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Genome-wide association
studies for the identification of
cattle susceptible and resilient
to paratuberculosis

Marta Alonso-Hearn*, Gerard Badia-Bringué and Maria Canive

Department of Animal Health, NEIKER- Basque Institute for Agricultural Research and Development,

Basque Research and Technology Alliance (BRTA), Derio, Spain

Mycobacterium avium subsp. paratuberculosis (MAP) causes Johne’s disease

or paratuberculosis (PTB), with important animal health and economic

implications. There are no therapeutic strategies to control this disease, and

vaccination with inactivated vaccines is limited in many countries because it

can interfere with the intradermal test used for bovine tuberculosis detection.

Thus, infected animals either get culled after a positive ELISA or fecal

PCR result or die due to clinical disease. In this study, we review recent

studies aimed to discover genetic markers which could help to identify and

select cattle less susceptible and more resilient to PTB. In recent years, the

genotyping and subsequent imputation to whole-genome sequence (WGS)

has allowed the identification of single-nucleotide polymorphisms (SNPs),

quantitative trait loci (QTL), and candidate genes in the Bos taurus genome

associated with susceptibility to MAP infection. In most of these genome-

wide association studies (GWAS), phenotypes were based on ante-mortem

test results including serum ELISA, milk ELISA, and detection of MAP by fecal

PCR and bacteriological culture. Cattle infected with MAP display lesions

with distinct severity but the associations between host genetics and PTB-

associated pathology had not been explored until very recently. On the

contrary, the understanding of the mechanisms and genetic loci influencing

pathogen resistance, and disease tolerance in asymptomatic individuals is

currently very limited. The identification of long-time asymptomatic cattle that

is able to resist the infection and/or tolerate the disease without having their

health and milk production compromised is important for disease control and

breeding purposes.
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Economic and social impact of
bovine paratuberculosis

Mycobacterium avium subsp. paratuberculosis (MAP)

infections affecting domestic and wild ruminants represent a

global major issue on animal health, recognized by the World

Organization for Animal Health (OIE) (1), which requires

member countries to maintain epidemiological surveillance

with notification of disease cases. Clinical signs ofMAP infection

in cattle include diarrhea, progressive loss of body condition

in the animals, and eventually their death (2). Paratuberculosis

(PTB) is responsible for significant economic losses in dairy

herds worldwide due to decreased milk production, increased

management costs, and premature culling or death from clinical

disease (3–5). More than 50% of dairy cattle herds are positive

for MAP antibodies in the USA and Europe and, therefore, the

disease is endemic in these areas (6, 7). In Canada, the economic

losses caused by PTB were estimated at $50 CAN per cow per

year in MAP-infected herds (8). In Ireland, a profit margin

reduction between e168 and e253 was estimated for a cow on

a PTB-affected farm (9). The economic impact of PTB on the

US dairy industry has been estimated between US $250M per

year to US $1.5 billion annually, with a net return of almost US

$100 less per cow in a positive herd than in a negative herd (10).

The economic impact of PTB in Europe has been estimated at

US $364.31 million per year (11). There is no cure for PTB, and

MAP control across the globe has proven to be difficult. MAP

survives pasteurization and could enter the human food chain

through meat, dairy products, and untreated water supplies

(12). It has been detected in samples of patients with Crohn’s

disease (CD), ulcerative colitis, and idiopathic inflammatory

bowel disease (IBD)-associated colorectal cancer (13–15). MAP

has also been postulated as a possible trigger in several human

autoimmune diseases such as rheumatoid arthritis, multiple

sclerosis, and type I diabetes (16–19).

Factors a�ecting PTB control

Many control programs for PTB based on vaccination or

testing and culling of test-positive cows have been developed

worldwide. Commercial inactivated vaccines against bovine

PTB are very successful in reducing MAP presence in feces

and tissues and in increasing both milk production and the

productive life of cattle (20, 21). However, PTB vaccination is

not allowed in most European countries due to its interference

with Mycobacterium bovis detection tests (22). PTB control

is currently based on testing and culling and avoiding MAP

transmission to susceptible animals by enhancing on-farm

biosecurity measures (23, 24). Some factors that hamper

the success of such control programs include the lack of

compliance with management protocols, the use of tests with

low sensitivities to identify all the infected cattle, and the

purchase of infected replacement animals which cause new

introductions (25). MAP infection occurs primarily through the

fecal-oral route, and clinical onset takes place around calving

when animals are 18 months or older. According to their

extension in the intestine, cellular infiltrate, and amount ofMAP,

PTB-associated lesions were classified into focal, multifocal,

and diffuse (diffuse paucibacillary or lymphoplasmacytic, diffuse

intermediate, and diffuse multibacillary or histiocytic) (26, 27).

Focal lesions consist of small granulomas in the ileal and

jejunal lymph nodes or the ileocecal lymphoid tissue. Multifocal

lesions are middle-size granulomas that appear in the apex of

some intestinal villi and are formed by groups of macrophages,

surrounded by lymphocytes. The focal and multifocal lesions do

not cause diffuse enteritis or modify the normal architecture of

the intestine. In contrast, the diffuse lesions are associated with a

diffuse infiltrate and severe enteritis affecting different intestinal

locations and lymph nodes. High bacterial burden, clinical signs,

and gross lesions are mainly associated with the presence of

diffuse multibacillary lesions.

Disease tolerance and susceptibility
and resistance to the infection

The response to MAP infection is complex and heritable

which leads to differences between individuals. Some animals

are susceptible to the infection and develop clinical signs while

others are resilient and long-term asymptomatic animals. Host

defense strategies against infectious diseases are comprised of

pathogen avoidance, disease tolerance, and resistance to the

infection (Figure 1). Pathogen avoidance refers to the behaviors

that animals use to avoid infection caused by pathogens.

Resistance is defined as “the ability of the host to prevent

invasion (i.e., absence of a target receptor) or to clear the

pathogen at the early stage of infection by mounting a

protective innate immune response” (28). Disease tolerance is

defined as “the mechanisms that decrease host susceptibility

to tissue damage, or other fitness costs caused by pathogens

or by the immune response” (29). Unlike resistance, disease

tolerance does not necessarily imply changes in the pathogen

load. Therefore, three major outcomes following exposure

to MAP infection can be established: (i) Susceptible host:

individuals who progress to clinical disease, (ii) Resistant host:

Individuals who can prevent bacterial entry or eliminate the

bacteria by inducing innate immune responses at the early

stage of the infection, (iii) Tolerant host: If innate immunity

is unable to eliminate MAP, the host might initiate disease

tolerance mechanisms to prevent and repair tissue damage.

The contribution of host genetics is one of the fundamental

issues in understanding disease tolerance and susceptibility and

resistance to MAP infection.
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FIGURE 1

Resilient animals defend themselves against pathogens using the complimentary strategies of avoidance, disease tolerance, and pathogen

resistance.

Host genetics is associated with
susceptibility to MAP infection

The application of animal genetics in breeding programs is

currently an important motor for efficient livestock production,

not only to increase performance and productivity but also to

ensure the resilience and health of livestock while improving

their longevity. A widely accepted strategy to reduce or

eliminate animal diseases is through the selective breeding of

animals with reduced susceptibility and/or enhanced resilience

against specific pathogens. Over the last decade, specific

candidate genes provided evidence for the existence of single

nucleotide polymorphisms (SNPs) associated with differences in

susceptibility to bovine PTB (30). The identification of SNPs,

quantitative trait loci (QTLs), and candidate genes associated

with PTB susceptibility is extremely important not just for

breeding strategies but also to understand the mechanisms

involved in the pathogenesis of the disease. Previous studies

established that the heritability (h2) estimates of susceptibility

to MAP in Friesian cattle ranges from 0.03 to 0.27 (31, 32).

The genotyping of SNPs with chips of low (LD), medium (MD),

and high density (HD) and subsequent imputation to whole-

genome sequences (WGS) have allowed the identification of

QTLs and candidate genes in the Bos taurus genome associated

with susceptibility to MAP infection. Table 1 shows recent

studies designated to identify SNPs associated with susceptibility

to MAP infection, and Supplementary Table 1 summarizes the

candidate genes identified in these studies. Although the cellular

immune response is considered the protective effector arm of

the immune system for intracellular infections including MAP

infection, there have not been GWAS studies published with

hereditability estimates based on skin tests or IFN gamma.

In most of these GWAS, phenotypes were based on ante-

mortem test results such as serum ELISA, milk ELISA, and

MAP detection by culture or PCR from fecal samples. We

recently identified SNPs, QTLs, and candidate genes associated

with ante-mortem (serum ELISA) and post-mortem (tissue

PCR and culture) diagnostic definitions in a common set of

Spanish Holstein cattle (N = 983) using WGS data (46). We

observed that the combination of diagnostic tests increased the

h2 estimates, with the highest h2 obtained for the combination

of ELISA-tissue PCR-tissue culture (h2 = 0.139).

We have recently demonstrated that the post-mortem

examination of gut tissues and regional lymph nodes improves

the accuracy of the classification of naturally infected animals

and provides higher h2 estimates (47). A total of 192 and 92 SNPs

defining 13 and 9 distinct QTLs were associated (P ≤ 5× 10−7)

with the multifocal (h2 = 0.075) and the diffuse (h2 = 0.189)

lesions, respectively. No overlap was seen in the SNPs associated

with each type of lesion which suggested that distinct genetic
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TABLE 1 Genome-wide association studies designed to identify SNPs associated with susceptibility to MAP infection.

Phenotype Genotype Chromosomes (SNPs number) References

Tissue culture MD BTA1 (3), BTA3 (1), BTA5 (2),1 BTA7 (1), BTA8 (1) BTA9 (4), BTA16 (2), BTA21 (1),

BTA23 (1)

(33)

ELISA, fecal culture MD BTA2 (2), BTA3 (1), BTA4 (2), BTA5 (1), BTA6 (2), BTA7 (2), BTA9 (2), BTA10 (1), BTA13

(5), BTA14 (1), BTA15 (2), BTA16 (4), BTA17 (3), BTA18 (1), BTA20 (4), BTA21 (4),

BTA22 (1), BTA23 (2), BTA25 (2), BTA26 (5), BTA29 (3)

(34)

ELISA MD BTA8 (1), BTA9(1), BTA11 (1), BTA12 (5), BTA27 (1) (35)

ELISA MD BTA1 (1), BTA5 (7), BTA6 (2), BTA7 (5), BTA10 (4) BTA11(1), BTA14 (2) (36)

ELISA, tissue culture MD BTA1 (4), BTA6 (1), BTA7 (1), BTA12 (3), BTA13 (1), BTA15 (1), BTA16 (1), BTA21 (1),

BTA22 (1), BTA23 (1), BTA25 (1)

(37)

Milk ELISA MD BTA4 (1), BTA15 (5), BTA18 (1), BTA28 (5) (38)

ELISA, fecal culture MD BTA2 (38), BTA6 (10), BTA7 (9), BTA8 (8), BTA15 (14) BTA17(18), BTA29 (16) (39)

ELISA, Fecal culture LD BTA1 (3), BTA3 (7), BTA5 (1), BTA6 (2), BTA7 (1), BTA10(1), BTA11 (2), BTA13 (3),

BTA16 (1), BTA17 (2), BTA19 (1), BTA23 (7)

(40)

Tissue culture WGS BTA3 (1), BTA8 (2), BTA10 (1), BTA12 (2), BTA14 (1), BTA16 (4), BTA21 (1), BTA22 (8) (41)

Milk ELISA HD BTA1 (384), BTA7 (9), BTA9 (16), BTA10 (2), BTA14 (3) BTA15 (5), BTA17 (29), BTA19

(63), BTA21 (2), BTA25 (11), BTA27 (10)

(42)

ELISA HD BTA1 (1), BTA2 (2), BTA3 (1), BTA6 (1), BTA7 (5), BTA8 (1), BTA11 (2), BTA13 (2),

BTA16 (1), BTA18 (2), BTA20 (1), BTA22 (1), BTA23 (4), BTA24 (1), BTA27 (1)

(43)

ELISA HD BTA5 (3), BTA6 (1), BTA7 (3), BTA10 (8), BTA14 (3), BTA15 (3), BTA16 (17), BTA20 (2),

BTA21 (1)

(44)

ELISA WGS BTA1 (9), BTA3 (2), BTA5 (1), BTA6 (1), BTA8 (1), BTA9 (5), BTA10 (1), BTA11 (3),

BTA13 (3), BTA14 (2), BTA18 (2), BTA21 (1), BTA23 (4), BTA25 (1), BTA26 (1), BTA27

(1), BTA29 (2)

(45)

ELISA, tissue culture, tissue PCR WGS BTA4 (103), BTA5 (35), BTA11 (43), BTA12 (1), BTA14 (1), BTA23 (126), BTA24 (1),

BTA28 (2)

(46)

Histopathology WGS BTA1 (43), BTA3 (12), BTA5 (37), BTA7 (37), BTA8 (2), BTA11 (14), BTA13 (6), BTA22

(34), BTA23 (3), BTA24 (31)

(47)

Milk ELISA, ELISA, fecal culture, fecal PCR WGS BTA4 (1), BTA7 (4), BTA9 (1), BTA10 (1), BTA12 (1), BTA15 (1), BTA17 (1), BTA18 (3),

BTA23 (3), BTA28 (1)

(48)

LD, low density; MD, medium density; HD, high density BeadChips; and WGS, imputed whole-genome sequences.

variants might control the multifocal and diffuse lesions and

that these lesions represent divergent disease outcomes. Pathway

analysis with the candidate genes overlapping the identified

QTLs revealed a significant enrichment of the keratinization

pathway and cholesterol metabolism in the animals with

multifocal and diffuse lesions, respectively. The keratin family

(KRT), the major subgroup among the intermediate filament

family of cytoskeletal proteins, is responsible for maintaining

the integrity of the gastrointestinal epithelium, providing

resilience against many agents, and regulating various cellular

functions such as cellular proliferation, and inflammatory and

immune responses. In recent years, it has been demonstrated

that the presence of epithelioid granulomas with multifocal

distribution in leprosy controls M. leprae replication and

its dissemination (49). Similarly, we hypothesized that the

PTB-associated multifocal granulomas might prevent MAP

dissemination and limit tissue damage, representing a signature

of disease tolerance. The KRTs might be playing an important

role in controlling tissue resilience and bacterial dissemination

in animals with this specific type of lesion which might even

recover from infection. In contrast, the diffuse lesions represent

a disseminated form of the disease characterized by a diffuse

inflammatory infiltrate composedmainly of foamymacrophages

loaded with cholesterol and large numbers of MAP (Figure 2).

Although GWAS have allowed the identification of SNPs

associated with the susceptibility to MAP infection, the genes

through which these variants exert their effects are unknown,

and only a few functionalmutations for PTB have been identified

(50, 51). Expression quantitative trait loci (eQTLs) are genetic

variants located in gene regulatory regions that alter gene

expression. eQTLs can be considered as functional links between

genomic variants, gene expression, and ultimately phenotype.

Recently, the integration of gene expression data (RNA-Seq)

and genotypes (54,609 SNPs per animal) from a cohort of

cows naturally exposed to MAP has allowed the identification

of 192 and 48 cis-eQTLs associated with the expression of
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FIGURE 2

Interaction between host genetics and MAP infection with disease phenotype.

145 and 43 genes in peripheral blood (PB) and ileocecal valve

(ICV), respectively (52). Three of these cis-eQTLs regulating the

expression of the MECOM, eEF1A2, and U1 spliceosomal RNA

expression were significantly associated with PTB susceptibility

(Figure 2). This study identified the first cis-eQTLs involved

in gene transcription regulation and PTB susceptibility by

integrating genotypes and RNA-seq data.

Host genetics is associated with
resistance to MAP infection

Although we identified a total of 380 SNPs associated (FDR

≤ 0.05; P < 5 × 10−7) with PTB susceptibility using ante-

mortem and post-mortem definitions in a common set of

Spanish Holstein cattle (N = 983) (46, 47), no conclusions could

be drawn regarding host resistance. While test-positive cows are

very likely infected, animals could test negative due to the lack

of sensitivity of the diagnostic methods or lack of exposure to

MAP. In other words, a negative test does not always reflect

resistance, which precludes the identification of loci associated

with resistance. Few studies have attempted to identify genetic

variants associated with resistance to MAP infection in cattle.

In 2010, Pant et al. (53) genotyped 232 Canadian dairy Holstein

cattle with MAP infection status assessed by ELISA and milk

ELISA. Using this approach, eleven SNPs on BTA1, 5, 6, 7, 10,

11, and 14 were associated with resistance to MAP infection.

However, the population size was small (232 animals) and the

classification of the animals based only on ELISA test results

could lead to misclassification due to the lack of sensitivity of

the ELISA. More recently, Sanchez et al. (54) carried out a

multi-breeding GWAS study of 1,644 Holstein Friesian and 649

Normande cows with imputed WGS. In this study, control cows

without clinical signs were tested by serum ELISA and fecal

PCR at least four times. Clinical cases were confirmed with both

ELISA and PCR tests. Thus, animals were classified as controls,

cases without clinical signs, and cases with clinical signs.

With this approach, a total of 2,827 resistance-associated SNPs
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distributed in 20 quantitative trait loci (QTLs) were identified.

However, the threshold used to determine the significance of the

identified variants was very low (P < 10−6), and the multiple

positive correction was limited only to 50,000 independent tests.

Host genetics is associated with PTB
tolerance

Regarding disease tolerance, genetic variants that confer

greater fitness displaying positive or advantageous selection can

potentially be observed in the host genome (55). Recently, we

have searched for genetic loci associated with tolerance to PTB

by using WGS data from infected Spanish Holstein cows with

MAP detected by tissue PCR and bacteriological culture but

without lesions in gut tissues and regional lymph nodes. A PTB

tolerant animal was PCR and culture-positive (infected) but no

lesions could be observed in the histopathological analysis of gut

tissues (no disease) (56). Although an earlier paper described

a GWAS for PTB tolerance (57) with a subsequent refinement

of genetic regions associated with MAP tissue infection and

tolerance to PTB (58), our GWAS is the first to complete an

analysis of the genetic markers associated with tolerance to

PTB using WGS data and epidemiological data based on three

diagnostic tests; histopathology, tissue PCR, and bacteriological

culture. Results from our study do not corroborate those of

Zanella et al. (57, 58), who identified a tolerance-associated

region of 6.5 Kb on BTA15 which we did not identify. In the

studies by Zanella et al., tolerance measured the relationship

between MAP infection intensity (level of MAP in gut tissues)

and fitness (level of MAP fecal shedding). The amount of MAP

in feces was used in this study as a proxy for fitness but to

define tolerance, direct disease outcomes measurements are

critical. In our study, PTB-tolerant cows are infected animals

with positive PCR and bacteriological culture results but without

lesions in gut tissues. Our results suggest that there is genetic

variation associated with PTB tolerance (h2 = 0.55) and that

this variation is indicative of an immunogenic profile in the

PTB tolerant animals designed to control bacterial growth,

modulate inflammation, and limit tissue damage (Figure 2) (56).

Some of the identified QTLs overlapped with QTLs previously

associated with PTB, bovine tuberculosis, mastitis, somatic cell

score, bovine diarrhea virus persistent infection, tick resistance,

and length of productive life. However, the need to slaughter

animals to measure MAP load in tissues as an indicator of

tolerance limits its employment. Thus, novel tools to measure

PTB tolerance must be developed.

Conclusion

Since it is well recognized that not all asymptomatic animals

will progress into clinical cases during their productive life,

the identification of genetic markers associated with PTB

tolerance might help farmers or animal health managers

to select which infected cows should not be culled which

in turn should increase the benefit/cost of their control

program. In addition, the introduction of novel genetic variants

associated with PTB susceptibility and tolerance into marker-

assisted breeding programs would help producers to select

less susceptible cattle, and more tolerant to PTB and likely to

other bovine diseases as well, ultimately preventing economic

losses and reducing antimicrobial use. Preventing endemic

and chronic diseases such as PTB by selecting resilient

cattle is important for sustainable and efficient dairy farming

and the maintenance of the rural economy. Although this

is a long-term control strategy, the benefits of breeding

resilient animals could be permanent and transferred to

subsequent generations.
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