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Abstract

Phase-amplitude coupling (PAC), a type of cross-frequency coupling (CFC) where the

phase of a low-frequency rhythm modulates the amplitude of a higher frequency, is becom-

ing an important indicator of information transmission in the brain. However, the neurobio-

logical mechanisms underlying its generation remain undetermined. A realistic, yet

tractable computational model of the phenomenon is thus needed. Here we analyze a neu-

ral mass model of a cortical column, comprising fourteen neuronal populations distributed

across four layers (L2/3, L4, L5 and L6). A control analysis showed that the conditional

transfer entropy (cTE) measure is able to correctly estimate the flow of information between

neuronal populations. Then, we computed cTE from the phases to the amplitudes of the

oscillations generated in the cortical column. This approach provides information regarding

directionality by distinguishing PAC from APC (amplitude-phase coupling), i.e. the informa-

tion transfer from amplitudes to phases, and can be used to estimate other types of CFC

such as amplitude-amplitude coupling (AAC) and phase-phase coupling (PPC). While

experiments often only focus on one or two PAC combinations (e.g., theta-gamma or

alpha-gamma), we found that a cortical column can simultaneously generate almost all

possible PAC combinations, depending on connectivity parameters, time constants, and

external inputs. PAC interactions with and without an anatomical equivalent (direct and indi-

rect interactions, respectively) were analyzed. We found that the strength of PAC between

two populations was strongly correlated with the strength of the effective connections

between the populations and, on average, did not depend on whether the PAC connection

was direct or indirect. When considering a cortical column circuit as a complex network, we

found that neuronal populations making indirect PAC connections had, on average, higher

local clustering coefficient, efficiency, and betweenness centrality than populations making

direct connections and populations not involved in PAC connections. This suggests that

their interactions were more effective when transmitting information. Since approximately

60% of the obtained interactions represented indirect connections, our results highlight the

importance of the topology of cortical circuits for the generation of the PAC phenomenon.

Finally, our results demonstrated that indirect PAC interactions can be explained by a
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cascade of direct CFC and same-frequency band interactions, suggesting that PAC analy-

sis of experimental data should be accompanied by the estimation of other types of fre-

quency interactions for an integrative understanding of the phenomenon.

Author Summary

For many decades, the study of oscillatory brain activity focused on the separate analysis
of its different frequency bands (from delta to gamma). However, neurons, and neuronal
populations are nonlinear systems, and a sinusoidal input will produce new frequency
components in their output. This induces cross-frequency coupling (CFC) between any
two sources (e.g. neuronal populations, or brain regions) when there are bidirectional con-
nections between them, as is often the case in the brain. Cascades of nonlinear sources can
also produce CFC between sources that are not directly connected. Although several types
of CFC are possible, there is an increasing interest in phase-amplitude coupling (PAC), the
phenomenon where the amplitude of a high frequency oscillation (e.g. gamma) is modu-
lated by the phase of a lower frequency (e.g. theta). PAC has been hypothesized to mediate
the integration of distributed information in the brain, but the exact local and global
mechanisms responsible for this processing remain unknown.Here we focus on the gener-
ation of PAC at the local scale, in the cortical column, and study how the biophysics of the
neuronal populations involved, influence the generation of the phenomenon. Our results
highlight the importance of the topology of the cortical column network on the generation
of PAC, and show that indirect PAC connections can be predicted by a cascade of direct
same-frequency coupling (SFC) and CFC connections.

Introduction

It has been hypothesized that phase-amplitude coupling (PAC) of neurophysiological signals
plays a role in the shaping of local neuronal oscillations and in the communication between
cortical areas [1]. PAC occurs when the phase of a low frequency oscillationmodulates the
amplitude of a higher frequency oscillation. A typical example of this phenomenon was regis-
tered in the CA1 region of the hippocampus [2], where the phase of the theta band modulated
the power of the gamma-band. Computational models of the theta-gamma PAC generation in
the hippocampus have been proposed [3] and are based on two main types of models. The first
type of models consists of a network of inhibitory neurons (I-I model) [4], whereas the second
model is based on the reciprocal connections between networks of excitatory pyramidal cells
and inhibitory neurons (E-I model) [3, 5]. In such models, fast excitation and delayed feedback
inhibition alternate, and with appropriate strength of excitation and inhibition, oscillatory
behavior occurs.When the gamma activity produced by the E-I or I-I models is periodically
modulated by a theta rhythm imposed by either an external source or theta resonant cells
within the network [4], a theta-gamma PAC is produced. Recently, the generation of theta-
gamma PAC was studied [6] using a neural mass model (NMM) proposed by Wilson and
Cowan [7]. In NMMs, spatially averaged magnitudes are assumed to characterize the collective
behavior of populations of neurons of a given type instead of modeling single cells and their
interactions in a realistic network [7, 8]. Specifically, theWilson and Cowanmodel consists of
excitatory and inhibitory neural populations which are mutually connected.
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While the models mentioned above have improved our understanding of the physiological
mechanisms that give rise to theta-gamma PAC, we lack modeling insights into the generation
of PAC involving other frequency pairs [9]. This is critical because experimental studies have
shown that the PAC phenomenon is not restricted to either the hippocampus or to theta-
gamma interactions. In fact, PAC has been detected in pairs involving all possible combina-
tions of low and high frequencies: delta-theta [10], delta-alpha [11, 12], delta-beta [11, 13],
delta-gamma [13–17], theta-alpha [11], theta-beta [11, 13], theta-gamma [10, 15, 16, 18–21],
alpha-beta [22], alpha-gamma [23–26], and beta-gamma [23, 27]. Although experimental stud-
ies usually focus on one or two PAC combinations, most of the combinations mentioned above
can be detected in a single experiment [22]. Furthermore, PAC can represent indirect interac-
tions, but modelling studies [6] have focused on PAC mediated by direct (anatomical) connec-
tions. If PAC is involved in the transmission of information between brain regions then we
need to understand how indirect PAC connections are created.
The issues mentioned above suggest a diversity and complexity of the PAC phenomenon

that has been overlooked by previous theoretical studies. Similarly, there is a need for further
improvement in the mathematical methods used to detect PAC. Although a large number of
methods have been proposed [28, 29], no gold standard has emerged.
In this work, we analyze a neural mass model of a cortical column that comprises 4 cortical

layers and 14 neuronal populations [30, 31], and study the simultaneous generation of all PAC
combinations mentioned above. To estimate PAC we use a measure of the information transfer
from the phase of the low frequency rhythm to the amplitude of the higher frequency oscilla-
tion, which is known as conditional transfer entropy (cTE) [32]. This multivariate approach
provides information about the directionality of the interactions, thus distinguishing PAC
from the information transfer from the amplitude to the phases (i.e. amplitude-phase coupling,
or APC) which has been experimentally detected [33]. This is done in contrast to previous
methods which were either based on pairwise correlations between the selected phase and
amplitude [28, 34], or provided directionality using pairwise approaches [33], or were multi-
variate but did not provide directionality [35]. By estimating cTE from phases to amplitudes,
we obtain a clearer view of the mechanisms underlying the generation of PAC in the cortical
column. Specifically, we focus on the link between anatomical and effective PAC structures. In
the examples shown in this paper, the neuronal populations have natural frequencies in the
theta, alpha and gamma bands. However, due to the effective connectivity between popula-
tions, oscillations in the delta and beta bands appear and result in PAC involving these fre-
quencies.We focused on three PAC combinations (delta-gamma, theta-gamma, and alpha-
gamma) and explored how changes in model parameters such as the strength of the connec-
tions, time constants or external inputs strengthen or weaken the PAC phenomenon.We
found that approximately 60% of the obtained PAC interactions result from indirect connec-
tions and that, on average, these interactions have the same impact as direct (anatomical) con-
nections. The cortical column circuit was analyzed as a complex network and three different
local topologicalmeasures were computed: the clustering coefficient (Cm), the efficiency (Em)
and betweenness centrality (Bm) which quantify how efficiently the information is transmitted
within the network. According to our results, neuronal populations sending (receiving) indirect
PAC connections had higher localCm, Em, and Bm coefficients, than populations sending
(receiving) direct PAC connections and populations not involved in PAC interactions. This
suggests that the topology of cortical circuits plays a central role in the generation of the PAC
phenomenon.
Finally, although this paper focuses on the PAC phenomenon, our theoretical results sug-

gest that in order to understand the generation of indirect PAC connections we may need to
estimate other types of cross-frequency coupling such as APC, amplitude-amplitude coupling
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(AAC), and phase-phase coupling (PPC), as well as interactions within the same frequency
band (or same-frequency coupling, SFC). We computed these measures in a simplified three-
population model and used them as predictors of indirect PAC in a linear regression analysis.
We demonstrated that indirect PAC connections can be predicted by a cascade of direct CFC
and SFC interactions, suggesting that PAC analysis of experimental data should be accompa-
nied by the estimation of other types of interactions for an integrative understanding of the
phenomenon.
A list of the abbreviations used in this paper is presented in Table 1.

Methods

A neural mass model of a cortical column

Fig 1 shows the proposedmodel obtained by distributing four cell classes in four cortical layers
(L2/3, L4, L5, and L6). This produced 14 different neuronal populations, since not all cell types
are present in each layer [31]. Excitatory neurons were either regular spiking (RS) or intrinsi-
cally bursting (IB), and inhibitory neurons were either fast-spiking (FS), or low-threshold spik-
ing (LTS) neurons. We omitted layer 1, because it does not include somas [36]. Based on
experimental reports on the strength of the inputs to each layer [36, 37], we only consider
external inputs to the RS and FS populations in layer 4, thus neglecting possible external inputs
to other layers.
The evolution of each population dynamics rests on twomathematical operations. Post-syn-

aptic potentials (PSP) at the axonal hillock were converted into an average firing rate using the
sigmoid function [8]:

SðxÞ ¼
e0

1þ erðv0 � xÞ
ð1Þ

Table 1. List of abbreviations.

Abbreviation Meaning

AAC Amplitude-amplitude coupling

APC Amplitude-phase coupling

CFC Cross-frequency coupling

cMI Conditional mutual information

cTE Conditional transfer entropy

ECoG Electrocorticography

EEG Electroencephalography

ESC Envelope-to-signal correlation

FS Fast-spiking

IB Intrinsically bursting

LFP Local field potential

LTS Low-threshold

Midx Modulation index

NMM Neural mass model

PAC Phase-amplitude coupling

PFC Phase-frequency coupling

PPC Phase-phase coupling

PSP Postsynaptic potential

RS Regular spiking

SFC Same-frequency coupling

doi:10.1371/journal.pcbi.1005180.t001
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where the variable x represents the PSP and parameters e0, v0 and r represent the maximal fir-
ing rate, the PSP corresponding to the maximal firing rate e0, and the steepness of the sigmoid
function, respectively. For a more realistic model of the potential to rate transformation see
[38]. The second operation was the conversion of firing rate at the soma and dendrites into
PSP, which was done by means of a linear convolution with an impulse response h(t) given by:

hðtÞ ¼ Ggte� gt ð2Þ

whereG controls the maximum amplitude of PSP and g is the sum of the reciprocal of the aver-
age time constant [8]. The convolution model with impulse response (2) can be transformed
into a second order differential equation [8, 39]. The temporal dynamics of the average PSP in
each neuronal population xm is described by a system of 14 second order differential equations:

d2xmðtÞ
dt2

¼ � 2gm
dxmðtÞ
dt
� g2

mxmðtÞ þ Gmgmðpm þ
P14

n¼1
GnmSðxnðtÞÞÞ ð3Þ

where n = 1,. . .,14 andm = 1,. . .,14. The populations are numbered from 1 to 14 following the
order: [L2RS, L2IB, L2LTS, L2FS, L4RS, L4LTS, L4FS, L5RS, L5IB, L5LTS, L5FS, L6RS, L6LTS,
L6FS]. Note that layer 2/3 was simply labelled as L2. As can be seen in (3), neuronal popula-
tions interact via the connectivitymatrix Γnm. This is an ‘anatomically constrained’ effective
connectivitymatrix [30] in the sense that its elements represent anatomical (i.e., direct) con-
nections, but their strength (except the ones set to zero) can vary with a condition or task.
External inputs to the cortical column are accounted for via pm, which can be any arbitrary
function, including white noise [8]. Thus, Eq (3) represents a system of 14 random differential
equations [40, 41]. Eq (3) is the equation of a damped oscillator with a damping parameter set
to 1. In this work we generalize Eq (3) by introducing the damping parameter bm:

d2xmðtÞ
dt2

¼ � 2gmbm
dxmðtÞ
dt
� g2

mxmðtÞ þ Gmgmðpm þ
P14

n¼1
GnmSðxnðtÞÞÞ ð4Þ

Fig 1. Proposed neural mass model of the cortical column. A) Layer distribution of the four neuronal types. The excitatory

populations are the intrinsically bursting (IB), and the regulatory spiking (RS). The inhibitory populations are low-threshold

spiking (LTS) and fast spiking (FS). B) Connectivity matrix values used for coupling the 14 populations modeled. Negative

values correspond to inhibitory connections.

doi:10.1371/journal.pcbi.1005180.g001
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Parameter bm critically determines the behavior of the system. If the connections between
the populations are set to zero (Γnm = 0, n 6¼m), then for bm> 1 (overdamped oscillator) and
bm = 1 (critically damped oscillator), each neuronal population will evolve to a fixed point
dxmðtÞ
dt ¼ 0

� �
without oscillating. If bm< 1 (underdamped oscillator), each population is capable

of producing oscillations even if the inter-population coupling is set to zero. As mentioned pre-
viously, the case bm = 1 corresponds to the Jansen and Rit model [8], which has been exten-
sively used in the literature [39, 42–48]. Thus, in [8] and the models based on it, an individual
population is not capable of oscillating, and the balance between excitation and inhibition is
what produces oscillatory behavior that mimics observedElectroencephalography (EEG) sig-
nals. It should be noted that realistic models of a single inhibitory neural population are able to
produce oscillations [49], but that excitatory populations were believed to only produce
unstructured population bursts [50]. This view has been challenged recently by both experi-
mental and computational studies [51, 52]. To account for the possibility of oscillatory activity
in single populations, we use the parameter bm with values bm< 1.
To numerically solve our model, we split system (4) into a system of 28 first order differen-

tial equations:

dxmðtÞ
dt

¼ ymðtÞ

dymðtÞ
dt
¼ � 2gmbmymðtÞ � g

2

mxmðtÞ þ Gmgm pm þ
X14

n¼1

GnmSðxnðtÞÞ

 ! ð5Þ

While there are many different methods for solving system (5) we selected a local lineariza-
tion scheme that is known to improve the order of convergence and stability properties of con-
ventional numerical integrators for random differential equations [39].
S1 Table presents the parameters of themodel and their interpretation. As shown in the table

FS populations have the fastest time constants, followed by IB, RS, and LTS, in that order. S2 Table
shows the standard values of the anatomically constrained effective connectivitymatrix Γnm.

Estimation of phase-amplitude coupling

Severalmathematical methods for detecting PAC have been proposed [1, 28, 29, 33, 35], but no
gold standard has emerged. Although diverse, the basis for these methods is to test the correla-
tion between the instantaneous phase of a lower frequency rhythm and the instantaneous
amplitude of the higher frequency rhythm. To compute any one of these measures, signals gen-
erated with model (5) need to be band-pass filtered into different frequency bands. In this
paper we use the following bands: delta (0.1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (12–
30 Hz), and gamma (30–120 Hz). To this end, we designed FIR filters using MATLAB’s signal
processing toolbox function firls.m. To remove any phase distortion, the filters were applied to
the original time series in the forward and then the reverse direction usingMATLAB’s function
filtfilt.m [28]. The analytic representation ymk(t) of each filtered signal xmk (wherem = 1,..,5
stands for the index of the frequency band, and k = 1,..,14, indexes the neuronal populations)
was obtained using the Hilbert transformHilbert(xmk(t)):

ymkðtÞ ¼ xmkðtÞ þ iHilbertðxmkðtÞÞ ¼ amkðtÞe
i φmkðtÞ ð6Þ

where amk(t) and φmk(t) are the instantaneous amplitudes and phases, and i is the imaginary
number. Amplitudes were normalized by subtracting the temporal mean and dividing the
result by the temporal standard deviation to create the set of normalized band-passed signals.
Normalization was done to facilitate comparison between different frequency bands.
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Two examples of PAC measures frequently used in the literature are the modulation index
(Midx) [34] and the envelope-to-signal correlation (ESC) [28]:

Midx ¼ j
P

tanlðtÞe
i φmkðtÞj ð7Þ

ESC ¼ corrðcosðφmkðtÞÞ; anlðtÞÞ ð8Þ

where subindexesm and n correspond to different frequency bands and subindexes k and l cor-
respond to different neuronal populations. However, ESC and Midx are pairwisemeasures of
the correlation between phases and amplitudes and thus cannot detect directionality in the
interaction.Measures such as cTE [32] which are based on the information transmitted
between signals should provide a clearer picture of the mechanisms generating PAC than cor-
relation-basedmeasures.
cTE can be computed using the conditional mutual information (cMI) measure [53]. First,

we define the cMI between the phase φmk and the amplitude anl, given all the other phases (F)
and amplitudes (A), I(φmk;anl|M), using the mutual information chain rule [53]:

Iðφmk; anljMÞ ¼ Iðφmk; anl;MÞ � Iðφmk;MÞ ð9Þ

whereM = [F, A] is a matrix comprising all phases and amplitudes in all populations, except
φmk and anl, I(φmk;M) is the mutual information betweenφmk andM, and I(φmk;anl,M) is the
mutual information betweenφmk, anl, and M [53]. To compute cMI we use a toolbox (http://
www.cs.man.ac.uk/~pococka4/MIToolbox.html) which computes several information mea-
sures using the conditional likelihoodmaximization algorithm [54]. cMI does not provide
information about the directionality of the coupling between phases and amplitudes, which is a
problem because both theoretical [55] and experimental [33] studies indicate the possibility of
an information flow from amplitudes to phases. On the other hand, cTE provides directionality
by estimating the cMI between one signal (the phase in our case) and the other signal (the
amplitude) shifted δ steps into the future. In this paper, to estimate cTE from the phase to the
amplitude (denoted as cTEφmk ,!anl ), we compute cMI for N different δs and average the results
[32, 56, 57]:

cTE φmk ,!anl
¼

1

N
PN

d¼1
Iðφmk; a

d

nlj
eMÞ ð10Þ

where ad
nl is derived from the amplitude time series anl at δ steps into the future, i.e.

ad
nl ¼ anlðt þ dÞ, and eM is a matrix comprising all phases and amplitudes in all populations,
except φmk. In this paper we useN = 100. Since we use a time step of 10−4 s in all simulations,
we are averaging the cMI up to a period of 10 ms into the future.
A significance value can be attached to any of the above measures by means of a surrogate

data approach [28, 34], where we offset φmk and anl by a random time lag. We can thus com-
pute 1000 surrogate Midx, ESC, cMI and cTE values. From the surrogate dataset we first com-
pute the mean μ and standard deviation σ, and then compute a z-score as:

Z1 ¼
cMI � m1

s1

; Z2 ¼
cMI � m2

s2

; Z3 ¼
cMI � m3

s3

; Z4 ¼
cTE � m4

s4

ð11Þ

The p-value that corresponds to the standard Gaussian variate is also computed. Z values
satisfying |Z|> 1.96 are significant with α = 0.05. Masks of zeros (for non-significant Z values)
and ones (for significant Z-values) are created and multiplied to Midx, ESC, cMI, and cTE.
Finally, a multiple comparison analysis based on the False Discovery Rate [58] is performed
using the computed p-values.
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A problem common to all methods used for estimating PAC from real data is the lack of a
universal minimal interval length that guarantee an unbiased detection of PAC in all cases.
However, for simulated signals without noise, or with low levels of noise, such as the ones
used here, PAC can be estimated using very short segments of data, provided the phase and
amplitude time series are longer than a full cycle of the slowest frequency of interest [29]. For
instance, in simulations were the slowest frequency of interest corresponds to 0.1 Hz (delta
oscillation), the minimum length of the time series should be ten seconds. Additionally, we
select a small step size (10−4 s) to have enough data points to ensure a proper estimation of
cMI [59].

Modeling indirect PAC connections

Neuronal populations can interact through direct (anatomical) connections or indirectly via
paths composed of consecutive direct connections. In this section, for the sake of simplicity we
will focus on three interconnected populations y1! y2! y3. Our goal is to analyze how the
indirect connection from population 1 to population 3 ðcTEy1⇝y3

Þ is related to the direct con-
nection from population 1 to population 2 ðcTEy1! y2

Þ, and from population 2 to population 3
ðcTEy2! y3

Þ. Note that direct connections are represented by a straight arrow (!), indirect con-
nections by a squiggle arrow (⇝), and connections not labeled as direct or indirect (see Eq 10)
by an arrow with hook (,!).
Using the mutual information chain rule (9) we write the cMI corresponding to the three

connections, Iðy1; yd
3
j y2; y3Þ, Iðy1; yd

2
j y2; y3Þ, Iðy2; yd

3
j y1; y3Þ, as:

Iðy1; y
d

3
j y2; y3Þ ¼ Iðy1; y2; y3; y

d

3
Þ � Iðy1; y2; y3Þ ð12Þ

Iðy1; y
d

2
j y2; y3Þ ¼ Iðy1; y2; y

d

2
; y3Þ � Iðy1; y2; y3Þ ð13Þ

Iðy2; y
d

3
j y1; y3Þ ¼ Iðy2; y1; y3; y

d

3
Þ � Iðy2; y1; y3Þ ð14Þ

Substituting (13) and (14) in (12) we obtain:

Iðy1; y
d

3
j y2; y3Þ ¼ Iðy1; y

d

2
j y2; y3Þ þ Iðy2; y

d

3
j y1; y3Þ þ Iðy1; y2; y3; y

d

3
Þ þ Iðy2; y1; y3Þ � Iðy1; y2; y

d

2
; y3Þ

� Iðy2; y1; y3; y
d

3
Þ ð15Þ

If we average (15) overN different lags we obtain:

cTEy1⇝y3
¼ cTEy1! y2

þ cTEy2! y3
þeI ð16Þ

eI ¼ Iðy2; y1; y3Þ þ
1

N
PN

d¼1
ðIðy1; y2; y3; y

d

3
Þ � Iðy1; y2; y

d

2
; y3Þ � Iðy2; y1; y3; y

d

3
ÞÞ ð17Þ

According to (16), the indirect connection from population 1 to population 3 (y1⇝ y3) can
be computed as the sum of the direct connections y1! y2 and y2! y3 plus a termeI compris-
ing a sum of mutual information terms.We now give y1 the interpretation of the instantaneous
phase in population 1, and y3 the interpretation of instantaneous amplitude in population 3:

cTEφ1⇝a3
¼ cTEφ1! y2

þ cTEy2! a3
þeI ð18Þ

eI ¼ Iðy2;φ1
; a3Þ þ

1

N
PN

d¼1
ðIðφ

1
; y2; a3; a

d

3
Þ � Iðφ

1
; y2; y

d

2
; a3Þ � Iðy2; φ1

; a3; a
d

3
ÞÞ ð19Þ
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The variable y2 can have the interpretation of phase, amplitude, or even instantaneous fre-
quency [60]. Thus, Eqs (18) and (19) generalize the idea of a cascade of PAC [10], and shows
that indirect PAC can be mediated by other types of CFC. Furthermore, since there is no fre-
quency constraint for y2, cTEφ1! y2

or cTEy2! a3
, may represent interactions within the same

frequency band (i.e, SFC). Thus, we conclude that in the cascade y1! y2! y3, cTEy1⇝y3
can be

mediated by both CFC and SFC.

Topological properties of the cortical column network

Complex network analysis have proven useful for studying the relationship between structure
and function in brain networks [61]. In this paper we are interested in studying how the topol-
ogy of the connectivitymatrix Γnm influences the PAC phenomenon. Specifically, we want to
answer the question of whether the populations involved in direct and indirect PAC interac-
tions present the same topological properties. This means we need to focus on local properties
of the network instead of global ones. In this paper we are going to compute three such proper-
ties: the local clustering coefficient, the local efficiency, and the local betweenness centrality, for
the sending and receiving populations involved in each direct or indirect PAC interaction.
In this sectionwe are not going to distinguish between inhibitory and excitatory connec-

tions, and the analysis will be done to the absolute value of the connectivitymatrix:W = |Γnm|.
Nodes (populations) of a network can be characterized by the structure of their local neigh-

borhood. The concept of clustering of a network refers to the tendency to form cliques in the
neighborhoodof any given node [62]. This means that if nodem is connected to node n, while
at the same time node n is connected to node s, there is a high probability that nodem is also
connected to node s. LetA = {amn} be the directed adjacencymatrix [63] of the network (amn =
1 when there is a connection fromm to n, amn = 0 otherwise). Let also dtotm be the total degree of
nodem, and d$m ¼

P
m6¼namnanm. The local clustering coefficient of nodem for weighted net-

works is [64]:

Cm ¼
ðcW þcWTÞ

3

mm

2½dtotm ðdtotm � 1Þ � 2d$m �
ð20Þ

wherecW ¼W1=3, and ðcW þcWTÞ
3

mm is themth element of the main diagonal of ðcW þcW
TÞ

3.
The secondmeasure we are going to compute is the local efficiency, calculated as [65, 66]:

Em ¼
1

N � 1

P
j;j6¼mð l
!

mjÞ
� 1

ð21Þ

where l
!

mj is the shortest weighted path length fromm to j. Thus, Em is inversely related to the
path length, and measures how efficiently the network exchanges information on a local scale.
To account quantitatively for the role of nodes that can be crucial for connecting different

regions of the network by acting as bridges, the concept of betweenness centrality was intro-
duced [67]. The local weighted betweenness centrality of nodem is computed as [66]:

Bm ¼
1

ðN � 1ÞðN � 2Þ

P

h; j

j 6¼ m; h 6¼ m; j 6¼ h

rhjðmÞ
rhj

ð22Þ

where ρhj is the number of shortest paths between h and j, and ρhj(m) is the number of shortest
paths between h and j that pass throughm. A node with high centrality is thus crucial to effi-
cient communication.
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To compute Cm, Em, and Bm, we use Matlab functions provided in the brain connectivity
toolbox (https://sites.google.com/site/bctnet/).

Nonlinear correlation coefficient

Given the nonlinear nature of the PAC phenomenon, studying the link between the parameters
of the model and the strength of PAC cannot be done only with the Pearson correlation coeffi-
cient, which measures the linear correlation between two variables. Nonlinear measures are
also required. The underlying idea is that if the value of the variable Y is considered as a nonlin-
ear function of the variable X, the value of Y given X can be predicted according to a nonlinear
regression [68]. In this paper, we computed the nonlinear regression by fitting the vector Y of
PAC values with a Fourier series:

bYðXÞ ¼ a0 þ
PK

k¼1
aksinðbkX þ ckÞ ð23Þ

whereK = 10 and X is the vector of parameters. The nonlinear correlation coefficient rnl is then
the value of the linear correlation betweenY and the predicted signal bY .

Results

Detecting PAC: control analysis

We connected three excitatory neuronal populations, labeled 1, 2 and 3 (Fig 2A and 2B). The
temporal dynamics of the three populations are described by a system of random differential
equations identical to (5), but with n = 1:3 andm = 1:3. As shown in Fig 2A, there is no connec-
tion between populations 1 and 3 and both are driven by population 2. The parameters used in

Fig 2. Three population toy model. A) The model comprises three neuronal populations labelled as ‘1’, ‘2’, and ‘3’, coloured in

blue, red and green, respectively. This color legend is used across all panels in the figure. B) Connectivity matrix. C) Temporal

dynamics of the three neuronal populations. D) Spectral density. The low frequency (4.40 Hz) is modulating the higher

frequencies (50 and 57.8 HZ) which is demonstrated by the appearance of secondary peaks at frequencies 50Hz ± 4.40 Hz and

57.8Hz ± 4.40 Hz on both sides of the main peaks. The secondary peaks are indicated with arrows. E) Spectral density when

substituting the sigmoid function with the linear function S(x) = x.

doi:10.1371/journal.pcbi.1005180.g002
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this simulation can be found in S3 Table. Simulated data were generated by numerically inte-
grating system (5) using the local linearizationmethod for random systems [69] with an inte-
gration step of 10−4 s.
Fig 2C shows the temporal dynamics of the three populations and Fig 2D displays the corre-

sponding spectral density. Population 2 oscillates at 4.40 Hz (theta band), whereas populations
1 and 3 have peaks at 50 and 57.8 Hz, respectively (gamma band). Because of the connections
2!1 and 2!3, there are peaks at 4.40 Hz in populations 1 and 3, and more importantly, there
are secondary peaks at frequencies 50Hz ± 4.40Hz and 57.8Hz ± 4.40Hz on both sides of these
main peaks. This shows that the low frequency (4.40 Hz) is modulating the higher frequencies
(50 and 57.8 Hz) and that there is theta-gamma PAC. According to the connections shown in
Fig 2A, phases in populations 1 and 3 cannot modulate the amplitudes in populations 3 and 1,
respectively. Thus, an appropriate method to study the generation of PAC should not detect
any modulation between populations 1 and 3. We found that when the sigmoid function is
replaced by the linear function S(x) = x, no modulation is obtained (Fig 2E) which is consistent
with the known fact the cross-frequency coupling can only be the result of nonlinear interac-
tions. Note that in our model the only source of nonlinearities is the sigmoid function.
Fig 3A shows the PAC computed using the four measures presented in the Methods section

(Midx, ESC, cMI, cTE). Non-significant values are plotted in white. The four methods correctly
detect that there is no PAC involving amplitudes in the gamma band in population 2 (there is
no significant spectral peak at the gamma band, only noise). However, according to ESC and
Midx, there is significant PAC between the phases of the theta band in neuronal population 1
and the amplitudes of the gamma band in neuronal population 3, as well as PAC between the
phases of the theta band in neuronal population 3 and the amplitudes of the gamma band in
neuronal population 1. These results are expected because the signals in populations 1 and 3
are correlated, despite the fact that there is no connection between these populations. Regard-
less, cMI and cTE distinguished the correct effective interactions between the three
populations.
There are cases where cMI fails to estimate the correct connections. For instance, Fig 3B

shows the results of increasing the noise (σ1 = σ2 = σ3 = 10 s−1), which caused ESC,Midx and
cMI to yield similar results and estimate a significant effective connection between populations
1 and 3 that did not exist. Regardless, cTE was still able to distinguish the correct pattern of

Fig 3. Different measures of PAC. A) Midx, ESC, cMI and TE. B) Midx, ESC, cMI and cTE when the noise is increased (σ1 = σ2 =

σ3 = 10).

doi:10.1371/journal.pcbi.1005180.g003
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connections despite the increase in the noise level. When we further increased the noise (σ1 =
σ2 = σ3 = 30 s−1), no significant results were obtained for any of the four measures (not shown
in the figure).

Generation of multiple PAC combinations

In this section, we study the generation of PAC in the cortical column circuit depicted in Fig 1.
Since we are interested in the interaction between the rhythms produced by the nonlinear
dynamics of the neuronal populations (not their correlation) and in the directionality of that
interaction (from phases to amplitudes), we only compute cTE. The values of the parameters
used are shown in S1 Table and S2 Table. Twelve seconds of data were simulated and the first
two seconds were discarded to avoid transient behavior. Thus, subsequent steps were carried
out with the remaining ten seconds.
Fig 4 presents the temporal evolution of the average PSP in each neuronal population. For

visualization purposes we show only three seconds of data. Time series coloured in red corre-
spond to excitatory populations (L2RS, L2IB, L4RS, L5RS, L5IB, L6RS), whereas inhibitory
populations (L2LTS, L4LTS, L5LTS, L6LTS) are represented in green. As seen in the figure, the
generated signals show the characteristic ‘waxing and waning’ (i.e, amplitude modulation)
observed in real EEG signals.
Fig 5 presents the normalized spectrumof the average PSP in each neuronal population.

Excitatory populations are depicted in red and inhibitory populations are depicted in green.
The six excitatory populations have their main spectrumpeak in the alpha band, but they also
present energy in the delta and theta bands. Slow inhibitory populations have the highest peak
in the theta band, but also have energy in the delta and alpha bands. Fast inhibitory populations
were set to yield a peak in the gamma band, but due to the interaction with other populations
they yield significant peaks in other frequencies as well, especially in the theta and alpha bands.
This is evident when compared to the spectrum(in black) of the population when interactions

Fig 4. Simulated temporal evolution of the postsynaptic potentials for all populations for one realization of the model.

Excitatory populations are depicted in red and inhibitory ones in green.

doi:10.1371/journal.pcbi.1005180.g004
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between different populations are set to zero (Γnm = 0,n 6¼m). Peaks in black correspond to the
natural frequency of oscillation for the populations: L2IB (10.48 Hz), L2RS (8.25 Hz), L2LTS
(5.40 Hz), L2FS (55.87 Hz), L4RS (8.25 Hz), L4LTS (5.40 Hz), L4FS (46.35 Hz), L5IB (9.52 Hz),
L5RS (7.30 Hz), L5LTS (5.40 Hz), L5FS (46.35 Hz), L6RS (6.98 Hz), L6LTS (5.40 Hz), and
L6FS (44.76 Hz). Note that some peaks in the beta band are harmonics of theta and alpha oscil-
lations, such as the beta peak at 16.83 Hz in the spectrumof L4FS in Fig 5.
To check whether our simulations give biologically plausible results, we computed the aver-

age local field potential (LFP) in each layer as the sum of the excitatory activities in the layer
[31]. Fig 6A displays the temporal dynamics of the LFP in each cortical layer and Fig 6B shows
the corresponding spectral density. Thus, parameter values presented in S1 Table and S2 Table
result in low frequency oscillations (delta, theta and alpha) with highest power in layers 5 and 6
while gamma oscillations have its main power in layer 2/3. This is in agreement with recent
findings suggesting that gamma activity is predominant in superficial layers while lower fre-
quencies are predominant in deep layers [70, 71]. We then proceeded to test the existence of
PAC. For this, we filtered each time series in Fig 4 into five frequency bands from delta to
gamma and applied the Hilbert transform to obtain instantaneous phases and amplitudes for
each frequency band and each neuronal population.
Ten different PAC combinations between a low-frequency phase and a higher-frequency

amplitude were computed using the cTE measure: delta-theta, delta-alpha, delta-beta, delta-
gamma, theta-alpha, theta-beta, theta-gamma, alpha-beta, alpha-gamma, and beta-gamma.
Each PAC combination consisted of a matrix of 14x14 cTE values representing all possible
interactions between the 14 neuronal populations. To test the significance of these values, sur-
rogate data was computed, followed by a multiple comparison analysis (seeMethods). Results
include nine out of the ten PAC combinations (Fig 7). The delta-theta PAC combination was
not included since no significant values were obtained for the set of parameters used.

Fig 5. Normalized spectral density (nSD) of the postsynaptic potentials shown in Fig 3 obtained by subtracting the mean

of the spectral density vector and dividing by the standard deviation. Excitatory populations are depicted in red and

inhibitory ones in green. nSD coloured in black show the results when the connections between populations are set to zero.

doi:10.1371/journal.pcbi.1005180.g005
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The strongest PAC value found was between the phase of the beta band in L4RS and the
amplitude of the gamma band in L6FS, which we will denote as L4RS! L6FS. In fact, the
strongest values found involved the amplitude of gamma in L6. For example, additional strong
connections in the beta-gamma combination were L2FS!L6FS, L5FS!L6FS, L4FS!L6FS,
L6RS!L6FS, and L2IB!L6FS. Alpha-gamma (L2IB!L6FS, L5FS!L6FS) and theta-gamma
(L5LTS!L6FS, L5FS!L6FS) combinations also presented strong connections. Some of these
values do not represent direct connections between the populations. For example, the strongest
connection, beta-gamma (L4RS! L6FS), does not correspond to an anatomical (direct) con-
nection (see Fig 1). Thus, we emphasize that PAC matrices (Fig 7) represent effective connec-
tions, which may not correspond to anatomical connections. To make this clearer, anatomical
connections in Fig 7 are represented with black dots.

Parameter sensitivity analysis

Some of the parameters presented in S1 Table and S2 Table were taken from the literature [8,
31, 72], and parameters with no equivalent in the literature were assigned physiologically rea-
sonable values. Thus, it is necessary to explore how changes in these parameters can affect PAC
values. In this section, for the sake of simplicity, we focus on three PAC combinations which
involve the gamma rhythm and have been of great interest in the literature: delta-gamma,
theta-gamma, and alpha-gamma.

Controlling the strength of PAC

We selected nine different parameters and explored how their change affected the strength of
the PAC phenomenon. For each parameter we considered 100 different values and thus per-
formed 100 different simulations. The parameters were: 1) a multiplying factor η = 0.03:0.03:3
controlling the global strength of the connectivitymatrix (Γnm = ηΓnm), 2) the reciprocal of the

Fig 6. Laminar distribution of average LFP. A) Temporal dynamics in layers 2/3 (L2/3), 4(L4), 5(L5) and 6(L6). B) Spectral

density (SD).

doi:10.1371/journal.pcbi.1005180.g006
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time constant of RS populations (kRS = 5:5:500s−1), 3) the reciprocal of the time constant of IB
populations (kIB = 5:5:500s−1), 4) the reciprocal of the time constant of LTS populations (kLTS =
5:5:500s−1), 5) the reciprocal of the time constant of FS populations (kFS = 5:5:500s−1), 6) the
external input to the L4RS population (�p5 ¼ 10 : 10 : 1000 s� 1; sp5

¼ 1s� 1), 7) the external
input to the L4FS population (�p7 ¼ 10 : 10 : 1000 s� 1; sp7

¼ 1 s� 1), 8) the gains of the six excit-
atory populations (GE� G1 =G2 =G5 = G8 =G9 = G12 = 0.2:0.2:20mV), and 9) the gains of the
eight inhibitory populations (GI� G3 =G4 =G6 =G7 =G10 = G11 =G13 =G14 = 0.5:0.5:50mV).
Then, for each PAC combination we obtained 14x14x100 = 19600 cTE values (although

many of them are zero). We summarized that information by taking the strongest value found
in each simulation, which results in a series of 100 values for each PAC combination. Fig 8A
displays the mean and standard deviation of the 100-point series of the strongest PAC values
for the three PAC combinations considered. In the figure, delta-gamma PAC is depicted in
orange, theta-gamma PAC in green, and alpha-gamma PAC in blue. Our results shows that for
the three PAC combinations, the highest increases in cTE are obtained when changing the

Fig 7. Phase-amplitude coupling (PAC) corresponding to the simulation presented in Fig 4. Non-significant values were

set to zero and are depicted in white. Black dots indicate existing anatomical connections (see Fig 1).

doi:10.1371/journal.pcbi.1005180.g007
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reciprocal time constants of the populations. This result is not surprising since these parameter
control the frequency at which the populations oscillate.
The exploration of the parameter space is important because PAC has been suggested to be

the carrier mechanism for the interaction of local and global processes in the brain, and is thus
directly related to the integration of distributed information in the brain [1]. Neuronal circuits
can thus control the amount of information transmitted in the PAC phenomenon by changing
the values of physiological parameters of specific populations.

On the influence of the connectivity matrix Γnm on PAC strength

An important problem in neuroscience is the link between structural and functional brain net-
works [73, 74]. In the context of this work, it is of interest to study the influence of the connec-
tivity matrix Γnm on the generated PAC phenomenon.
Fig 8B displays the series of 100 PAC values versus the factor η. The solid line corresponds

to the fit of a linear model. The linear correlation values between delta-gamma, theta-gamma,
alpha-gamma and η were 0.52, 0.48, and 0.34, respectively. We then performed a nonlinear
regression analysis (Eq 18) with η as the regressor and computed the nonlinear correlation
coefficient.The nonlinear correlation values between delta-gamma, theta-gamma, alpha-
gamma and η were 0.87, 0.82, and 0.83, respectively, showing that there is a strong nonlinear

Fig 8. Exploring the parameter space for three different PAC combinations. A) Average cTE values for delta-gamma

(orange), theta-gamma (green), and alpha-gamma (blue) PAC when considered 100 different values for nine different

parameters: 1) a multiplying factor η = 0.03:0.03:3 controlling the global strength of the connectivity matrix (Γnm = ηΓnm), 2) the

reciprocal of the time constant of RS populations (kRS = 5:5:500s−1), 3) the reciprocal of the time constant of IB populations (kIB =

5:5:500s−1), 4) the reciprocal of the time constant of LTS populations (kLTS = 5:5:500s−1), 5) the reciprocal of the time constant of

FS populations (kFS = 5:5:500s−1), 6) the external input to the L4RS population (p5 ¼ 10 : 10 : 1000 s� 1; sp5
¼ 1s� 1), 7) the

external input to the L4FS population (p7 ¼ 10 : 10 : 1000 s� 1;sp7
¼ 1s� 1), 8) the gains of the six excitatory populations (GE�

G1 = G2 = G5 = G8 = G9 = G12 = 0.2:0.2:20mV), and 9) the gains of the eight inhibitory populations (GI�G3 = G4 = G6 = G7 =

G10 = G11 = G13 = G14 = 0.5:0.5:50mV). B) Plot of cTE versus η. C) Average cTE values for direct and indirect PAC connections.

Labels ‘d’, and ‘i’ correspond to direct and indirect PAC connections.

doi:10.1371/journal.pcbi.1005180.g008
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relationship between the strength of PAC and effective connectivity between the populations
involved. The values were significant as tested with the surrogate data approach.
We also counted all significant PAC connections obtained in the 100 simulations. The vec-

tors of significant connections for delta-gamma, theta-gamma, and alpha-gamma PAC com-
prised 800, 1998, and 2000, cTE values, respectively, for the PAC interactions that have a
corresponding anatomical connection (direct interactions), and 1595, 3593, and 3600 for the
interactions without an anatomical equivalent (indirect interactions). The mean and standard
deviations of these connections are presented in Fig 8C. Our results showed that for the three
PAC combinations, there was not a statistically significant difference between the average
strength of direct and indirect PAC interactions (as tested with a t-test, p<0.05).
We also computed three local topologicalmeasures for the network of 14 coupled neuronal

populations (Fig 1A): Cm, Em, and Bm. The edges of the network were the absolute values of the
connections between the populations (Fig 1B). We found that on average, indirect PAC inter-
actions are made by populations with higher Cm (Fig 9A), Em (Fig 9B), and Bm (Fig 9C) than
populations making direct connections, and populations not involved in PAC connections.
Populations receiving indirect PAC connections had also on average higher topologicalmea-
sures than populations receiving direct interactions. This can be also appreciated in Fig 10,
where we plotted the number of PAC connections sent and received by each population (Fig
10A, 10B and 10C) as well as the topological properties of the populations (Fig 10D). In the
case of the delta-gamma combination, the populations sending the highest number of direct
connections were L6LTS, and L5LTS, and the populations sending the highest number of indi-
rect connections were L5FS, L6FS, L5RS, and L6RS. On the other hand, the populations

Fig 9. The link between local topological measures and PAC. A) local clustering coefficient (Cm), B) local efficiency (Em), C)

local betweenness centrality (Bm). In all panels, labels ‘d’, and ‘i’ correspond to direct and indirect PAC connections, respectively.

Populations can send and/or receive PAC interactions, or they can be not involved in the generation of PAC.

doi:10.1371/journal.pcbi.1005180.g009
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receiving the highest number of direct connections were L5FS and L6FS, whereas the popula-
tions receiving the highest number of indirect connections were L4FS and L2FS. From Fig 10A
we see that for all populations with a statistically significant number of connections the number
of indirect connections that were sent was higher than the number of direct connections that
were sent. In the case of received connections, superficial populations (L2FS and L4FS)
receivedmore indirect than direct connections, whereas deeper populations (L5FS and L6FS)
receivedmore direct connections than indirect connections. However, when counting the
entire cortical column, more indirect connections were received than direct connections.
Superficial populations L2FS and L4FS also received the highest number of indirect connec-
tions when considering the theta-gamma and alpha-gamma combinations (Fig 10B and 10C).
Deep populations L5FS and L6FS received the highest number of direct connections. Superfi-
cial populations L2LTS and L2FS sent the highest number of direct connections while deep
population L6RS sent the highest number of indirect connections. Fig 10D shows the three
topologicalmeasures for each population. L4LTS and L4FS presented the highest clustering
coefficient and efficiency, whereas L5IB, L4RS, and L6RS presented the highest betweenness
centrality. When taking into account all populations and all connections (Fig 10A, 10B and
10C) the result presented in Fig 9 is obtained: indirect connections presented higher value of
topologicalmeasures than direct connections.

Fig 10. Population statistics. A) number of delta-gamma PAC connections, B) number of theta-gamma PAC connections, C)

number of alpha-gamma PAC connections, D) topological measures: local clustering coefficient (Cm), local efficiency (Em), and

local betweenness centrality (Bm). In all panels, connections can be direct or indirect, and populations can send and/or receive

PAC interactions, or they can be not involved in the generation of PAC.

doi:10.1371/journal.pcbi.1005180.g010
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Generation of other types of CFC

The neural mass model presented in this paper can generate rich temporal dynamics. Studies
of the dynamics generated by the Jansen and Rit model, which is the basis for our model, can
be found elsewhere [46, 75, 76]. In this paper we focused on PAC, but this is only one type of
the general phenomenon of CFC which results from nonlinearities in brain dynamics. It is thus
not unexpected to find other types of CFC in the signals generated by our model (for example,
the temporal dynamics of L5RS in Fig 4 presents frequencymodulation). In addition to PAC,
other types of CFC such as AAC, PPC, and phase-frequency coupling (PFC) have been
explored in the literature [77, 78] and could all be calculated using Eq (8) after replacing anl(t)
and φmk(t) with the appropriate time series.
Recently, the analysis of resting state electrocorticography (ECoG) data revealed that the

amplitude of gamma oscillations can drive the phase of alpha oscillations, i.e, APC [33].
Although this experimental result may seem surprising, it is consistent with theoretical results
in the NMM literature. Specifically, starting with a network of weakly coupledWilson and
Cowan oscillators, equations for the instantaneous phases were obtained which depended on
the instantaneous amplitudes of the oscillators in the network [55]. Thus, by setting different
natural frequencies for the oscillators in the network, it is possible to obtain not only PAC but
other types of CFC. To test the existence of APC we computed:

cTEanl!φmk
¼

1

N
PN

d¼1
cMIðanl;φ

d

mkj
eMÞ ð24Þ

where φd
mk is derived from the phase time series φmk at δ steps into the future, i.e.

φd
mk ¼ φmkðt þ dÞ, and eM is a matrix comprising all phases and amplitudes in all populations,
except anl. Fig 11 shows the APC estimated from the simulated data presented in Figs 4 and 5,
with the strongest values corresponding to the gamma-beta and gamma-alpha APC combina-
tions. Thus, our simulations are in agreement with recent experimental evidence suggesting the
existence of APC [33].

Mechanisms mediating indirect PAC interactions

We demonstrated theoretically (seeMethods), that given three neuronal populations con-
nected in such a way that there is only an indirect connection between populations 1 and
3:1!2!3, the indirect PAC connection from population 1 to population 3 ðcTEφ1⇝a3

Þ can be

computed as the sum of the direct connections cTEφ1! y2
and cTEy2! a3

, plus a termeI compris-
ing a sum of mutual information terms (see Eqs 16 and 17). cTEφ1! y2

and cTEy2! a3
can have

the interpretation of CFC or SFC, depending on the interpretation given to y2. Given the com-
plicated mathematical expression foreI (Eq 17), it is tempting to write Eq (16) for cTEφ1⇝a3

in
terms of only transfer entropy terms (i.e, CFC and SFC variables). Since such a closedmathe-
matical expression for cTEφ1⇝a3

does not seems to exists, we explore here different approxima-
tions (models in Table 2) via numerical simulations (Figs 12 and 13).
For the simulations, we set population 1 to oscillate in the theta band while population 3

oscillated in the gamma band. Two different cases were considered for population 2. Case I
(Fig 12): population 2 oscillated with a frequency lower (delta band) than population 1, and
case II (Fig 13): population 2 oscillated with a frequency higher (beta band) than population 1.
Five different types of CFC between the three populations (PAC, APC, PPC, AAC, and PFC)
were estimated while varying the connectivity parameters between populations 1 and 2 (Γ12)
and between populations 2 and 3 (Γ23). SFC was also considered and labelled in the same way
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Fig 11. Amplitude-phase coupling (APC) corresponding to the simulation presented in Figs 4 and 5. Non-significant values

were set to zero and are depicted in white. Black dots indicate existing anatomical connections (see Fig 1).

doi:10.1371/journal.pcbi.1005180.g011

Table 2. Indirect PAC modeled as a cascade of direct CFC and SFC in a three population network. Two cases were considered: population 2 oscil-

lates in the delta (δ) band (Case I), and population 2 oscillates in the beta (β) band (Case II). Populations 1 and 3 always oscillate in the theta (θ) and gamma

(γ) bands, respectively.

Model Case I Case II

1 PAC y1g3
¼ PPCy1y2

þ PAC y2g3
PAC y1g3

¼ PPCy1y2
þ PAC y2g3

2 PAC y1g3
¼ PAC y1y2

þ AACy2g3
PAC y1g3

¼ PAC y1y2
þ AACy2g3

3 PAC y1g3
¼ PPCy1d2

þ PAC d2g3
PAC y1g3

¼ PPCy1b2
þ PAC b2g3

4 PAC y1g3
¼ PAC y1d2

þ AACd2g3
PAC y1g3

¼ PAC y1b2
þ AACb2g3

5 PAC y1g3
¼ PPCy1y2

þ PPCy2y3
þ PAC y3g3

PAC y1g3
¼ PPCy1y2

þ PPCy2y3
þ PAC y3g3

6 PAC y1g3
¼ PPCy1d2

þ PPCd2y3
þ PAC y3g3

PAC y1g3
¼ PPCy1b2

þ PPCb2y3
þ PAC y3g3

7 PAC y1g3
¼ PPCy1d2

þ PPCd2d3
þ PAC d3g3

PAC y1g3
¼ PPCy1b2

þ PPCb2b3
þ PAC b3g3

8 PAC y1g3
¼ PAC y1y2

þ APCy2y3
þ PAC y3g3

PAC y1g3
¼ PAC y1y2

þ APCy2y3
þ PAC y3g3

9 PAC y1g3
¼ PAC y1d2

þ APCd2y3
þ PAC y3g3

PAC y1g3
¼ PAC y1b2

þ APCb2y3
þ PAC y3g3

10 PAC y1g3
¼ PAC y1d2

þ APCd2d3
þ PAC d3g3

PAC y1g3
¼ PAC y1b2

þ APCb2b3
þ PAC b3g3

doi:10.1371/journal.pcbi.1005180.t002
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as the CFC interactions. For example, PPCy1y2
, is the cTE from the phase of theta in population

1 to the phase of theta in population 2. To test the significance of these values, surrogate data
was computed, followed by a multiple comparison analysis. As a control, we computed the cTE
from populations 2 and 3 to population 1 for all possible types of interactions (such as
PPCy2y1

), and confirmed they were not statistically significant.

Fig 12. Mechanisms mediating indirect PAC connections (Case I). A) Three population toy model comprising three neuronal populations labelled as ‘1’,

‘2’, and ‘3’, oscillating in the theta (θ), delta (δ), and gamma (γ) bands. B) PAC involving the phase of theta in population 1 and the amplitude of gamma in

population 3 (PAC y1g3
) obtained when varying the connectivity parameters between populations 1 and 2 (Γ12 = 30:4:1000) and between populations 2 and 3

(Γ23 = 30:4:1000). Panels C to R, displays the 16 predictors used in the ten models explored (Table 2). S) Coefficient of determination (R2) for the ten

models explored (Table 2). T) Correlation coefficient between the 16 predictors.

doi:10.1371/journal.pcbi.1005180.g012
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There are several pathways that could transfer information from the phase of the theta
oscillation in population 1 to the amplitude of the gamma oscillation in population 3
(PACy1g3

� cTEφ1⇝a3
). For example, a simple model could involve PPCy1y2

followed by
PAC between the theta rhythm in population 2 and the gamma rhythm in population 3:
PACy1g3

¼ PPCy1y2
þ PACy2g3

. A more complicated one is: PACy1g3
¼ PPCy1d2

þ PPCd2d3
þ PACd3g3

.

To compare different models for PACy1g3
(Table 2), we fitted a linear regression to PACy1g3

and

Fig 13. Mechanisms mediating indirect PAC connections (Case II). A) Three population toy model comprising three neuronal populations labelled as

‘1’, ‘2’, and ‘3’, oscillating in the theta (θ), beta (β), and gamma (γ) bands. B) PAC involving the phase of theta in population 1 and the amplitude of gamma in

population 3 (PAC y1g3
) obtained when varying the connectivity parameters between populations 1 and 2 (Γ12 = 30:4:1000) and between populations 2 and 3

(Γ23 = 30:4:1000). Panels C to R, display the 16 predictors used in the ten models explored (Table 2). S) Coefficient of determination (R2) for the ten models

explored (Table 2). T) Correlation coefficient between the 16 predictors.

doi:10.1371/journal.pcbi.1005180.g013
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computed the coefficient of determination (R2) as a function of parameter Γ23. Note that mod-
els 1 to 4 in Table 2 correspond toeI � 0.
For Case I we found that the three best models were Model 1 (PACy1g3

¼ PPCy1y2
þ

PACy2g3
), Model 7 (PACy1g3

¼ PPCy1d2
þ PPCd2d3

þ PACd3g3
), and Model 3 (PACy1g3

¼

PPCy1d2
þ PACd2g3

), with Model 1 being the best model for low values of Γ23, and Model 7 for
the high values. On the other hand, we obtained the opposite behavior for Case II, i.e, Model 7
was the best model for low Γ23 values, whereasModel 1 was better at explaining PACy1g3

for high
Γ23 values. The correlation between the 16 CFC and SFC variables involved in the ten models is
displayed in the last panel for both cases (Figs 12 and 13). Although we found significant PFC
combinations, models involving these combinations were very weak predictors of PACy1g3

(with
R2<0.08 in all cases) and were thus not included in Table 2 and Figs 12 and 13.

Discussion

We have analyzed a neural mass model that captures the phase-amplitude coupling between
layers in a cortical column. The model comprises fourteen interconnected neuronal popula-
tions distributed across four cortical layers (L2/3, L4, L5 and L6). According to our results, the
parameters with the strongest influence on the strength of PAC were the time constants.
As expected, in order to generate PAC, nonlinearities in the model are essential. As was

shown in Fig 2E, when the sigmoid functionwas substituted with a linear function, no modula-
tion was obtained. Additionally, the strength of PAC was best modeled by a nonlinear regres-
sion of the connectivity values instead of a linear regression. Thus, our results show that the
nonlinear interaction of neuronal populations (via the sigmoid function and the connectivity
matrix) can produce PAC combinations with frequencies different from the natural frequen-
cies of the oscillators involved. Our model of oscillators with natural frequencies in the theta,
alpha and gamma bands was able to produce significant PAC involving other bands such as
delta and beta: delta-alpha, delta-beta, delta-gamma, theta-beta, alpha-beta, and beta-gamma.
Interestingly, some peaks in the beta band are harmonics of theta and alpha oscillations, such
as the beta peak at 16.83 Hz in the spectrumof L4FS in Fig 5. Due to the interaction between
the populations, there is a statistically significant PAC from the phase of beta in L4FS to the
amplitude of gamma in L2FS, L4FS, L5FS and L6FS. Note that of these PAC interactions, only
L4FS! L4FS corresponds to an anatomical connection (Fig 1B and S2 Table). If we take into
account all PAC combinations in Fig 7, less than 40% of all significant PAC values (93/
238 = 39.08%) corresponded to anatomical connections. This suggests that although effective
connections are constrained by direct (anatomical) connections additional factors are needed
to fully explain the link between anatomical and effective connectivity. Interestingly, our
numerical simulations showed that on average the strength of the PAC phenomenon mediated
by direct and indirect connections is approximately the same (Fig 8). However, local topologi-
cal measures such as clustering coefficient, efficiency, and betweenness centrality were the
highest for populations making indirect connections when compared to populations making
direct PAC connections, to populations receiving PAC connections, and to populations not
involved on the generation of PAC. This is another factor to consider when studying the origin
of PAC during neurodegenerative disorders known to affect both local and global brain cir-
cuitry [79–81].
One limitation of the present approach is that model parameters are loosely constrained

from existing neurophysiological data. Thus, although our model provides insight about the
emergence of PAC in a complex network whose spectral and connectivity properties resemble
that of a cortical column, specific conclusions should await to more knowledge of these data.
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Comparison with previous models of PAC generation

The first computational models of PAC generation were realistic models of the theta-gamma
coupling in the hippocampus [3]. These models considered networks of hundreds of intercon-
nected neurons which were individuallymodeled by either a single compartment [4] or realisti-
cally represented by multiple compartments for the soma, axon, and dendrites [5]. A practical
disadvantage of this approach is that it needs high computational power, but more importantly,
the use of such realistic models produces hundreds or thousands of variables and parameters,
making it difficult to determine their influence on the generated average network characteris-
tics. This is especially critical if we are interested in analyzing the link of PAC and mesoscopic
phenomena like functionalmagnetic resonance signals [23]. The analysis of multiple PAC
combinations as done in this paper would be even more difficult with realistic networks. By
comparison, our model of one cortical column comprised only 14 second-order (or 28 first-
order) differential equations, which can be easily solved using any modern personal computer.
Additionally, previous models of PAC generation, both the ones based on realistic networks

[3] and the ones based on neural mass models [6] studied the phenomenon in a qualitative
way, such that they did not actually compute a PAC measure but limited their analysis to the
generation of temporal dynamics resembling PAC. This makes it difficult to compare their
results with our quantitative approach based on information theory.

Indirect PAC connections can be predicted by a cascade of direct CFC

and interactions within the same frequency band

As a unifying theory of EEG organization, it has been proposed that the EEG is hierarchically
organized such that the delta phase modulates the theta amplitude, and the theta phase modu-
lates the gamma amplitude [10]. It was also proposed that this oscillatory hierarchy controls
baseline excitability and that the hierarchical organization of ambient oscillatory activity allows
the auditory cortex to structure its temporal activity pattern to optimize the processing of
rhythmic inputs. Recent findings suggest a somewhat different hierarchy of oscillatory activity
with regard to these frequency bands [22]. Sotero et al. did not observe PAC between the delta
and theta bands in rat area S1FL: PAC was statistically significant between the phases of the
delta and theta bands and the amplitudes of the beta and gamma bands, but not between the
phase of the delta band and the amplitude of the theta band. Their data support specific PAC
interactions, but not a clear hierarchical PAC structure. The differences between Lakatos
et al.’s findings and Sotero et al.’s findings are consistent with their proposal that the hierarchi-
cal structure found in the auditory cortex may support processing of rhythmic auditory stimuli,
which are less common in natural somatosensory stimuli to the forepaw. Both studies were
restricted to PAC and did not explore whether the oscillatory hierarchy might involve other
types of CFC.While historically PAC and PPC have been the subject of most experimental and
modeling studies, other types of CFC are attracting increasing interest [33, 77, 78]. Our theo-
retical and numerical results show that indirect PAC is better understood if analyzed together
with direct PAC and other types of direct CFC and SFC connections.Our results do not suggest
a specific oscillatory hierarchy like the one proposed by Lakatos et al., but multiple contributing
cascades of CFC and SFC. Future analysis of experimental data will need to determine the func-
tional importance of these different possible pathways.

cTE as a unified approach to estimate CFC

In this work, we used the average cTE, computed using the conditional mutual information
[56, 57] to measure the influence of the phase of a low frequency rhythm on the amplitude of a
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higher frequency rhythm, and used it as an index of PAC. A known limitation of the cTE
approach is that it requires long time series [60]. For this reason, we used time series compris-
ing of up to 105 time instants. Recent studies have shown that cTE is biased as its values depend
on the autodependency coefficient in a dynamical system [82]. Conditional TE was chosen
over pairwisemutual information [53] or the pairwise information flow [83] because pairwise
analysis cannot distinguish between connectivity configurations such as [X!Y, X!Z, Z!Y]
and [X!Z, Z!Y] [84].
An advantage of measures based on information theory is that they are model-free. This is

in contrast to other measures like Granger causality, which are based on autoregressive models
[85]. Furthermore, Granger causality should not be applied to band-passed signals because the
filtering process produces a large increase in the empirical model order, which often results in
spurious results [86]. Another advantage of the cTE measure is that it can be used to estimate
any type of CFC, not just PAC. Thus, it provides a unifiedmeasure to study the CFC
phenomenon.
cTE has often been given a causal interpretation, however a more recent point of view [87]

suggests that cTE should be interpreted as predictive information transfer, i.e. the amount of
information that a source variable adds to the next state of the destination variable. Ultimately,
interventions are required to detect causal interactions [88]. This formalism is used in a causal
measure called information flow [89], which is also based on the cMI.
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