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Although solid organ transplantation remains the definitive management for patients with
end-stage organ failure, this ultimate treatment has been limited by the number of
acceptable donor organs. Therefore, efforts have been made to expand the donor pool
by utilizing marginal organs from donation after circulatory death or extended criteria
donors. However, marginal organs are susceptible to ischemia-reperfusion injury (IRI) and
entail higher requirements for organ preservation. Recently, machine perfusion has
emerged as a novel preservation strategy for marginal grafts. This technique continually
perfuses the organs to mimic the physiologic condition, allows the evaluation of
pretransplant graft function, and more excitingly facilitates organ reconditioning during
perfusion with pharmacological, gene, and stem cell therapy. As mesenchymal stem cells
(MSCs) have anti-oxidative, immunomodulatory, and regenerative properties, mounting
studies have demonstrated the therapeutic effects of MSCs on organ IRI and solid organ
transplantation. Therefore, MSCs are promising candidates for organ reconditioning
during machine perfusion. This review provides an overview of the application of MSCs
combined with machine perfusion for lung, kidney, liver, and heart preservation and
reconditioning. Promising preclinical results highlight the potential clinical translation of this
innovative strategy to improve the quality of marginal grafts.

Keywords: mesenchymal stemcells,machine perfusion, ischemia-reperfusion injury, organ preservation, transplantation
BACKGROUND

Organ transplantation provides a life-saving opportunity for patients with end-stage organ failure.
However, the existing donor pool is far from meeting the ever-growing demand for transplantable
organs. One approach to alleviate the shortage of suitable organs has been the expansion of the
deceased donor pool by utilizing marginal organs from donation after circulatory death (DCD) (1)
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and extended criteria donors (ECD) (2). However, marginal
grafts are vulnerable to ischemia and have not enough
physiological reserves to tolerate ischemia-reperfusion injury
(IRI) during transplantation (3), leading to an increased
incidence of primary graft dysfunction (PGD) and delayed
graft function (DGF) (4, 5). Therefore, improving the quality
of marginal organs will be a significant strategy to increase the
source of donors.

In the process of organ transplantation, the donor grafts will
be deprived of blood supply during procurement and suffer from
a long duration of ischemia when the grafts are preserved and
transported. The deprivation of blood supply leads to
consumption of energy storage, anaerobic metabolism, as well
as disorders in cellular activities. Toxic metabolites accumulate
during ischemia and will exacerbate the oxidative injury and
inflammation after reperfusion (6). The restoration of blood flow
following engraftment aggravates cell death via complex cellular
cascades and further worsens the quality of grafts (7). Therefore,
efforts are needed to improve the quality of marginal organs by
alleviating the IRI during transplantation.

Static cold storage (SCS) is the most widely used method for
organ preservation, but in recent years, machine perfusion has
emerged as a promising alternative to SCS (8). Machine
perfusion can continually perfuse the organs to mimic the
physiologic condition. Grafts can restore metabolism and even
resume their function during perfusion, especially in the
normothermic environment with the supply of substrates and
oxygen (9). Machine perfusion is proposed to reduce the IRI with
an improvement of graft quality and prolong organ preservation
time, as well as allow objective evaluation for the viability of
grafts during preservation (10). Another highlight of machine
perfusion is offering a pivotal opportunity to recondition the
high-risk grafts during preservation (11).

Mesenchymal stem cells (MSCs) have attracted tremendous
attention due to their immunomodulatory property and
regenerative effects. Current literature has suggested the
beneficial effects of MSCs or their secretory factors in cases of
organ IRI and solid organ transplantation (12). However, the
majority of administered MSCs in animals or humans would be
entrapped in lungs and could not survive for a long time (13, 14).
Also, the high dosage of MSCs would lead to microvascular
obstruction (15).

MSCs therapy and machine perfusion may supplement each
other if combined properly, as machine perfusion can provide a
separate platform and time window for MSCs to recondition the
isolated grafts via the immunomodulatory and regenerative effect
(9). In this review, we presented an overview of the current
literature regarding the application of MSCs during machine
perfusion on solid organ transplantation.
A BRIEF INTRODUCTION OF IRI IN
ORGAN TRANSPLANTATION

IRI is inevitable during organ transplantation. It occurs when the
blood supply of grafts is stopped and restored. Hypoxia during
Frontiers in Immunology | www.frontiersin.org 2
ischemia leads to adenosine triphosphate (ATP) depletion and
anaerobic metabolism, as well as subsequent disorders in
membrane transport, calcium excretion, mitochondrial activity,
and reactive oxygen species (ROS) turnover (16). Toxic
metabolites accumulate during ischemia and induce further
injury at the phase of reperfusion. For example, lactate, the
production of anaerobic metabolism, leads to a drop in
intracellular pH (17), while the accumulation of hypoxanthine
can increase ROS production during reperfusion (18). The
suddenly increased oxygen concentration during reperfusion
results in a burst of ROS production, subsequently
exacerbating the oxidative damage (17). The burst of ROS was
validated to damage mitochondrial respiratory chain and
metabolism enzymes further leading to more ROS production
and impaired ATP production (19, 20). The excessive free radical
also causes oxidative damage to the mitochondrial membrane
and consequently increases mitochondrial permeability resulting
in the release of pro-apoptotic factors to the cytoplasm (19).
Inflammation is an important aspect of IRI. The danger-
associated molecular patterns released by the injured cells
could activate the innate immune responses via the Toll-like
receptors (TLRs) and recruit immune cells (6). The activated
immune responses initiate the production and release of
inflammatory cytokines, and upregulation of endothelial
adhesion molecules, which facilitates leukocyte adhesion and
migration into grafts during reperfusion and further augments
the inflammatory response (6, 21). The processive oxidative
damage and inflammatory response ultimately lead to the
activation of different cell death programs (apoptosis, necrosis,
necroptosis, pyroptosis, and autophagy-associated cell death)
(22). The pathophysiological process of IRI plays an important
role in the deterioration of graft quality at the time of
transplantation. Therefore, continuous efforts are necessary to
alleviate the IRI of grafts during transplantation.
MACHINE PERFUSION: A PROMISING
TECHNIQUE FOR ORGAN PRESERVATION

SCS is introduced as a standard approach for organ preservation
—grafts are cooled down and transported in the “ice box” (23).
Hypothermia can slow down metabolic activity and then
alleviate the impact of ischemia on grafts during preservation.
Consequently, the grafts can tolerate a short time of ischemia
with maintained cell viability (24). However, the remaining
metabolism still leads to progressive damage with the
decreased energy stores, acidosis, and ROS production (25). As
marginal organs are vulnerable to IRI, SCS seems unable to meet
the high preservation requirements of marginal grafts due to the
anoxic environment (26).

In the past decades, the expanding donor pool has fueled the
interest in machine perfusion. The machine perfusion system
consists of a pump that maintains continuous perfusion to the
grafts through the vasculature until engraftment (27). Machine
perfusion can be simply divided into hypothermic machine
perfusion (HMP) at 0-8°C, subnormothermic machine perfusion
December 2021 | Volume 12 | Article 713920
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(SNMP) at 20-34°C, and normothermic machine perfusion
(NMP) at 35-38°C (24).

HMP can keep the organs in a low metabolic state. The
dynamic perfusion in the HMP system allows the supply of
substrates and removal of toxic metabolites produced during
preservation. Besides, if perfusate were actively oxygenated,
HMP can further fulfill the remaining metabolic demand,
restore tissue energy reserves and reduce oxidative stress (28,
29). Therefore, it is expected to minimize the IRI and allow a
longer preservation time for grafts. In 2009, a landmark study
conducted by Moers et al. demonstrated the superior potential of
HMP to protect the deceased-donor kidneys from IRI compared
with SCS (30) and prompted more and more researchers to focus
on the area of machine perfusion and organ preservation
(31–33).

Compared with HMP, NMP can provide an approximately
physiological condition where the organs are kept at body
temperature. With the continual supply of nutrients and
oxygen, the organs can maintain an active metabolism so that
blood-based perfusate is always necessary for the effective delivery
of oxygen (34). The closer physiological microenvironment is
thought to provide extra benefits. Urbanellis et al. showed that
NMP significantly improved early renal function and alleviated
renal IRI during preservation compared to HMP and SCS (35). A
randomized trial also demonstrated that NMP was associated with
less graft injury and discarded organs, and longer preservation
time than SCS (36). In addition, NMP enables the grafts to resume
their function. For example, livers can produce bile and lungs
allow gas exchange while ventilated. Consequently, assessment of
the function and viability of grafts during preservation comes to
reality. It may assist the clinicians to evaluate whether the grafts
are suitable for transplantation, which is especially necessary for
the marginal organs (37). Glucose, pH, and biliary bicarbonate
have been suggested as the indicators of bile duct injury during
NMP of livers (38), while left ventricular end-systolic elastance is a
prognostic factor for heart transplantation (39). As a midway
approach between HMP and NMP, SNMP is expected to take
advantage of reduced oxygen demand under subnormothermic
conditions and ensure sufficient metabolism of the grafts for
viability assessment (24, 40).

More importantly, machine perfusion provides an organ-
repairing platform where pharmacological, gene and stem cell
therapy can be administered to recondition and repair the grafts
(9). Numerous agents combined with machine perfusion have
been tested in preclinical studies, such as urokinase (41),
prostaglandin E1 (PGE1) (42), steroids (43), and siRNAs (44).
THE FEATURES AND PROPERTIES
OF MSCs

MSCs represent a heterogeneous population of multipotent stem
cells, which are plastic adherent cells, express specific surface
antigens and have the potential to differentiate into adipocytes,
osteoblasts, and chondrocyte progenitors (45). MSCs can be
isolated from many tissues, including adipose tissue, umbilical
Frontiers in Immunology | www.frontiersin.org 3
cords, and bone marrow. With few expressions of human
leukocyte antigen, MSCs present with limited immunogenicity
and are able to evade allogeneic immune response (6, 46). MSCs
are well documented to exert antioxidant, immunomodulatory,
and regenerative properties mainly by the direct interaction with
adjacent cells and paracrine effects (12). The secretome of MSCs
consists of cytokines, adhesion molecules, growth factors, and
extracellular vesicles (EVs). EVs are membrane-packed vesicles
including apoptotic bodies, exosomes, and microvesicles (MVs)
(47). Containing a cargo of proteins and genetic materials, EVs
participate in cell-to-cell communication via transferring the
contents (48).

Both the immunoregulatory and regenerative roles make
MSCs of great interest in ameliorating organ IRI (6). MSCs-
derived exosomes can convert macrophages into anti-
inflammatory phenotype, which releases immunosuppressive
cytokines and regulates the T-regulatory phenotype (49, 50).
Tryptophan is an essential amino acid necessary for T-cell
proliferation. The indoleamine 2,3-dioxygenase secreted by
MSCs could eliminate the tryptophan and subsequently affect
the proliferation and apoptosis of T-cells (51, 52). Also, MSCs
suppress TLR4-dependent activation of dendritic cells, leading to
an inhibition of cytokine production and antigen presentation to
T-cells (53). Furthermore, MSCs activate tissue repairing by
releasing various growth factors such as vascular endothelial
growth factor (VEGF), hepatocyte growth factor (HGF),
fibroblast growth factor (FGF), keratinocyte growth factor
(KGF), insulin-like growth factor-1, and stromal cell-derived
factor-1a (6, 54).
THE POTENTIAL OF MSCs IN ORGAN
RECONDITIONING

Many studies have demonstrated the potential and underlying
mechanism of MSCs to alleviate the organ IRI (Figure 1).
Inflammation is an important aspect of IRI. MSCs can
suppress the inflammatory response of renal IRI by inducing
CD4+ Foxp3+ T-regulatory proliferation (55). MSCs can also
improve hepatic IRI probably due to the suppressed
transcription of inflammation-related genes within liver tissue,
including high mobility group box chromosomal protein-1
(HMGB-1), interleukin-1b (IL-1b), and intercellular cell
adhesion molecule-1 (ICAM-1) (56). As mentioned above,
immune cell recruitment augments the inflammatory injury to
the grafts at the reperfusion phase. Li et al. proved that MSCs
ameliorated hepatic IRI predominantly via the inhibition of
neutrophil migration and infiltration. They suggested MSCs
not only reduced the neutrophil chemoattractant CXCL2 (CXC
chemokine ligand-2) production in macrophages by suppressing
nuclear factor kB (NF-kB) p65 phosphorylation but also
promoted the p38 mitogen-activated protein kinase (MAPK)
phosphorylation to decrease the CXCR2 (CXC chemokine
receptor-2.) expression on the surface of neutrophils (57).

MSCs were found to alleviate the organ IRI by improving
metabolic activity. Lai et al. suggested that glycolytic enzymes
December 2021 | Volume 12 | Article 713920
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were present in MSCs-derived exosomes and could be
transferred to the reperfused myocardium to prompt the
glycolytic flux and ATP production. They believed that the
rapid ATP production could help the initiation of cellular
processes in cardiac tissue immediately following reperfusion
(58). Mitochondrial dysfunction plays an important role in the
pathophysiological process of IRI, leading to excessive ROS
generation, impaired ATP production, and apoptosis. Tseng
et al. observed that mitochondria were transferred from MSCs
to neurons in vitro after oxidative insult through cell-to-cell
contact. The transfer of mitochondria recovered the metabolic
activity in neurons with the improvement of mitochondrial
respiration, basal metabolic rate, spare respiratory capacity,
proton leak, and ATP production (59). Mitochondria
constantly undergo fission and fusion and would shift to the
fission state in response to IRI, leading to mitochondrial
fragmentation and cell apoptosis (60, 61). Gu et al. uncovered
that the administration of MSCs-derived EVs (MSC-EVs)
immediately after reperfusion suppressed mitochondrial fission
Frontiers in Immunology | www.frontiersin.org 4
and subsequently mitochondrial apoptotic pathways in rat model
of renal IRI. The inhibition of mitochondrial fission was
probably mediated by miR-30 contained in MSC-EVs (61).
Cao et al. suggested that MSC-EVs prompted renal repair after
IRI by targeting and restoring mitochondrial function. They
found that MSC-EVs protected kidneys from oxidative insult by
reducing mitochondrial fragmentation and normalizing
membrane potential. The transfer of miR-200a from MSCs was
likely to increase mitochondrial antioxidant defense and ATP
generation by activating the Keap1 (Kelch-like ECH-associated
protein 1)/Nrf2 (NF-E2-related factor 2) pathway (62).

Autophagy participates in the process in IRI. It can be
activated by ischemia, hypoxia, and nutrient deprivation to
degrade and recycle the cytosolic proteins and damaged
organelles for ATP production and protein synthesis (63). Xiao
et al. observed a significantly reduced autophagic flux and
apoptosis in infarcted mouse hearts treated with MSCs. They
suggested the transplantation of MSCs after myocardial
infarction could suppress the autophagic flux and cell death
FIGURE 1 | Mechanisms of MSCs in ameliorating organ IRI. AMPK, Adenosine monophosphate-activated protein kinase; ATP, Adenosine triphosphate; CXCL, CXC
chemokine ligand; CXCR, CXC chemokine receptor; DRP1, Dynamin-related protein 1; EVs, Extracellular vesicles; HMGB-1, High mobility group box chromosomal
protein-1; ICAM-1, Intercellular adhesion molecule-1; IRI, Ischemia-reperfusion injury; Keap1, Kelch-like ECH-associated protein 1; MAPK, Mitogen-activated protein
kinase; NF-kB, Nuclear factor-Kb; Nrf2, NF-E2-related factor 2; IL, Interleukin; MSCs, Mesenchymal stem cells; PI3K, Phosphatidylinositol 3-kinase; mTOR,
Mechanistic target of rapamycin.
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partially by exosomal transfer of miR-125b. In rat model of acute
lung IRI, Lin et al. also found that the treatment of MSCs
strongly downregulated the autophagic signaling pathway (64).
As a special type of autophagy, mitophagy sequesters and
eliminates unhealthy mitochondria (20). Anzell et al. deemed
that clearance of unhealthy mitochondria is vital to avoid
oxidative injury and apoptosis. In mouse liver with IRI, MSCs
were administered immediately after reperfusion. Zheng et al.
observed that the hepatoprotective effect of MSCs was
accompanied by reduced mitochondrial ROS production,
suppressed mitochondrial fragmentation, decreased apoptosis,
and restored ATP generation. They suggested that MSCs
upregulated the PTEN (phosphatase and tensin homolog)-
induced putative kinase 1-dependent mitophagy to control the
mitochondrial quality by adenosine monophosphate-activated
protein kinase a (AMPKa) activation.

In recent years, MSCs have been suggested to recondition the
donor grafts during transplantation. Montanari et al. found the
intravenous infusion of MSCs to rats after heterotopic heart
transplantation led to an early improvement in cardiac function
and subsequent reduction in ventricular remodeling, cardiac
fibrosis, and apoptosis in transplanted hearts (65). On the
other hand, brain-dead donor hearts preserved by solution
supplemented with MSCs or their secretome resulted in an
improvement of posttransplant cardiac contractility and
caspase-independent apoptosis (66, 67), while the hypoxic
precondition could further enhance the beneficial effects of
MSCs-derived secretome on apoptosis, histopathology,
inflammation and functional performance to donor hearts after
transplantation (68). Heme oxygenase-1 (HO-1) has shown the
potential to inhibit oxidative stress (69), suppress inflammation
(70), and enhance the quality of MSCs (71). Yang et al. delivered
HO-1-transduced MSCs and MSCs respectively to rats
immediately after liver transplantation. They found the HO-1
transduction could augment the positive impact of MSCs on the
recovery of microcirculation and energy metabolism in
transplanted livers (72).

MSCs are commonly infused through a peripheral vein to
both animals and patients (73). But intravenous administration
of MSCs or their secretome is facing the problem of entrapment
in the lungs or absorption by other tissue with only a small
proportion remaining in the target organs (13). Although a
higher dosage may address this concern, the risk of
microvascular embolism and side effects on other organs
increase (74). Also, the infused MSCs have a lower long-
term survival rate in the recipients (14). Machine perfusion
provides an ideal platform for MSCs to directly recondition the
target organs irrespective of the physiological barriers and
adverse effects on other organs. Additionally, the amount
of MSCs could be downregulated to avoid microvascular
obstruction and MSCs could be protected from the whole
immune system during perfusion, which guarantees their
therapeutic effects on donor grafts. The combination of
machine perfusion and MSCs is likely to have extra benefits
to the grafts and is possible to convert the marginal organs to
transplantable ones (Figure 2).
Frontiers in Immunology | www.frontiersin.org 5
APPLICATION OF MSCs COMBINED
WITH MACHINE PERFUSION IN
ORGAN TRANSPLANTATION

Recently, multiple efforts have been made to investigate the
therapeutic effects of MSCs combined with machine perfusion
on donated organs (Tables 1 and 2).
MSCs AND MACHINE PERFUSION FOR
LUNG TRANSPLANTATION

Since both pulmonary vascular and bronchial trees are direct
access to the entire parenchyma (9), MSCs can be administered
via the bronchus or the vasculature. In NMP of porcine lungs,
Mordant et al. reported that 50×106 MSCs delivered through the
pulmonary artery showed higher retention in the parenchyma
and similar tolerance to the intrabronchial administration of the
same dose (77). They also compared the impact of the bronchial
fluid and perfusate (Steen fluid) harvested during NMP on the
viability of MSCs in vitro. Equivalent to unadulterated Steen
fluid, MSCs after 18-hour exposure to bronchial fluid presented
lower viability than those exposed to the perfusate, suggesting
bronchial fluid was not the ideal environment for MSCs and
protective factors for the MSCs survival were released into the
perfusate during perfusion (77). However, they didn’t compare
the outcome of lungs exposed to MSCs under different
administration routes. Lee et al. previously found that there
was no difference between the intravascular and intrabronchial
routes in the efficacy of MSCs on the isolated lungs injured by E.
coli bacteria, which might be related to the paracrine effect of
MSCs (92).

Additionally, concern about the microvascular embolism will
be raised if MSCs are intravascularly administered during
machine perfusion (15). The majority of MSCs administered in
the perfusate retained in lungs within a few minutes and could be
observed in both capillaries and the alveolar interstitium at the
end of NMP (77, 80). Mordant et al. found that higher doses of
MSCs were associated with higher retention of cells in the pig
lungs. Also, 150×106 MSCs delivered during NMP were well
tolerated without change in pulmonary vascular resistance and
showed significant improvement in PaO2/FIO2 and static lung
compliance. However, the double dose of MSCs was associated
with increased pulmonary vascular resistance without benefits to
pulmonary physiology. Accordingly, the optimal dose was
suggested to be 5×106 MSCs per kilogram of animal weight (77).

Noncardiogenic pulmonary edema occurs in the early phase
of PGD after lung transplantation (93). Alveolar fluid clearance
(AFC) is defined as the ability of the lung to reabsorb the fluid in
alveoli, which is dependent on an intact epithelial barrier (94).
Accordingly, IRI may impair the integrity of epithelium and
subsequent accumulation of fluid in alveoli may lead to
pulmonary edema and reduced oxygenation (95, 96). In the
human lungs rejected for transplantation, McAuley et al.
demonstrated that the AFC could be normalized by MSCs in
December 2021 | Volume 12 | Article 713920
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combination with NMP, partially mediated by KGF secretion
(75). It was reported that exogenous KGF could increase the fluid
transport capacity of the alveolar epithelium (97). In a model of
acute lung injury, MSCs were proved to restore lung fluid balance
by transferring KGF mRNA to the injured alveolar epithelium
through the MVs (98). In line with previous studies, Gennai et al.
found that the administration of MSCs-derived MVs (MSC-
MVs) during NMP restored the AFC in a dose-dependent
manner and decreased lung weight gain following perfusion.
Additionally, the reduced perfusate level of syndecan-1 and the
elevated level of angiotensin-I in the injured alveolus suggested a
partial restoration of lung endothelium (76). Mordant et al.
reported that the administration of MSCs during NMP could
significantly decrease the perfusate level of IL-8 and increase the
parenchymal concentration of VEGF (77), which was inversely
correlated with alveolar epithelial damage (99). HGF has been
shown to protect the integrity of endothelial junction and
improve endothelial permeability (100, 101). Nakajima et al.
suggested that HGF probably mediated the amelioration of
Frontiers in Immunology | www.frontiersin.org 6
pulmonary edema and lung injury after transplantation in the
group treated with MSCs and NMP, since its concentration was
high in both perfusate and lung tissue. Also, Nakajima et al.
reported that MSCs administered during NMP could reduce the
level of apoptosis, T-cell infiltration, and proinflammatory
cytokines in lung tissue after transplantation. They inferred
that the anti-inflammatory and anti-apoptotic effects of MSCs
were pratially mediated by HGF (80), which could reduce the
production of IL-12, IL-18, and tumor necrosis factor-a (TNF-
a) (102), and inhibit apoptosis by regulating PI3K
(phosphatidylinositol 3-kinase)/Akt and MAPK pathways (103).

Stone et al. found that NMP could improve pulmonary
function and edema in murine models. Interestingly, MSCs and
MSC-EVs could comparably and effectively enhance the
protective and rehabilitative effects of NMP with significant
improvement in pulmonary compliance and pulmonary artery
pressure. TheMSCs/MSC-EVs delivered to the lungs during NMP
also attenuated neutrophil infiltration, pulmonary edema, and
lung injury compared to NMP alone. They suggested that MSCs/
FIGURE 2 | Schematic picture of MSCs combined with machine perfusion on organ preservation and reconditioning. The machine perfusion system consists of a pump,
reservoir, oxygenator, and heat exchanger. The pump can maintain a continuous flow to the organ (heart, lung, kidney, or liver) through the vasculature. Recycled in the
circuit, the perfusate is oxygenated by the oxygenator and kept at a certain temperature by the heat exchanger. The perfusate temperature, perfusion pressure, and
perfusion flow rate are monitored and the pump and heat exchanger are accordingly regulated. During perfusion, MSCs or their secreted factors are administered in the
perfusate to the isolated organ, which is expected to ameliorate the IRI and quality of the graft. IRI, Ischemia-reperfusion injury; MSCs, Mesenchymal stem cells.
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MSC-EVs might present immunomodulatory and endothelial
barrier-protective properties during NMP, via upregulating the
anti-inflammatory molecules (IL-10, KGF, PGE2) expression,
Frontiers in Immunology | www.frontiersin.org 7
suppressing the activation of alveolar macrophages and
invariant natural killer T cells, and mitigating neutrophil
transendothelial migration (78). Besides, Lonati et al. found that
TABLE 1 | Recent studies regarding the applications of MSCs during machine perfusion on organ transplantation.

References Organs Model Perfusion
type

Perfusate Recondition
time

Agents Engraftment Year

(75) Lung Human lungs
rejected for
transplantation

NMP DME H-21 + 5% bovine serum albumin 4 h Human
BMMSCs

– 2014

(76) Lung Human lungs
rejected for
transplantation

NMP DMEM without Phenol Red + 5% bovine serum
albumin

6 h Human
BMMSC-
MVs

– 2015

(77) Lung Porcine lungs NMP Steen solution + heparin + cefazolin
+methylprednisolone

11 h Human
UCMSCs

– 2016

(78) Lung Murine DCD
lungs

NMP Steen solution + heparin + cefazolin +
methylprednisolone

1 h Human
UCMSCs/
UCMSC-
EVs

– 2017

(79) Lung Rat lungs NMP – 2 h MSC-EVs* – 2019
(80) Lung Porcine lungs NMP Steen solution + heparin + cefazolin

+methylprednisolone
10 h Human

UCMSCs
Orthotopic left
single-lung

transplantation

2019

(81) Kidney Rat DCD
kidneys

HMP Belzer solution 4 h Rat AMSC-
EVs

– 2017

(82) Kidney Human DCD
kidneys

SNMP Acellular medium 24 h MSCs* – 2018

(83) Kidney Porcine DCD
kidneys

NMP Williams’ Medium E + amoxicillin-clavulanate + albumin
+ pure red blood cells

6 h Human
AMSCs/
BMMSCs

– 2019

(84) Kidney Porcine DCD
kidneys

NMP 0.9% sodiumchloride + pure erythrocytes + albumin
+sodiumbicarbonate + calciumgluconate + glucose
+insulin + mannitol + creatinine + amoxicillin/clavulanate

6 h Human
AMSCs/
BMMSCs

– 2020

(85) Kidney Porcine DCD
kidneys

NMP allogeneic erythrocytes + albumin + sodium
bicarbonate + glucose + insulin + calcium gluconate +
mannitol + creatinine

3 h Human/
porcine
AMSCs

Autotransplantation 2020

(86) Liver Rat DCD livers NMP Krebs-Henseleit solution 2 h Swine
AMSCs

– 2018

(87) Liver Porcine DCD
livers

HMP University of Wisconsin solution 0.5 h Human
BMMSCs

– 2018

(88) Liver Rat DCD livers NMP DMEM/F12 + fetal bovine serum + penicillin–
streptomycin solution + heparin + insulin +
dexamethasone + fresh blood

8 h Rat
BMMSCs

– 2020

(89) Liver Rat DCD livers NMP DMEM/F12 + fetal bovine serum + penicillin–
streptomycin solution + heparin + insulin +
dexamethasone + fresh blood

8 h Rat
BMMSCs

– 2020

(90) Liver Rat DCD livers NMP DMEM/F12 + fetal bovine serum + penicillin–
streptomycin solution + heparin + insulin +
dexamethasone + fresh blood

4 h Rat HO-1-
modified
BMMSCs/
BMMSCs

Orthotopic liver
transplantation

2020

(91) Heart Aged rat
hearts

HMP Custodiol solution 5 h Rat
BMMSC-
CM

Heterotopic heart
transplantation

2019
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AMSCs, Adipose-derived mesenchymal stem cells; AMSC-EVs, Extracellular vesicles derived from AMSCs; BMMSCs, Bone marrow-derived mesenchymal stem cells; BMMSC-CM,
Conditioned medium derived from BMMSCs; BMMSC-MVs, Microvesicles derived from BMMSCs; DCD, Donation after circulatory death; HMP, Hypothermic machine perfusion; NMP,
Normothermic machine perfusion; MSCs, Mesenchymal stem cells; MSC-EVs, Mesenchymal stem cells-derived extracellular vesicles; SNMP, Subnormothermic machine perfusion;
UCMSCs, Umbilical cord-derived mesenchymal stem cells; UCMSC-EVs, Extracellular vesicles derived from UCMSCs.
*The origin of MSCs was not mentioned in the article.
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TABLE 2 | The therapeutic effects of MSCs combined with machine perfusion on organ transplantation.

Reference Organs Outcomes

Function Histopathology Injury Inflammation Oxidative
stress

Apoptosis Metabolism Growth
factors

Others

(75) Lung ↑AFC – – – – – – – –

(76) Lung ↑AFC; lung
compliance

↑Angiotensin-
I

– – – – – ↑NO

↓Tracheal
pressure; PAR;
PAP

↓Lung weight ↓Syndecan-1

(77) Lung ↑PaO2/FIO2;
static lung
compliance

– – ↓IL-8 – – – ↑VEGF –

(78) Lung ↑Pulmonary
compliance

– – – – – –

↓PAP ↓Edema ↓Neutrophil
infiltration

(79) Lung ↓Total pulmonary – – ↑Genes – ↑ATP – ↑NO;
hyaluronanvascular

resistance
involved in resolution of
inflammation and oxidative
stress

↓Glucose;
lactate

(80) Lung ↓Peak airway
pressure

↓Edema; histologic
acute lung injury scores

– ↑IL-4 – ↓Apoptosis – ↑HGF –

↓IL-18; IFN-g;
TNF-a; T-cell
infiltration

(81) Kidney – ↓Renal damage score;
bleb formation; tubular
necrosis; tubular lumen
obstruction

↓LDH – ↓MDA; – ↑Genes
involved in
cell energy
metabolism
pyruvate

– ↑Genes
involved in
membrane
transport

↓Glucose;
lactate

(82) Kidney – – – ↓Proinflammatory
cytokines

– – ↑ATP ↑EGF;
FGF-2;
TGF-a

↑Mitosis;
PCNA

(83) Kidney – – – – – – – – –

(84) Kidney – – ↓NGAL; LDH ↑IL-6; IL-8 – – – ↑HGF –

(85) Kidney No observed significant difference between groups treated with or without MSCs
(86) Liver ↑Bile production ↓Sinusoidal space

narrower;
hepatocellular
vacuolation

– – – – – – –

(87) Liver – – – – – – – – –

(88) Liver ↑Bile production; ↑GSH – ↑AMPK
activation

↓Histopathological
score; vacuolar
degeneration; hepatic
sinusoid congestion;
inflammatory cell
infiltration; edema

↓ALT; AST;
mitochondrial
damage

↓MPO ↓MDA ↓Apoptosis ↓Lactate ↓JNK/NF-
kB
pathway

(89) Liver ↑Bile production ↓Histopathological
score; vacuolar
degeneration; hepatic
sinusoid congestion;
inflammatory cell
infiltration; edema

↓ALT; AST;
ALP;
mitochondrial
damage

↓ICAM-1; VCAM-
1; macrophage
activation

– ↓Apoptosis ↓Lactate – ↓vWF; ET-
1

(90) Liver ↓Bile duct injury;
histopathological
score;

– ↓ALT; AST;
ALP; GGT;

↓Proinflammatory
cytokines (IL-1b,
IL-6, TNF-a);
TLR4/NF-kB
pathway-related
molecules

– – – – ↑Recipient
survival
time
↓HMGB1

(Continued)
Frontiers in Im
munolog
y | www.frontiersin
.org
 8
 Decembe
r 2021 | Volum
e 12 | Art
icle 713920

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Li et al. MSCs and Machine Perfusion for Organ Preservation
MSC-EVs could induce the expression of various genes involved
in anti-inflammatory response and resolution of oxidative stress in
rat lungs during NMP. They showed that MSC-EVs could transfer
hyaluronan into lung tissue and induce pulmonary production of
hyaluronan during NMP (79). The transferred hyaluronan was
primarily medium-high-molecular-weight, which was involved in
the immunomodulatory and regenerative effects of MSCs (104).
Similar to the study conducted by Gennai et al. (76), Lonati et al.
found that the airway and hemodynamic parameters were
significantly ameliorated in lungs treated with MSC-EVs during
NMP, which might be attributed to the increased perfusate level of
nitric oxide. Besides, the improvement of perfusate lactate and
tissue ATP content in the group treated with MSC-EVs suggested
the recovery of aerobic metabolism (79).
MSCs AND MACHINE PERFUSION FOR
KIDNEY TRANSPLANTATION

The high risk of primary nonfunction and DGF hinders the
adoption of marginal grafts in kidney transplantation.
Fortunately, previous studies have demonstrated the beneficial
effects of HMP on the quality of high-risk renal grafts (105).
Thereafter, Gregorini et al. proved the protective effect of MSCs/
MSC-EVs combined with HMP on rat DCD kidneys. 3×106

MSCs were administered during HMP and detected in vessels,
tubules, and interstitium of the kidneys at the end of 4-hour
perfusion. The histologic evaluation showed that MSCs could
significantly ameliorate the severe lesions (bleb formation,
tubular necrosis, and tubular lumen obstruction) in DCD
kidneys compared to those perfused only. Besides, genes
involved in molecular transport, respiratory electron transport,
and citric acid cycle were significantly up-regulated in the MSCs-
treated group. They suggested that MSCs ameliorated the cellular
metabolism and ischemic injury of DCD kidneys during HMP,
as indicated by the increased pyruvate level and reduced
perfusate level of lactate dehydrogenase, malonaldehyde
(MDA), lactate, and glucose. More importantly, the MSC-EVs
were found to ameliorate renal ischemic injury during HMP
more effectively and more rapidly, which might be attributed to
Frontiers in Immunology | www.frontiersin.org 9
the prompt availability of MSCs mediators contained in
EVs (81).

A does-effect study was conducted by Brasile et al. (82) to
determine the optimal number of MSCs delivered to the
discarded human kidneys during 24-hour SNMP. 25, 50, 75,
100, and 200×106 MSCs were respectively administered during
SNMP (32℃) and 100×106 was suggested as the optimal dose
which would not adversely affect the perfusion pressure, vascular
flow, and oxygen consumption. The histologic examination
demonstrated that the infused MSCs retained in the
vasculature without migration to the renal parenchyma, which
was quite different from the findings by Gregorini et al. (81). In
their subsequent experiments, they showed that the addition of
MSCs resulted in a more evident ATP storage, reduced perfusate
level of proinflammatory cytokines, and increased synthesis of
epidermal growth factor (EGF), FGF-2, and transforming growth
factor-a in comparison to perfusion only. Furthermore,
upregulation of cell proliferation in kidneys treated with MSCs
during SNMP was observed. The increased synthesis of growth
factors probably mediated the regenerative effect of MSCs on
injured kidneys (82), as EGF and FGF-2 were proved to promote
tubular regeneration (106), downregulate proinflammatory
signaling (107), and attenuate renal IRI (108).

Moreover, a recent study has shown the feasibility of
delivering MSCs during NMP to a porcine kidney. Kidneys
were perfused with warm oxygenated blood-based perfusate for
7 hours and treated with different dosages of MSCs. Pool et al.
showed that when the dosage was as high as 10×106, a proportion
of the MSCs could be detected in lumen of glomerular capillaries
with intact structure after NMP, which indicated that the infused
MSCs might remain viable and functional. Intriguingly, MSCs
did not retain in the most neighboring glomeruli. The magnetic
resonance imaging also showed an inhomogeneous distribution
of MSCs in the perfused kidneys, which might be resorted to the
anatomical difference of microvasculature leading MSCs to the
path with less resistance during perfusion (83). In their
subsequent study, Pool et al. investigated the alteration of renal
function and factors secreted into the perfusate after the addition
of MSCs during NMP. They found that the delivery of 10×106

MSCs was not associated with very early renal function during
TABLE 2 | Continued

Reference Organs Outcomes

Function Histopathology Injury Inflammation Oxidative
stress

Apoptosis Metabolism Growth
factors

Others

(91) Heart ↑Cardiac
function

↓Genes involved in inflammation, oxidative
stress, apoptosis

↓Genes
involved in
PI3K/Akt
pathway
Decembe
r 2021 | Volum
e 12 | Art
AFC, Alveolar fluid clearance; ALP, Alkaline phosphatase; ALT, Alanine aminotransferase; AMPK, Adenosine monophosphate-activated protein kinase; AST, Aspartate aminotransferase;
ATP, Adenosine triphosphate; EGF, Epidermal growth factor; ET-1, Endothelin-1; FGF-2, Fibroblast growth factor-2; GGT, Glutamyl transpeptidase; GSH, Glutathione; HGF, Hepatocyte
growth factor; HMGB1, High mobility group box chromosomal protein-1; HO-1, Heme oxygenase-1; ICAM-1, Intercellular adhesion molecule-1; IFN-g, Interferon-g; IL, Interleukin; JNK, c-
Jun N-terminal kinase; KGF, Keratinocyte growth factor; LDH, Lactate dehydrogenase; MDA, Malonaldehyde; MPO, Myeloperoxidase; NF-kB, Nuclear factor-kB; NO, Nitric oxide; PAP,
Pulmonary artery pressure; PAR, Pulmonary artery resistance; PCNA, Proliferating cell nuclear antigen; PGE, Prostaglandin E; PI3K, Phosphatidylinositol 3-kinase; ROS, Reactive oxygen
species; TGF-a, Transforming growth factor-a; TLRs, Toll-like receptors; TNF-a, Tumor necrosis factor-a; VCAM-1, Vascular cell adhesion molecule-1; VEGF, Vascular endothelial growth
factor; vWF, Von willebrand factor.
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NMP, but with increased levels of IL-6 and IL-8 in the perfusate.
Besides, with fewer damage markers and more secretion of HGF
in the perfusate, the perfused kidneys suffered less injury due to
the addition of MSCs during NMP (84). Recently, the effect of
MSCs combined with NMP on porcine kidneys after
autotransplantation was investigated. Lohmann et al. found
that the number of viable MSCs retaining in the transplanted
kidneys dramatically dropped on postoperative day 14, and they
failed to find the evidence of MSCs-induced recovery in
transplanted kidneys, in line with the lack of improvement of
renal function, early fibrosis markers and histology in the
posttransplant phase (85).
MSCs AND MACHINE PERFUSION FOR
LIVER TRANSPLANTATION

Recently, Verstegen et al. reported the bioluminescent imaging of
infused MSCs in porcine livers during HMP. A wide range and
patchy distribution of infused MSCs in livers were observed
throughout the 30-minute HMP, regardless of the arterial or
venous infusion (87). However, lacking is strong evidence to
illustrate the therapeutic effect of MSCs combined with HMP on
DCD livers. As for the application of MSCs during NMP on
DCD livers, Sasajima et al. found that the addition of MSCs
during NMP could improve the bile production and ameliorate
the sinusoidal space narrower and hepatocellular vacuolation in
rat DCD livers (86).

Based on the promising results, a series of studies regarding the
application of MSCs combined with NMP on rat DCD livers have
been conducted by a research group. In the experimental group,
Yang et al. delivered MSCs through the portal vein to livers at the
initiation of NMP. During 6-hour NMP, MSCs were found to
continually colonize in the hepatic sinusoid. Compared to livers
solely submitted to NMP, livers treated with MSCs released less
alanine aminotransferase and aspartate aminotransferase and
produced bile more effectively. Histopathology evaluation also
showed a significant improvement in MSCs-treated livers,
regarding apoptosis, liver swelling, hepatic sinusoid congestion,
cell vacuolar degeneration, and inflammatory cell infiltration. The
level of MDA and myeloperoxidase was significantly decreased in
livers treated withMSCs, with an increase of glutathione level. The
MSCs-treated livers also presented less mitochondrial damage.
Yang et al. confirmed in subsequent experiments that the
inhibition of c-Jun N-terminal kinase/NF-kB pathway and the
AMPK activation might mediate the positive effects of MSCs on
DCD livers during NMP, as these two pathways were involved in
oxidative stress. Also, MSCs were found to improve the
microcirculation of DCD livers during NMP, via suppressing
macrophage activation, reducing ICAM expression, and
ameliorating epithelial cell damage (88, 89). Furthermore, in a
subsequent study, the preserved DCD livers were used for
orthotopic liver transplantation. In line with previous studies,
Cao et al. found MSCs could improve the functional and
histopathological performance of DCD livers after
transplantation compared to those only exposed to NMP. Also,
Frontiers in Immunology | www.frontiersin.org 10
the recipient survival time was dramatically prolonged in the
MSCs-treated group. Interestingly, MSCs significantly attenuated
the inflammatory response in DCD livers after transplantation, as
indicated by the reduced level of IL-1b, IL-6, and TNF-a, and
decreased expression of HMGB1 and TLR4/NF-kB pathway-
related molecules. Therefore, they suggested that MSCs could
promote the protective effect of NMP on DCD livers (90). Cao
et al. subsequently reported that HO-1 transduction into MSCs
could further improve the beneficial effects of MSCs combined
with NMP on DCD livers, regarding liver function,
histopathology, inflammation, and recipient survival time after
transplantation (90).
MSCs AND MACHINE PERFUSION FOR
HEART TRANSPLANTATION

Hearts from the elderly have been regarded as a promising source
of donor grafts (26). However, aging was associated with cardiac
structural and functional deteriorations (109) and aged hearts
were vulnerable to IRI (110). Recently, Korkmaz-Icöz et al.
demonstrated HMP combined with MSCs-derived secretome
could protect the donor hearts harvested from 15-month-old
rats after prolonged storage. They found that the grafts
harvested from the aged rats presented a significantly impaired
left ventricular contractile function and relaxation compared with
those from younger rats. Furthermore, HMP with perfusate
supplemented with MSCs-derived secretome improved the
posttransplant cardiac function of the aged grafts, via regulating
the gene expression involved in apoptosis, inflammation, oxidative
stress, and PI3K/Akt pathway (91). However, only one research
has investigated the cardioprotective effect of machine perfusion
with MSCs in donor heart preservation so far.
CONCERNS AND FUTURE
PERSPECTIVES

The fate of MSCs after delivery to grafts during machine
perfusion is worth considering. The administered MSCs are
under the influence of temperature, perfusion pressure, flow
rate, perfusate, and graft. Sierra Parraga et al. previously
investigated the impact of perfusate on the attached and
suspended MSCs in vitro. They found that both the suspension
condition and blood-based perfusate affected the survival rate of
MSCs and their adhesion ability to endothelial cells. Cultured by
the perfusate, the attached MSCs showed higher viability
compared to MSCs in suspension. Besides, although the
perfusate induced an increase in the secretion of inflammatory
cytokines from adherent MSCs, the secretory profile of MSCs
was unaffected (111). In an NMP system without an organ in the
circuit, the number of MSCs in suspension decreased over time
and only approximately 10% of the cells remained detectable
after 6 hours of perfusion (83). Notably, the suspension status is
expected to be transient as MSCs can retain in the organs during
December 2021 | Volume 12 | Article 713920
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machine perfusion. However, the retention of MSCs varies
among organs. Nakajima et al. and Mordant et al. showed the
majority of MSCs administered in the perfusate retained in lungs
within a few minutes (77, 80), while Brasile et al. found MSCs
remained predominately in the perfusate instead of the perfused
kidney (82). Pool et al. showed MSCs could travel through the
kidney and stop circulating over time, but only a small
proportion of MSCs could be detected in the kidney (83).
Further comprehensive research may be encouraged to figure
out the impacts of machine perfusion on the administered MSCs.

In addition, the higher dosage of MSCs is associated with
higher retention of cells in lungs (77), which can also apply to
other organs. The optimal dosage of MSCs administered during
machine perfusion was suggested under the basis of acellular
perfusate (77, 82). The blood-based perfusate is always necessary
for NMP in the clinic with a higher viscosity than acellular
perfusion solution. Therefore, the optimal dosage of MSCs in the
NMP would be probably limited by the viscosity of blood-based
perfusate to avoid alteration of hemodynamic parameters. Since
the application of MSCs has a risk of malignant development and
microvascular embolism (15, 112) and MSCs rely more on the
paracrine effect, further research may be encouraged to focus on
the application of cell-free therapy combined with machine
perfusion on organ preservation.

Another concern for the application of MSCs during machine
perfusion is the heterogeneity of MSCs, a result of different
donors, tissue sources, culture methods, and individual cells
within a colonial population. The heterogeneity leads to
disparities in surface markers, proliferation, differentiation
potential, and secretory profile of MSCs from different sources
(113). Sierra Parraga et al. demonstrated that the response of
human MSCs to the NMP conditions was different from that of
porcine MSCs. Human MSCs had higher resistance to
suspension condition and better adhesion to endothelial cells
in perfusion fluid than porcine MSCs. Additionally, human
MSCs incubated in perfusate showed higher metabolic activity
of mitochondria but more ROS production compared to porcine
MSCs. What’s more, the impact of cryoprotection on MSCs was
different between the human and porcine sources regarding
survival, proliferation, adherent capacity, ROS production, and
metabolic activity (111). Wilson et al. suggested that the cell
populations were insufficiently defined in many studies and the
MSCs heterogeneity was l ikely to compromise the
reproducibility as well as the clinical translation of those
researches (113). In the present review, contradictory results
were found in studies focusing on the application of MSCs and
machine perfusion on organ transplantation, especially on
kidney transplantation. Therefore, the heterogeneity of MSCs
may in part account for the contradictory findings. Considering
MSCs heterogeneity is unavoidable, future studies are
encouraged to present more detail about the origin and
Frontiers in Immunology | www.frontiersin.org 11
identification of MSCs to ensure the comparability of studies
in this field. Besides, a better understanding of the mechanisms
of MSCs in improving the graft quality can help determine the
acceptable degree of MSCs heterogeneity by quantifying the
active ingredients in future studies or even clinical practice (113).

Most of the aforementioned studies shared a common
limitation that the long-term effect of MSCs combined with
machine perfusion on grafts after transplantation was not
evaluated. The impact of such an innovative strategy on the
postoperative outcome should be investigated in further studies.
CONCLUSION

In conclusion, because of the ever-increasing demand for
transplantable organs, enormous efforts have been made to
expand the deceased donor pool. Mounting evidence has
demonstrated the superiority of machine perfusion plus MSCs
to improve the graft quality, especially the marginal organs. It is
expectable for the further development of such an innovative
strategy in organ transplantation and final application in the clinic.
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GLOSSARY

AFC Alveolar fluid clearance
ALP Alkaline phosphatase
ALT Alanine aminotransferase
AMSCs Adipose-derived mesenchymal stem cells
AMSC-EVs Extracellular vesicles derived from AMSCs
AMPK Adenosine monophosphate-activated protein kinase
AST Aspartate aminotransferase
ATP Adenosine triphosphate
BMMSCs Bone marrow-derived mesenchymal stem cells
BMMSC-CM Conditioned medium derived from BMMSCs
BMMSC-MVs Microvesicles derived from BMMSCs
CXCL CXC chemokine ligand
CXCR CXC chemokine receptor
DCD Donation after circulatory death
DGF Delayed graft function
DRP1 Dynamin-related protein 1
ECD Extended criteria donors
EGF Epidermal growth factor
ET-1 Endothelin-1
EVs Extracellular vesicles
FGF-2 Fibroblast growth factor-2
GGT Glutamyl transpeptidase
GSH Glutathione
HGF Hepatocyte growth factor
HMGB1 High mobility group box chromosomal protein-1
HMP Hypothermic machine perfusion
HO-1 Heme oxygenase-1
Keap1 Kelch-like ECH-associated protein 1
ICAM-1 Intercellular adhesion molecule-1
IFN-g Interferon- g
IL Interleukin
IRI Ischemia-reperfusion injury

(Continued)
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JNK c-Jun N-terminal kinase

KGF Keratinocyte growth factor

LDH Lactate dehydrogenase

MAPK Mitogen-activated protein kinase

MDA Malonaldehyde

MPO Myeloperoxidase

MSCs Mesenchymal stem cells

MSC-EVs Mesenchymal stem cells-derived extracellular vesicles

MSC-MVs Mesenchymal stem cells-derived microvesicles

mTOR Mechanistic target of rapamycin

MVs Microvesicles

NF-kB Nuclear factor-kB
NMP Normothermic machine perfusion
NO Nitric oxide
Nrf2 NF-E2-related factor 2
PAP Pulmonary artery pressure
PAR Pulmonary artery resistance
PCNA Proliferating cell nuclear antigen
PGE Prostaglandin E
PGD Primary graft dysfunction
PI3K Phosphatidylinositol 3-kinase
PTEN Phosphatase and tensin homolog
ROS Reactive oxygen species
SCS Static cold storage
SNMP Subnormothermic machine perfusion
TGF-a Transforming growth factor-a
TLRs Toll-like receptors
TNF-a Tumor necrosis factor-a
UCMSCs Umbilical cord-derived mesenchymal stem cells
UCMSC-EVs Extracellular vesicles derived from UCMSCs
VCAM-1 Vascular cell adhesion molecule-1
VEGF Vascular endothelial growth factor

vWF Von willebrand factor
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