/PhysRev.56.978
https://doi.org/10.1021/jp0467494
https://doi.org/10.1021/jp0467494
http://www.ncbi.nlm.nih.gov/pubmed/16851102
https://doi.org/10.1007/BF01020803
https://doi.org/10.1103/PhysRevLett.10.321
https://doi.org/10.1103/PhysRevA.42.5978
http://www.ncbi.nlm.nih.gov/pubmed/9903877
https://doi.org/10.1016/0378-4371(84)90050-5
https://doi.org/10.1063/1.461199
https://doi.org/10.1063/1.457194
https://doi.org/10.1063/1.522648
https://doi.org/10.1080/00268978200101471
https://doi.org/10.1016/0301-0104(86)85059-5
http://dx.doi.org/10.1088/0305-4470/8/9/012
https://doi.org/10.1063/1.436634
https://doi.org/10.1016/0378-4371(84)90206-1
https://doi.org/10.1103/PhysRevA.31.1913
https://doi.org/10.1371/journal.pone.0218789

58. Volino F, Perrin J-C, Lyonnard S. Gaussian Model for Localized Translational Motion: Application to

Incoherent Neutron Scattering. J Phys Chem B. American Chemical Society; 2006; 110: 11217–11223.

https://doi.org/10.1021/jp061103s PMID: 16771387

59. Gupta S, Biehl R, Sill C, Allgaier J, Sharp M, Ohl M, et al. Protein Entrapment in Polymeric Mesh: Diffu-

sion in Crowded Environment with Fast Process on Short Scales. Macromolecules. American Chemical

Society; 2016; 49: 1941–1949. https://doi.org/10.1021/acs.macromol.5b02281

60. Doi M, Edwards S. The Theory of Polymer Dynamics. Oxford University Press, USA; 1988. https://doi.

org/10.1016/S1359-0286(96)80106-9

61. Cheng RR, Hawk AT, Makarov DE. Exploring the role of internal friction in the dynamics of unfolded pro-

teins using simple polymer models. J Chem Phys. 2013; 138: 074112. https://doi.org/10.1063/1.

4792206 PMID: 23445002

62. Khatri BS, McLeish TCB. Rouse Model with Internal Friction: A Coarse Grained Framework for Single

Biopolymer Dynamics. Macromolecules. American Chemical Society; 2007; 40: 6770–6777. https://doi.

org/10.1021/ma071175x

63. Mihailescu M, Monkenbusch M, Endo H, Allgaier J, Gompper G, Stellbrink J, et al. Dynamics of bicontin-

uous microemulsion phases with and without amphiphilic block-copolymers. J Chem Phys. American

Institute of Physics; 2001; 115: 9563–9577. https://doi.org/10.1063/1.1413509

64. Dianoux A, Volino F, Hervet H. Incoherent scattering law for neutron quasi-elastic scattering in liquid

crystals. Mol Phys. Taylor & Francis Group; 1975; 30: 37–41. https://doi.org/10.1080/

00268977500102721

65. Lindsay H, Klein R, Weitz D, Lin M, Meakin P. Effect of rotational diffusion on quasielastic light scatter-

ing from fractal colloid aggregates. Phys Rev A. 1988; 38: 2614–2626.

66. Volino F, Dianoux AJ. Neutron incoherent scattering law for diffusion in a potential of spherical symme-

try: general formalism and application to diffusion inside a sphere. Mol Phys. Taylor & Francis; 1980;

41: 271–279. https://doi.org/10.1080/00268978000102761

67. Hall PL, Ross DK. Incoherent neutron scattering functions for random jump diffusion in bounded and

infinite media. Mol Phys. Taylor & Francis; 1981; 42: 673–682. https://doi.org/10.1080/

00268978100100521

68. Monkenbusch M, Stadler A, Biehl R, Ollivier J, Zamponi M, Richter D. Fast internal dynamics in alcohol

dehydrogenase. J Chem Phys. AIP Publishing; 2015; 143: 075101. https://doi.org/10.1063/1.4928512

PMID: 26298156

69. Blum L, Arias M. Structure of multi-component/multi-Yukawa mixtures. J Phys Condens Matter. IOP

Publishing; 2006; 18: S2437–S2449. https://doi.org/10.1088/0953-8984/18/36/S16

70. Warren PB, Vlasov A, Anton L, Masters AJ. Screening properties of Gaussian electrolyte models, with

application to dissipative particle dynamics. J Chem Phys. American Institute of Physics; 2013; 138:

204907. https://doi.org/10.1063/1.4807057 PMID: 23742516

71. van Rossum G. Glue It All Together With Python. Workshop on Compositional Software Architectures.

1998.

72. Hansen S. Simultaneous estimation of the form factor and structure factor for globular particles in small-

angle scattering. J Appl Crystallogr. International Union of Crystallography; 2008; 41: 436–445. https://

doi.org/10.1107/s0021889808004937

73. Sussman JL, Lin D, Jiang J, Manning NO, Prilusky J, Ritter O, et al. Protein Data Bank (PDB): database

of three-dimensional structural information of biological macromolecules. Acta Crystallogr Sect D Biol

Crystallogr. International Union of Crystallography; 1998; 54: 1078–1084.

74. Maddison DR, Swofford DL, Maddison WP. Nexus: An Extensible File Format for Systematic Informa-

tion. Cannatella D, editor. Syst Biol. Narnia; 1997; 46: 590–621. https://doi.org/10.1093/sysbio/46.4.590

PMID: 11975335

75. NeXpy: A Python GUI to analyze NeXus data—NeXpy 0.10.12 documentation [Internet]. [cited 10 May

2019]. Available: http://nexpy.github.io/nexpy/index.html

Jscatter

PLOS ONE | https://doi.org/10.1371/journal.pone.0218789 June 24, 2019 18 / 18

https://doi.org/10.1021/jp061103s
http://www.ncbi.nlm.nih.gov/pubmed/16771387
https://doi.org/10.1021/acs.macromol.5b02281
https://doi.org/10.1016/S1359-0286(96)80106-9
https://doi.org/10.1016/S1359-0286(96)80106-9
https://doi.org/10.1063/1.4792206
https://doi.org/10.1063/1.4792206
http://www.ncbi.nlm.nih.gov/pubmed/23445002
https://doi.org/10.1021/ma071175x
https://doi.org/10.1021/ma071175x
https://doi.org/10.1063/1.1413509
https://doi.org/10.1080/00268977500102721
https://doi.org/10.1080/00268977500102721
https://doi.org/10.1080/00268978000102761
https://doi.org/10.1080/00268978100100521
https://doi.org/10.1080/00268978100100521
https://doi.org/10.1063/1.4928512
http://www.ncbi.nlm.nih.gov/pubmed/26298156
https://doi.org/10.1088/0953-8984/18/36/S16
https://doi.org/10.1063/1.4807057
http://www.ncbi.nlm.nih.gov/pubmed/23742516
https://doi.org/10.1107/s0021889808004937
https://doi.org/10.1107/s0021889808004937
https://doi.org/10.1093/sysbio/46.4.590
http://www.ncbi.nlm.nih.gov/pubmed/11975335
http://nexpy.github.io/nexpy/index.html
https://doi.org/10.1371/journal.pone.0218789

