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Abstract

Influenza virus evolves rapidly due to the accumulated genetic variations on the viral

sequence. Unlike in North America and Europe, influenza season in the tropical Southeast

Asia spans both the rainy and cool seasons. Thus, influenza epidemiology and viral evolu-

tion sometimes differ from other regions, which affect the ever-changing efficacy of the vac-

cine. To monitor the current circulating influenza viruses in this region, we determined the

predominant influenza virus strains circulating in Thailand between January 2016 and June

2017 by screening 7,228 samples from patients with influenza-like illness. During this time,

influenza A(H3N2) virus was the predominant influenza virus detected. We then phylogenet-

ically compared the hemagglutinin (HA) gene from a subset of these A(H3N2) strains (n =

62) to the reference sequences and evaluated amino acid changes in the dominant anti-

genic epitopes on the HA protein structure. The divergence of the circulating A(H3N2) from

the A/Hong Kong/4801/2014 vaccine strain formed five genetic groups (designated I to V)

within the 3C.2a clade. Our results suggest a marked drift of the current circulating A(H3N2)

strains in Thailand, which collectively contributed to the declining predicted vaccine effec-

tiveness (VE) from 74% in 2016 down to 48% in 2017.

Introduction

Influenza A virus is an important respiratory pathogen responsible for the annual influenza

outbreak and considerable socio-economic burden on the public healthcare system [1]. The

multivalent influenza virus vaccine administered annually can reduce the risk of morbidity

and mortality, but it is dependent on how well the chosen strains included in the vaccine

match the strains in circulation [2]. The commonly circulating seasonal influenza A subtypes

are A(H1N1)pdm09 and A(H3N2), of which the latter is reportedly associated with a high rate

of hospitalization and mortality in the United States in the 2016–2017 flu season [3].

The hemagglutinin (HA) surface glycoprotein of A(H3N2) possesses defined antigenic and

receptor-binding sites [4,5]. The HA diversity resulting from accumulated mutations facilitates
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viral escape from the host immune response [6,7]. The HA protein is proteolytically processed

into two subunits (HA1 and HA2) [8]. The globular HA1 domain contains five antigenic sites

(A through E) [9–11], while the HA2 stem domain mediates fusion and viral uncoating

[12,13]. Sequence drifts on the HA from accumulated mutations are observed more frequently

in the A(H3N2) than A(H1N1), which often lead to the gradual reduction of the vaccine effec-

tiveness (VE) over time [14–16]. As a result, influenza virus strains most suitable for vaccine

production are carefully evaluated each year [17,18].

Timely analysis of the genetic variations on the HA1 sequence of the circulating influ-

enza virus strains is crucial for the prediction of VE. We therefore determined whether A

(H3N2) was regionally predominant in the current influenza season and compared the

genetic composition of the circulating A(H3N2) to the current vaccine strain A/Hong

Kong/4801/2014.

Materials and methods

Ethical approval

Respiratory samples from patients with influenza-like illness were analyzed in the Center of

Excellence in Clinical Virology at King Chulalongkorn Memorial Hospital as part of the

routine influenza surveillance program. This study was approved by the Institutional

Review Board (IRB) of the Faculty of Medicine at Chulalongkorn University (IRB No. 377/

57). The IRB waived the need for consent because the samples were de-identified and

anonymous.

Samples and HA gene amplification

A total of 7,228 samples obtained between January 2016 and June 2017 in Bangkok and

Khon Kaen province were collected from patients with fever >38˚C and respiratory symp-

toms such as sore throat, nasal congestion, cough and runny nose. These individuals sought

medical care at King Chulalongkorn Memorial Hospital, Bangpakok 9 International Hospi-

tal, and Chum Phae Hospital. Samples were subjected to viral RNA extraction (GeneAll Bio-

technology, Seoul, Korea) according to the manufacturer’s instructions. We used a

previously described real-time reverse-transcription polymerase chain reaction (RT-PCR) to

identify influenza virus A(H1N1pdm09), A(H3N2), and influenza B virus [19]. Influenza B

virus-positive samples were subjected to cDNA synthesis using ImProm-II reverse transcrip-

tion system (Promega, Madison, WI) and primer FluB (5’-AGCAGAAGCA-3’) [20], fol-

lowed by lineage determination using multiplex PCR and melting curve analysis [21,22].

Among A(H3N2)-positive samples, 62 strains (approximately 4 strains per month) were ran-

domly selected for cDNA synthesis using primer Uni12 (5’-AGCAAAAGCAGG-3’) [23]

and the entire HA gene amplified using published primer sets [15]. Briefly, the reaction mix-

ture consisted of 5 μl PRIME MasterMix (5Prime, Hamburg, Germany), 0.25 mM of MgCl2,

0.5 μM each of forward and reverse primers, 2 μl of cDNA template, and nuclease-free water

to a final volume of 25 μl. Amplification in a thermal cycler was performed under the follow-

ing conditions: initial denaturation for 3 minutes at 94˚C, followed by 40 cycles of 30 seconds

at 94˚C for denaturation, primer annealing for 30 seconds at 55˚C, 90 seconds at 72˚C for

extension, and 7 minutes of final extension at 72˚C. Amplicons were agarose gel-purified

using Expin Combo GP kit (GeneAll Biotechnology, Seoul, Korea) and the HA gene

sequenced. A(H3N2) nucleotide sequences were assembled using the SeqMan Pro software

(DNASTAR, Madison, WI) and deposited in the GenBank database under the accession

numbers (MF673231-MF673292) (S1 Table).
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Phylogenetic analysis

A total of 91 A(H3N2) HA nucleotide sequences, 62 obtained from this study and an addi-

tional 29 sequences identified in Thailand publicly available from the NCBI (http://www.ncbi.

nlm.nih.gov) and GISAID (http://platform.gisaid.org) databases, were aligned using ClustalW

and translated into amino acid residues using BioEdit Software version 7.0.9.1 (S2 Table). Phy-

logenetic analysis was performed using the maximum likelihood method and HKY+G model

implemented in MEGA 6 [24]. Bootstrapping was done in 1,000 replicates and values >70%

were shown. Potential N-linked glycosylation sites on the HA was determined using the NetN-

Glyc 1.0 server with the threshold value of>0.5 for the mean potential score [25]. The selective

pressure or the proportion between non-synonymous to synonymous substitutions (dN/dS,

defined as ω) observed on all HA sequences were analyzed using the single likelihood ancestor

counting (SLAC), fixed effects likelihood (FEL), and mixed effects model of evolution

(MEME) algorithms implemented in the HYPHY software [26]. Positively selected codon was

considered significant at P-value of 0.1. Amino acid residue numbering was based on the HA1

of the A(H3N2) vaccine strain A/Hong Kong/4801/2014 unless otherwise indicated. Residues

different from those of the A/Hong Kong/4801/2014 were placed on a three-dimensional HA

protein structure (A/Aichi/2/1968; Protein Data Bank accession number 1HGE) using VMD

1.9.2 [27].

Estimates of vaccine effectiveness

The predicted vaccine effectiveness (VE) was estimated using the Pepitope model, which charac-

terizes the antigenic distance between the A(H3N2) vaccine and circulating strains. Antigenic

distance defined by the Pepitope was calculated from the fraction of substituted amino acid resi-

dues in the dominant HA epitope [28]. For A(H3N2), the association between the VE and the

Pepitope is given by VE = -2.47 × Pepitope + 0.47 in which VE is 47% when Pepitope = 0.

Statistical analysis

Statistical analyses were performed using the Statistical Package for Social Sciences version

22.0 (SPSS Inc., Chicago, USA). The one-way ANOVA test was used to analyze VE divergence,

and p< 0.05 was considered statistically significant.

Results

In all, 15.1% of the samples (1,091/7,228) tested positive for influenza viruses, of which 78.6%

(857/1,091) were influenza A virus and 21.4% (234/1,091) were influenza B virus (Fig 1). As

expected, an increase in the number of influenza virus-positive samples occurred in the rainier

months (August to November). Among influenza A virus-positive samples, 62.8% (538/857)

were A(H3N2) and 37.2% (319/857) were A(H1N1pdm09). Influenza B virus lineages were

found to be 57.7% (135/234) B/Victoria and 42.3% (99/234) B/Yamagata. Thus, A(H3N2) rep-

resented the majority of the influenza virus during this study period.

Analysis of the HA gene sequence

Ninety-one complete coding sequences of the HA gene showed between 98.5–99.6% nucleo-

tide sequence identity (98.1–99.8% amino acid sequence identity) to the A/Hong Kong/4801/

2014 vaccine strain for A(H3N2). Among these, the vast majority significantly diverged from

the A/Hong Kong/4801/2014 (Fig 2). Most belonged to the 3C.2a clade, which possessed dis-

tinct variations in amino acid patterns (designated group I to V). Their divergence was associ-

ated with sequential overlapping time of circulation. For example, group I strains (20/91)
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circulated in January to October 2016, while group II strains (20/91) circulated in November

2016 to March 2017. Group III strains (16/91) circulated between January and June 2017.

Group IV strains (22/91) circulated between September 2016 and March 2017 and were most

closely related to the A(H3N2) strains identified during 2016–2017 influenza season from sev-

eral countries in the northern hemisphere (A/Denmark/107/2016, A/Israel/B6014/2016, and

A/London/15/2017) [29–31]. Interestingly, several novel A(H3N2) strains (4/91) circulating

between January and April 2017 possessed sufficient residue variations in addition to what

were previously described to warrant a separate cluster (group V).

Residue variations on the HA affecting antigenic epitopes, receptor-

binding site, and potential glycosylation

Comparison of the deduced amino acid sequences to that of A/Hong Kong/4801/2014 showed

that group I differed from the vaccine strain by residues N171K and I77V+G155E(HA2), and

group II by N121K+N171K/R and I77V+G155E(HA2). Some strains in group II also possessed

additional residue variants K92R+H311Q (9/20), or G150E (HA2) (6/20) (S1 Fig). Group III

Fig 1. Distribution of influenza A(H3N2) virus between January 2016 and June 2017 (n = 7,228). Total number of clinical samples evaluated (Y-axis

on the right) and different influenza virus-positive samples are shown (Y-axis on the left). Numbers above the bar graphs denote influenza virus-positive

samples identified each month.

https://doi.org/10.1371/journal.pone.0189511.g001
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Fig 2. Phylogenetic analysis of the nucleotide sequences of the HA coding region of A(H3N2).

Sequences of randomly selected samples from this study (n = 62) (designated A/Thailand/CU and denoted in

colored dots) and those identified in Thailand from the databases during 2016–2017 (n = 29) were compared

to the A(H3N2) vaccine and reference strains of known clades reported by the WHO and others (squares).

The phylogenetic tree was constructed using the maximum likelihood method and HKY+G model with 1,000

bootstrap replicates implemented in MEGA (version 6). Branch values of >70% are indicated at the nodes.
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strains were defined by residue pattern S47T+T131K+R142K+S219F+R261Q. Meanwhile,

group IV strains differed from the vaccine strain by N121K+S144K. Most interestingly, the

novel group V formed by strains identified in this study possessed a unique constellation of

residue variations N31S+D53N+R142G+S144R+N171K+I192T+Q197H (Fig 3).

A(H3N2) strains circulating in Thailand collectively showed a total of 39 residue substitu-

tions in the antigenic epitopes. Some of the strains possessed as many as seven amino acid

changes (S1 Fig). Among 53 sequenced strains from 2016, those identified at the beginning of

the year were epitope D dominant as characterized by N121K, N171K/R, and S219Y/F.

Sequence shift to mostly epitope A were observed by the end of 2016 as characterized by

N122D, T131K, T135K, R142K/G and S144K/R. Not surprisingly, A(H3N2) strains identified

in the first-half of 2017 (n = 38) continued to show dominance in epitope A. Among the poten-

tial N-linked glycosylation sites on the HA (at residues 8, 22, 38, 45, 63,122, 126, 133, 158, 165,

246, 285 and 483 on the A/Hong Kong/4801/2014 vaccine strain) [15], substitutions at N122D

(1/91) and S124N (2/91) found in some strains in this study eliminated the potential glycosyla-

tion site at residue 122 (S1 Fig). Additionally, there was a loss of potential glycosylation site at

residue 126 due to N126S substitution (1/91), at residue 133 due to T135K (9/91), and at resi-

due 158 due to N158K (3/91) and T160K (2/91) substitutions.

The receptor-binding sites of A(H3N2) are highly conserved at positions 98, 136, 153, 183,

190, 194, 195 and 228 on HA1 [13]. We observed T135K residue change adjacent to the recep-

tor-binding region for all 3C.2a group II strains. Evolutionary selective pressure on the entire

HA amino acid sequence analyzed using the dN/dS ratio showed an average of 0.305 (SLAC

algorithm) among the A(H3N2) strains in this study, suggesting no positively selected site.

Meanwhile, the FEL method revealed that residues 142, 171, 261 and 406 (HA numbering)

were under positive selection pressure. Moreover, the MEME method indicated five positively

selected sites (131, 144, 171, 261 and 416). Therefore, these data provided strong evidence of

positively selected sites within epitope A (131, 142 and 144), D (171) and E (261) (S3 Table).

Predicted vaccine effectiveness

The average Pepitope value was 0.049 (n = 53) for all of the A(H3N2) strains identified in 2016,

suggesting a predicted VE against the virus of 74.17%. Meanwhile, the average Pepitope was

0.099 (n = 38) for strains identified in 2017, suggesting a predicted VE against the virus of

47.87% (S4 Table). Although the predicted VE between the strains identified in this study and

the A/Hong Kong/4801/2014 vaccine strain ranged between 17.02 and 87.18%, there was an

overall decline in predicted VE each quarter (Fig 4). These results suggest that the A(H3N2)

strains circulating in Thailand drifted from the vaccine strain and effectively reduced the VE.

Discussion

In this study, we aimed to characterize the circulating A(H3N2) in Thailand beginning in 2016

by determining clade designation and identifying mutations in the antigenic sites impacting

the predicted VE. We categorized the strains identified in this study and those reported else-

where between 2016 and 2017 using the HA sequences. Due to evolving genetic variations of A

Dominant epitope (A-E) determined for each sequence are marked with different colored dots (A = yellow,

B = pink, C = purple, D = green, and E = blue). The signature amino acid substitutions (colored) occurring on

the antigenic epitopes are also shown. Scale bar represents approximately 0.5% nucleotide difference

between close relatives. Residue numbers are specific for HA1 (color-coded by epitope) and HA2 (dark blue).

The vaccine strain A/Hong Kong/4801/2014 belonged to 3C.2a clade. Shaded area (Group V) highlights

strains of interest.

https://doi.org/10.1371/journal.pone.0189511.g002
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(H3N2) and the lagging nomenclature standard, we attempted to reconcile the most recent

3C.2a strains identified to date. Group I and II strains in this study collectively represented

clade 3C.2a1 designated by the WHO [32]. Group III strains in this study comprised some

newer Israel strains and the proposed 3C.2a1 cluster III from the U.K., while group IV

described additional Israel strains and the proposed 3C.2a2 clade [30,31]. Additionally, newly

emergent A(H3N2) strains identified in this study necessitated further subdivision into a sepa-

rate group V according to a number of significant variance from the A/Hong Kong/4801/2014

vaccine strain and other previously described variants. Members of group V were character-

ized by seven amino acid substitutions at N31S, D53N, R142G, S144R, N171K, I192T and

Q197H. These residue variants have a number of implications including alterations of the anti-

genic epitopes and immune escape. For example, residue 144 in antigenic site A is adjacent to

residue S145 implicated in receptor-binding [33].

New antigenic variants emerge when at least one substitution occurred in the antigenic

sites [11,34]. Several strains circulating in Thailand (5/91) belonging to group II and IV dem-

onstrated F193S change located in epitope B, which is one of seven mutation sites representing

Fig 3. The defining residue substitutions placed on the HA protein structure of A(H3N2). Differences between A(H3N2) strains in this study and

A/Hong Kong/4801/2014 were visualized on the homotrimeric HA structure of A/Aichi/2/1968 (Protein Data Bank accession number: 1HGE). (a) to (e)

correspond to groups I to V, respectively. Residues on the five antigenic sites are color-coded: A (yellow), B (pink), C (purple), D (green) and E (blue).

Mutation not located within the antigenic site (white) and mutations in HA2 (red) are also noted.

https://doi.org/10.1371/journal.pone.0189511.g003
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a major antigenic transition cluster [5]. Both T135K and N126S in some A(H3N2) strains

resulted in the loss of N-linked glycosylation, an important observation to consider since the

gain or loss of N-linked glycosylation can affect influenza virus virulence and recognition by

neutralizing antibody [35]. T135K located adjacent to the receptor-binding site in epitope A

has also been identified in other studies and is implicated in decreasing vaccine effectiveness

[36,37]. Taken together, these variations underscore the rapid evolution of A(H3N2) influenza

virus in circulation.

Southeast Asian countries use the influenza vaccine formulated for the southern hemi-

sphere, which for some years have different inclusion strains in the vaccine than those formu-

lated for the northern hemisphere. A/Hong Kong/4801/2014 belonging to clade 3C.2a is a

component in both northern and southern hemispheres since 2016. This vaccine strain was

well-matched for the circulating A(H3N2) in Thailand that first season (predicted VE of

approximately 80%) [38]. Since then, A(H3N2) strains circulating in Europe and Canada have

genetically drifted away from the vaccine strain consistent with the observed antigenic drift

and decreasing predicted VE we found in this study for each quarterly period beginning in

Fig 4. Calculated quarterly vaccine effectiveness between January 2016 and June 2017. Vaccine effectiveness (VE) was derived using the

Pepitope model by comparing the A(H3N2) sequences identified in this study to that of the vaccine strain A/Hong Kong/4801/2014. Circles represent

the predicted VE percentage for each strain analyzed, while triangles represent statistical outliers. For each quarter, the middle bar represents the

mean value, while the upper and lower bars denote interquartile range. Asterisks indicate statistically significant differences (P<0.01).

https://doi.org/10.1371/journal.pone.0189511.g004
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2016 [39–41]. As a result, A/Hong Kong/4801/2014 may not be as effective in eliciting immu-

nity against future circulating A(H3N2) in the next influenza season despite the decision to

include it in the 2017–2018 vaccine for northern hemisphere [42].

This study had several limitations. We were unable to ascertain the vaccination status of the

individuals in which the samples were derived, which would have improved the evaluation of

the predicted VE. The scope of this study did not allow us to determine additional evolutionary

relationships among the strains identified in different countries, which would have required

additional nucleotide sequences from around the world not yet deposited in the databases and

a longer study time frame. The antigenic drift and predicted VE were estimated from the accu-

mulated mutations on the antigenic epitopes and would benefit from additional antigenic

characterization such as hemagglutination inhibition assay. Finally, immunity against the

neuraminidase contributing to the antigenic drift was not assessed in this study. Nevertheless,

any genetic surveillance of influenza viruses will continue to be an important component in

influenza prevention and vaccine improvement.
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