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Abstract

Ability to simulate high-throughput chromatin conformation (Hi-C) data is foundational for 

benchmarking Hi-C data analysis methods. Here we present a non-parametric strategy named 

FreeHi-C to simulate Hi-C data from the interacting genome fragments. Data from FreeHi-C 

exhibit high fidelity to biological Hi-C data. FreeHi-C boosts the precision and power of 

differential chromatin interaction detection through data augmentation under preserved false 

discovery rate control.

Recent maturation of chromosome conformation capture (3C)1 and Hi-C sequencing 

technologies2, 3 revealed transformative insights on long-range gene regulation4. A growing 

number of methods5–12 emerged for the analysis of Hi-C and other 3C-derived data. 

Benchmarking and evaluation of Hi-C methods have relied on either conducting distance-

stratified permutations of the contact matrices5 or directly simulating them with the most 

general spatial structures6–11. Additionally, pooling and random partitioning of replicates to 

generate pseudo-replicates and downsampling are prevalent approaches for studying 

similarity metrics and sequencing depth effects5, 8, 11, 13. A systematic Hi-C simulation 

method, Sim3C14, was proposed for the design of Hi-C experiments with respect to the 

power analysis and the selection of restriction enzyme and sequencing depth. However, the 

strong focus of Sim3C on microbial genomics and metagenomics negates its utility for 

common Hi-C experiments15 (Supplementary Fig. 1, Supplementary Note).

Here we present FreeHi-C (Fragment interactions empirical estimation for fast simulation of 

Hi-C data), as a robust method that nonparametrically simulates realistic read-level Hi-C 

data by emulating the standard Hi-C experimental protocol2, 3 (Fig. 1a). FreeHi-C takes as 

input Hi-C sequencing data and estimates the frequency of genomic fragment interactions. 

This is fundamentally different from existing methods that simulate Hi-C contact matrices 

under a series of assumptions5–7, 10. Subsequently, FreeHi-C generates pairs of sequencing 
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reads from the interacting fragment pairs with embedded random nucleotide mutations and 

indels while conserving the proportion of chimeric reads. Thereby, the variability and read-

level characteristics of original Hi-C sequencing libraries can be preserved in the simulated 

sequences.

We illustrated the versatile features of FreeHi-C with Hi-C datasets of two human cell lines, 

GM12878 and A549 (4 independent cell culture replicates each), and malaria parasite 

Plasmodium falciparum 3D7, as representatives of large and small genomes, respectively. 

Analysis of GM12878 and A549 are carried out at 40kb resolution and 10kb for 

Plasmodium falciparum 3D7 unless otherwise stated. Replicates are simulated at the same 

sequencing depth as the seed replicates unless explicitly stated (Supplementary Note, 

Supplementary Figs. SN1–5). Compared to Sim3C realizations, FreeHi-C simulations 

capture the detailed chromatin interaction structures, such as chromatin loops and TADs, 

better; hence contact matrices from FreeHi-C exhibit markedly higher fidelity to the seed 

biological data (Supplementary Fig. 1). Specifically, comparison of the distribution of 

contact counts stratified by the genomic distance between the simulated and biological data 

shows that FreeHi-C yielded contact count distributions are similar to those of the seed 

biological data (Supplementary Fig. 2) in contrast to Sim3C (Supplementary Note). Similar 

high fidelity observations hold for paired comparisons of simulated replicates 

(Supplementary Note). In addition, we show that the simulated data of different replicates 

preserved the relations existing between replicates of P. falciparium (Fig. 1b) and conveyed 

that chromatin architecture in the ring stage is more similar to that of the schizont stage 

while the trophozoite stage has striking differences from the other two16 (Supplementary 

Fig. 3a). In addition to recapitulating the clustering structure of the biological samples, 

FreeHi-C simulated replicates also preserve genomic domain structures, such as A/B 

compartment and TADs. A/B compartments correlation is higher between the seed 

biological replicate and the FreeHi-C simulated replicates than those among biological 

samples (Fig. 1c and Supplementary Note). Similarly, the concordance of the TAD structures 

are markedly higher for FreeHi-C simulated replicates compared to other biological samples 

(Fig. 1d, Supplementary Note).

Next, we demonstrate how FreeHi-C enables benchmarking a wide range of Hi-C analysis 

methods and compare it with the downsampling strategy. We first focus on the assessment of 

the reproducibility of Hi-C contact matrices by HiCRep13. HiCRep reproducibility 

quantification successfully clustered the ring and schizont stages together (Fig.1b), this 

result can be challenged as being biased due to the significant differences in the sequencing 

depths of the samples, i.e., the ring and schizont stages have 45–375% more reads 

(Supplementary Note). Therefore, it is desirable to adjust for the sequencing depth either by 

simulation or downsampling. By down simulating the ring and schizont stages to the 

sequencing depth of trophozoite sample, or up simulating the trophozoite and ring stages to 

the schizont sample, HiCRep reproducibility consistently clusters the ring and schizont 

stages together (Fig. 1e, Supplementary Fig. 3). Downsampling, however, leads to the 

schizont stage being misclustered with the trophozoite (Fig. 1f) indicating that 

downsampling may generate low-quality Hi-C matrices (i.e., reproducibility ranges from 

0.32 to 0.91) that potentially lead to biased inference. We further illustrate how FreeHi-C 
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enables sequencing depth debiasing for HiCRep13 in evaluating reproducibility and Fit-Hi-

C12 in detecting significant interactions in Supplementary Note.

Another pivotal benchmarking utility of FreeHi-C is for comparing the performance of 

different methods that address the same Hi-C inference problem. We illustrate this in the 

context of detection of differential chromatin interactions (DCIs) by comparing diffHic6, 

multiHiCcompare17, and Selfish11 across a series of sequencing depths for false discovery 

rate (FDR) control and power through both FreeHi-C simulation and downsampling 

(Supplementary Note). Both diffHic and multiHiCcompare can control the FDR with either 

the GM12878 or A549 datasets and that diffHic is generally more conservative 

(Supplementary Fig. 4 and 5). Remarkably, downsampling displays an increasing FDR trend 

as the sequencing depth increases. However, this trend can only be investigated up until the 

original depth of the samples since the sequencing depths of downsampled samples cannot 

exceed their original depths (Fig. 1g). FreeHi-C simulation elucidates the trends when the 

depths of the samples go beyond their original ones and reveals a conservative FDR control 

at higher depths. Additionally, downsampling and FreeHi-C simulation have distinct 

implications for detection power of the methods (Supplementary Note).

A key impediment for differential chromatin interaction inference with Hi-C data is the 

limited number of biological replicates. We identified three commonly encountered 

scenarios as a function of the number of replicates available per condition (Fig. 2, 

Supplementary Fig. 6): one replicate per condition (ORPC), uneven numbers of replicates 

per condition where one of the conditions have only a single replicate (URPC), and multiple 

numbers of replicates per condition (MRPC). Under these settings, we applied 

multiHiCcompare for DCIs detection. In the ORPC setting, the FDR control with the BH 

procedure18 ensures that the observed FDR is below the target FDR (Fig. 2a and 

Supplementary Fig. 7); however, this setting exhibits extremely conservative FDR control. 

This comes at the cost of low power (Supplementary Fig. 8a). When we augment each of the 

conditions with FreeHi-C simulated replicates, FDR is still well controlled (Fig. 2a and 

Supplementary Fig. 7), and power increases by an average of 300 fold across the five levels 

of FDR thresholds (Supplementary Fig. 8b). It is reasonable to argue that, under ORPC, the 

key target should be the ranking of the interactions, rather than a thresholded list of DCIs, 

because the top significant DCIs are typically utilized for downstream analysis. We 

scrutinized the accuracy of the top significant DCIs identified with and without FreeHi-C 

augmentation by comparing the ranked lists to the gold standard set of DCIs detected by 

utilizing all the 4 replicates per condition. FreeHi-C simulated samples yield a significantly 

higher precision of 100–75% compared to ∼10% in the ORPC setting (Fig. 2b, see also 

Supplementary Note for evaluations under additional gold standard settings). We next 

assessed the biological relevance of the “ranked up” and “ranked down” DCIs due to 

FreeHi-C augmentation by external RNA-seq and CTCF ChIP-seq data. Both comparisons 

supported the new ranking of the top DCIs (Supplementary Figs. 8c–d, Supplementary 

Note). The URPC setting conveyed similar results (Supplementary Fig. 6).

Finally, we generalized the FreeHi-C augmentation strategy as a meta-analysis approach for 

multiple replicates per condition (Figs. 2c–d, Methods). FDR control is well preserved as the 

number of simulated replicates in augmentation increases (Fig. 2c and Supplementary Fig. 
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9a). Notably, augmentation with simulated replicates not only boosts the number of 

significant DCIs identified (Supplementary Figs. 9b–c), but also yields a significantly better 

ranking with higher precision of the top significant DCIs for further quantitative and 

experimental validation (Fig. 2d, Supplementary Figs. 10–11, Supplementary Note). We 

successfully validated the biological relevance of the DCIs identified with meta-analysis via 

FreeHi-C augmentation by leveraging RNA-seq and CTCF ChIP-seq data as in the ORPC 

setting (Supplementary Figs. 12–14).

Analytical methods for analyzing data from Hi-C and related experiments are growing at a 

fast pace without uniform benchmarking and evaluation. Since FreeHi-C enables simulating 

read-level Hi-C data in a data-driven manner, it relies on seed biological data. However, 

FreeHi-C framework can conceptually accommodate additional user-induced features such 

as spike-ins while adhering to seed biological data quality and signal-to-noise ratio.

Methods

FreeHi-C simulation framework

Processing and training module—FreeHi-C implements the steps outlined in Fig. 1b. 

It takes as input raw Hi-C sequencing data in the form of FASTQ files, processes the reads, 

and learns the parameters for the simulation module. The sequence processing module 

follows a standard protocol21, 22 by aligning raw paired-end read files individually and then 

joining the read ends to form read pairs, followed by interaction validation checking and 

duplicate removal steps. After obtaining the valid read-pairs (i.e., interactions), it fits an 

interaction-level mixture model to estimate the genomic fragment interaction frequencies, 

with the genomic fragments defined by the experimental restriction enzyme cutting sites. 

This sampling model considers two multinomial distributions with parameters π0 = πij0  and 

π1 = πij1 , i, j = 1, …, L, where L denotes total number of genomic fragments, for 

generating interaction events. The distribution indexed by the parameter π0 reflects 

background interactions, driven by experimental artifacts such as genomic distance whereas 

the second distribution, π1, characterizes true biological interaction signals. For each genome 

fragment “interaction” event, one interaction is drawn from each of the multinomial 

distributions, and one of them is recorded as the actual interaction event with probability α. 

Consequently, the distribution specified by this interaction-level sampling model is 

multinomial with vector-valued parameter απ0 + 1 − α π1. This intuitive sampling model, 

estimation of which does not require deconvolution of the two distributions, is key for 

FreeHi-C’s successful capture of the interactions in a given biological sample. Once the 

genomic fragment interaction is sampled, FreeHi-C generates a read pair from this 

interaction by taking into account strand configuration of the ends of the read pair, 

mismatch(es), insertion(s), deletion(s), the proportion of chimeric reads, and base quality 

scores of the reads. Hence, as part of the training module, FreeHi-C estimates this set of 

parameters empirically from the collection of valid reads. Specifically, FreeHi-C estimates 

the frequency distributions of numbers of insertions, deletions, and different types of 

mismatches across all the valid read pairs. Additionally, FreeHi-C processing and training 

module records the proportion of chimeric reads, i.e., reads pairs where one or both of the 
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read ends are sequenced over the ligation junction, that are rescuable with the aim of 

preserving this proportion for the simulated reads. Finally, FreeHi-C empirically estimates 

the distribution of base quality scores for each locus of the Hi-C reads and uses these 

estimates to ensure that the simulated reads have similar base quality scores as the seed 

biological replicate.

Simulation module—FreeHi-C simulates fragment pairs from the estimated interaction-

level mixture model as genomic fragments that form crosslinks in the Hi-C experiment 

protocol3. The ligation procedure in the experiment leads to two fragment junction sites. 

FreeHi-C randomly generates one of these which is then passed onto the next step to 

emulate DNA shearing. Two DNA shearing loci are randomly selected within ± 500bp, by 

default, of the selected ligation site. These two shearing loci also work as the starting points 

of the sequencing procedure. FreeHi-C extracts the sequences of the given length, for 

example, 36bp for 36bp paired-end sequencing, from these loci and assigns strand direction 

accordingly. During this sequencing step, reads closer than the requested read length to the 

ligation sites can be generated, as an emulation of chimeric reads. The final step is to 

introduce noise to the read sequences so that the mismatches and indels match to those in the 

reads of the original biological sample. Utilizing the empirical distribution of the sequence 

base quality scores across individual locus, FreeHi-C simulates such scores for each read at 

the nucleotide level. A key strength of FreeHi-C is that it can generate as many reads as 

specified by the user and outputs these in the FASTQ format. Furthermore, it processes the 

resulting reads according to the standard analysis protocol of Hi-C reads by the processing 

module. Through the post-simulation processing, FreeHi-C can directly provide genomics 

contact counts in a sparse matrix format (BED) compatible with the standard input format of 

downstream Hi-C analysis. Processing of the raw reads and learning of the parameters can 

be implemented on individual read pairs followed by a final aggregation; hence this module 

can be efficiently parallelized. Furthermore, simulations based on the same parameter 

settings are parallelized at the read-pair generation level.

Data augmentation with FreeHi-C simulated samples

To account for the fact that simulated samples cannot provide additional full degrees of 

freedom when testing for differential chromatin interactions with two or more replicates per 

condition, we employed a FreeHi-C simulation augmented meta-analysis strategy. The meta-

analysis approach pairs biological and simulated samples in numbers concordant with the 

original differential testing design and aggregates p-values of candidate differential 

interactions across comparisons by Fisher’s method23. More specifically, simulation 

replicates for each of the original n biological replicates are generated per condition and 

considers 2n-1 additional tests to preserve the degrees of freedom of the original test 

statistic. For example, for a setting with 2 biological replicates per condition, we generated 4 

FreeHi-C simulation samples, one per original biological replicate, and evaluated the 

following comparisons, where c1 and c2 refer to the two testing conditions under 

consideration.

Test 1: (Rep1c1,bioSample, Rep2c1,bioSample) vs. (Rep1c2,bioSample, Rep2c2,bioSample)
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Test 2: (Rep1c1,simulation, Rep2c1,bioSample) vs. (Rep1c2,simulation, Rep2c2,bioSample)

Test 3: (Rep1c1,bioSample, Rep2c1,simulation) vs. (Rep1c2,bioSample, Rep2c2,simulation)

Test 4: (Rep1c1,simulation, Rep2c1,simulation) vs. (Rep1c2,simulation, Rep2c2,simulation)

The p-values of these tests are then aggregated by Fisher’s method23 as 

−2∑i = 1
M log pi ∼ χ2M

2 , where M = 4 in the above example and the degree of freedom for the 

χ2 distribution is 8. However, the above 4 tests are not independent, the resulting aggregated 

p-values are anti-conservative. To dampen this effect, instead of ranking the differential 

interactions with the Fisher’s p-value in the BH procedure18, we rank them based on median 

of their adjusted p-values from individual test. Specifically, instead of ordering the 

hypothesis sequence H(i), i = 1, 2, …, M, by the aggregated p-values obtained from Fisher’s 

method, we order them by the new significance rank determined by the median adjusted p-

values of across all four tests for each individual contact and denote such ordering as H(r(i)), i 
= 1, 2, …, M, where r(i) is the index of the contact that is ranked ith in the new significant 

ranking list. Let k be the largest i for which p r i ≤ i
M α, then the BH procedure rejects all 

H(r(i)), i = 1, 2, …, k. This is a more conservative procedure than the ordinary BH procedure 

on the Fisher’s p-values because the number of rejections, k, is always smaller or equal to 

the number of rejections using the BH procedure with Fisher’s p-values. The computational 

experiments support that this reverses the potential anti-conservative effect of aggregating 

dependent p-values with Fisher’s method.

Evaluating the ranking of detected DCIs

The gold standard differential interaction set is approximated by the most significant DCIs 

detected by multiHiCcompare based on a quasi-likelihood negative binomial generalized 

log-linear model to test the coefficients with BH procedure adjustment for multiple 

comparisons (one-sided test; FDR ≤ 0.001, 0.005, 0.01, 0.05, respectively) using 4 

biological replicates of GM12878 versus 4 biological replicates of A549. In the sets 

presented in this paper, we rank the DCIs by their significance order and quantify the 

fraction of the top N significant differential interactions that appear in the gold standard set 

where N varies as 500, 1000, etc. This quantity refers to recovery rate or precision. A more 

conservative gold standard set of DCIs is defined as the intersection of the significant DCIs 

detected by multiHiCcompare (FDR ≤ 0.01) and those identified by diffHic (FDR ≤ 0.1).

Another type of gold standard DCI list is specially defined for tests of uneven number of 

replicates per condition (Supplementary Figs. 24–25). In this setting, the gold standard DCI 

set is defined as the set of most significant interactions in the comparison of rep2 and rep4 of 

GM12878 with rep1 and rep4 of A549. Accordingly, we measure the precision of the results 

from the following four comparisons: (i) one replicate out of rep2 and rep4 of GM12878 

versus one out of rep1 and rep4 of A459; (ii) one replicate out of rep2 and rep4 of GM12878 

with its FreeHi-C augmentation versus one out of rep1 and rep4 of A459 with its FreeHi-C 

augmentation; (iii) rep2 and rep4 of GM12878 versus one out of rep1 and rep4 of A459 with 

its FreeHi-C augmentation; (iv) one out of rep2 and rep4 of GM12878 with its FreeHi-C 

augmentation versus rep1 and rep4 of A459.
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Evaluating DCIs detected by FreeHi-C augmentation with RNA-seq and CTCF ChIP-seq

We evaluated the significance of the observed proportion of differentially expressed (DE) 

genes between GM12878 and A549 that overlap with significant DCIs using a 

randomization test. DE genes are detected by DESeq224 based on a negative binomial 

model. An empirical null distribution for the observed overlap statistics is constructed by 

randomly selecting an equal number of interactions as significant ones from all valid bin-

pairs and overlapping these with the DE genes for 10,000 times. The significance level of 

observed overlap is quantified by the percentage of random selection results that is larger 

than or equal to the observed statistics. A similar strategy is implemented for evaluating co-

localization of DCIs with differential CTCF ChIP-seq peaks. Differential CTCF ChIP-seq 

peaks are defined by peaks that are uniquely enriched in only one cell line.

Reporting Summary

Further information on research design is available in the Life Sciences Reporting Summary 

linked to this article.

Data availability

To study the operating features of FreeHi-C, we utilized two publicly available human Hi-C 

datasets as examples of large genomes with independent experiments using four cell 

cultures, which are referred to as four biological replicates, from GM128783 cell line and 

another four from A54925. Raw FASTQ files for GM12878 were downloaded from GEO26 

(https://www.ncbi.nlm.nih.gov/geo) under the accession code GSE63525 and raw sequences 

for A549 were obtained from the ENCODE portal27 (https://www.encodeproject.org) with 

accession code ENCSR662QKG. For evaluation of FreeHi-C performance on small 

genomes, we leveraged three different stages of malaria parasite Plasmodium falciparum red 

blood cell cycles16. Raw sequences for P. falciparum are downloaded from GEO26 (https://

www.ncbi.nlm.nih.gov/geo) under the accession code GSE50199. GM12878 and A549 are 

both processed at 40kb resolution, and P. falciparum at 10kb.

For validating the differential interaction detection with a differential expression analysis, 

we utilized RNA-seq gene expression data from the ENCODE portal (accession 

ENCSR000AED for GM12878 and ENCSR000CTM for A549). Similarly, the CTCF ChIP- 

seq peak signal files were also downloaded from ENCODE under accession 

ENCSR000DZN for GM12878 and ENCSR000DPF for A549. The data used in this paper 

are summarized in the Supplementary Table 1.

All the simulated data used in the analysis and Juicebox28 visualization data are available at 

Zenodo29 (http://doi.org/10.5281/zenodo.3345896).

Code availability

FreeHi-C pipeline is implemented in Python with C accelerated core calculations and it 

naturally fits in the high-performance computing environments for parallelization. The 

source codes and instructions for running FreeHi-C are publicly available at https://

github.com/keleslab/FreeHiC.
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Figure 1. FreeHi-C enables simulating high fidelity Hi-C data.
a. FreeHi-C simulation workflow. Black arrows connect the processing procedures, and grey 

arrows show the data flow. b. Hierarchical clustering of the original Hi-C biological 

replicates and the FreeHi-C simulated replicates for the ring, trophozoite, schizont stages of 

P. falciparum. Heatmap clustering is obtained with the inherited R function hcluster in the 

pheatmap package using the default parameters. Distance is quantified by HiCRep13. c. 
Pearson correlation analysis of the A/B compartment eigenvector between the seed 

biological replicate (delineated at the top of each panel) and FreeHi-C simulation of 1 × 

sequencing depth, 5 × original sequencing depth, and other biological replicates. A/B 

compartment eigenvector is calculated by CscoreTool19 (n = 3). d. Jaccard index of the 

TADs detected using the seed biological replicate (delineated at the top of each panel) and 

FreeHi-C simulation of the 1 × sequencing depth, 5 × original sequencing depth, and other 

biological replicates. TAD boundaries are detected using the Insulation Score20 (n = 3). e 
and f. Hierarchical clustering of the FreeHi-C simulated (e) and downsampled (f) replicates 

matching the sequencing depth of the original P. falciparum trophozoite stage sample. 

Distance is calculated by HiCRep13. g. HiCRep13 reproducibility of the contact matrices 
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between pairs of biological replicates of GM12878 simulated by FreeHi-C (orange) or 

downsampled (purple) to 0.5 × sequencing depth of replicate6, 1 × sequencing depth of 

replicate6, and sequencing depths of replicate4, replicate2, and then replicate3, respectively 

(n = 4). In c, d, and g, the center lines indicate medians, box limits indicate the 25th and 

75th percentiles. The upper whisker extends from the hinge to the largest value no further 

than 1.5 × inter-quartile ranges from the hinge. The lower whisker extends from the hinge to 

the smallest value at most 1.5 × inter-quartile of the hinge. Data beyond the end of the 

whiskers are outlying points and are plotted individually.
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Figure 2. Data augmentation with FreeHi-C simulated replicates improves differential chromatin 
interactions (DCIs) detection.
a (n = 16) and b (n = 16) refer to one replicate per condition (ORPC). c (n = 3) and d (n = 

16) refer to multiple replicates per condition (MRPC) settings. a (n = 16) and c (n = 3) 

delineate observed false discovery rates of within-sample comparisons for A549 data (i.e., 

comparisons of replicate(s) of A549 with other replicate(s) of A549). The dashed lines are y 

= x. b (n = 16) and d (n = 16) display precision, computed as the percentage of top 

significant DCIs of each specific analysis in the gold standard differential chromatin 

interaction list, as a function of top-ranking DCIs. The gold standard set is defined by 

comparing the full set of 4 replicates of GM12878 with 4 replicates of A549 filtered by FDR 

≤ 0.01. |logFC| refers to the absolute value of natural log transformed fold-change. 

Differential chromatin interaction detection is performed by HiCcompare10, by converting 

the normalized contact counts into Z-scores, and multiHiCcompare17, using a quasi-

likelihood negative binomial generalized log-linear model (one-sided test). The p-values are 

adjusted by Benjamini-Hochberg procedure18 for multiple comparisons. For all the boxplots 

in this figure, the center lines correspond to the medians, box limits correspond to the 25th 

and 75th percentiles and whiskers comprise all data points within 1.5 × the inter-quartile 

range.
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