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Species versus within‑species 
niches: a multi‑modelling 
approach to assess range size 
of a spring‑dwelling amphibian
Forough Goudarzi1, Mahmoud‑Reza Hemami 1*, Mansoureh Malekian1, Sima Fakheran1 & 
Fernando Martínez‑Freiría 2

Species Distribution Models (SDMs) can be used to estimate potential geographic ranges and derive 
indices to assess species conservation status. However, habitat‑specialist species require fine‑scale 
range estimates that reflect resource dependency. Furthermore, local adaptation of intraspecific 
lineages to distinct environmental conditions across ranges have frequently been neglected in SDMs. 
Here, we propose a multi‑stage SDM approach to estimate the distributional range and potential 
area of occupancy (pAOO) of Neurergus kaiseri, a spring‑dwelling amphibian with two climatically‑
divergent evolutionary lineages. We integrate both broad‑scale climatic variables and fine‑resolution 
environmental data to predict the species distribution while examining the performance of lineage‑
level versus species‑level modelling on the estimated pAOO. Predictions of habitat suitability at the 
landscape scale differed considerably between evolutionary level models. At the landscape scale, 
spatial predictions derived from lineage‑level models showed low overlap and recognised a larger 
amount of suitable habitats than species‑level model. The variable dependency of lineages was 
different at the landscape scale, but similar at the local scale. Our results highlight the importance 
of considering fine‑scale resolution approaches, as well as intraspecific genetic structure of taxa to 
estimate pAOO. The flexible procedure presented here can be used as a guideline for estimating pAOO 
of other similar species.

Species distribution models (SDMs) are a widely used tool to predict species occurrence and infer their envi-
ronmental  requirements1. Although species is the most frequently used evolutionary level to conduct SDMs, 
recent studies have suggested that ecological niches of intraspecific evolutionary units may significantly differ, 
leading to distinct responses of these units to environmental variation across their  ranges2,3. Accounting for local 
adaptations of intraspecific lineages is therefore, important when predicting potential distribution of species, 
particularly when ‘phylogenetic niche conservatism’ (sensu Harvey and  Pagel4) is not assumed (e.g. Banerjee 
et al.5 and Martínez‐Freiría et al.6).

Conservation decisions such as species’ redlisting require a deep understanding of the species distribution 
and  abundance7. To assess the conservation status of species, the International Union for Conservation of Nature 
(IUCN) uses a number of criteria including the reduction in population size and/or geographic range over a 
determined time. The area of occupancy (AOO) is an index of the size of species’ geographic range which is 
frequently used in IUCN assessments and shows the rarity of a species through its distribution  range8. Classify-
ing taxa correctly into threat categories highly depends on the developed method to quantify species distribu-
tion and approximate  AOO9. For habitat-specialist taxa, as well as small, cryptic species which require survey 
efforts at the fine spatial resolution, AOO would get a reliable index if it would correctly reflect the area of these 
specific  sites10. SDMs are potentially applicable in estimating range measures such as AOO if appropriate spatial 
resolution considering resource dependency and the relevant variables affecting species occurrence are correctly 
 selected8. Growing studies have indicated that using model-based approaches reduces uncertainties associated 
with the estimation of range  size6,11,12.
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Amphibians are ectothermic habitat-specialist vertebrates with limited dispersal ability, in which local scale 
environmental variables are main factors related to their  occurrence13. A striking case occurs with spring-dweller 
amphibians, which are highly dependent on springs and the nearby ponds roughly all over the year. Predicting 
the occurrence of these species is very problematic at large scales because the presence of small water bodies 
such as springs is not captured in the available environmental predictors (e.g. Worldclim  variables14), making it 
necessary to develop alternative  approaches15.

Kaiser’s newt (Neurergus kaiseri, Schmidt 1952) is a spring-pond dwelling  amphibian16 distributed sporadi-
cally across southwestern Zagros Mountains of  Iran17. Even though there is no estimate of AOO, it is currently 
listed as Vulnerable (VU) in the IUCN Red List due to decreasing population trend and habitat  fragmentation18. 
Currently, none of the known occurrence sites of N. kaiseri is protected and only a small part of the predicted 
distribution of the species stands within the existing protected  areas19. Two species lineages, North (N) and South 
(S), are recognised by both mitochondrial and nuclear DNA data, which are separated by Dez  River17 (Fig. 1). 
These two lineages evolved through allopatric speciation and currently, due to no shared haplotypes in nuDNA 
(23,518 RAD loci), are considered as evolutionarily significant  units17,20. Ecological niche tests have shown that 
these lineages occupy similar local habitats within their ancestral niche, but in different climatic  conditions17. 
Environmental alterations such as climate change or habitat degradation may affect the distribution of each 
lineage  differently5,21,22 and therefore, it is important to advance into conservation assessments that recognise 
local adaptation of  populations23.

Here we use a multi-scale SDM approach to show the importance of including within species genetic diver-
sity into SDMs while estimating range-based IUCN’s indices of Kaiser’s newt as a case study. We compare the 
estimated suitable areas for the species and its two evolutionary lineages based on different spatial scale envi-
ronmental data and show the scale dependency of the results that may change conservation implications. Our 
specific aims are to (1) identify and compare species- and lineage-level range measures of N. kaiseri, and (2) 
integrate relevant landscape and local scale predictors in a multi-scale SDM approach. We hypothesise that: (1) 

Figure 1.  Geographic distribution of springs and ponds inhabited by the northern (N) and the southern (S) 
lineages of Neurergus kaiseri in southwestern Zagros Mountains, Iran. The maps were generated in ArcGIS 10.4 
using the base free map of Digital Elevation Model from Japan Aerospace Exploration Agency (JAXA) under the 
Term of Use available from (https ://globa l.jaxa.jp/polic y.html). Newt is photographed by FG.

https://global.jaxa.jp/policy.html
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the intraspecific lineage-level compared to species-level SDMs will provide a more accurate measure of N. kaiseri’s 
range size, (2) incorporating fine-scale local environmental variables improve the predictions performance of 
SDMs, and (3) integrating hypothesis 1 and 2 will help us in a better estimation of the species AOO.

Results
SDM performance. The species-level SDM exhibited good overall predictive performance at landscape and 
local scales (Table 1). Lineage N SDM demonstrated excellent overall predictive capacity at both landscape and 
local scales (Table 1). Lineage S SDM performed poorly to predict suitable habitat conditions at the landscape 
scale, as was evident from the low predictive capacity (AUC = 0.79, TSS = 0.27; Table 1). However, the predictive 
power of the S model was significantly enhanced while training under local habitat variables (Table 1).

SDM at landscape scale. The contribution of topo-climatic variables to species and lineages landscape 
models were different. Annual mean temperature mostly contributed to species-level modelling, while precipi-
tation seasonality had the highest contribution to the N and S lineages models (see Supplementary Table S1 
online). Univariate response curves indicated that the S lineage differently responds to both the annual mean 
temperature and precipitation seasonality at the landscape scale (see Supplementary Fig. S1 online).

The predicted climatic range by the species-level model was split up as the two separate northern and southern 
range with no overlapped area (Fig. 2a). The climatically suitable range for N lineage was distinctively found 
in the north part of the study region (Fig. 2b), but the SDM predicted a wider distribution range for lineage S 
(Fig. 2c). Overlaying binary predictions of lineage-level models at the landscape scale revealed that the two line-
ages mainly occupied unique geographic ranges and had low range overlap (Fig. 2d). The probabilistic models 
are shown in Supplementary Fig. S2 online.

SDM at local scale. The contribution and permutation importance of variables to species and lineages N 
and S local scale models were very similar. Among the six local scale variables, the contribution of forest and 
formation distances, and TPI, accounted for more than 77% of the three models’ (i.e. species, N and S) predic-
tions (see Supplementary Table S2 online). The probability of occurrence of the species and both lineage N and S 
sharply decreased with increasing distance from forest and conglomerate formations, as well as with increasing 
values of TPI (see Supplementary Fig. S1 online).

Table 1.  Number of records used to construct models, and performance of different evolutionary level 
models at the landscape and local spatial scales based on the Area Under the Curve of Receiver Operating 
Characteristic (AUC) and True Skill Statistic (TSS).

N of 
records

Landscape 
scale Local scale

AUC TSS AUC TSS

Species-level 28 0.90 0.50 0.95 0.68

Lineage-level
N 18 0.96 0.75 0.95 0.59

S 10 0.79 0.27 0.96 0.68

Figure 2.  Potentially climatic suitable areas according to (a) Species-level binary model, (b) N lineage binary 
model, (c) S lineage binary model and (d) overlay of binary models of the two lineages (N + S binary model) for 
Neurergus kaiseri at the landscape scale. The Dez River is depicted as a reference for lineages distribution.
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Species-level and both lineages-level models predicted similar distribution ranges for Kaiser’s newt at the 
local scale (Fig. 3a). Overlaying analysis verified that lineage N and S had high geographic range overlap, with 
approximately no unique areas for lineage S but much unique suitable range for lineage N (Fig. 3b–d). Proba-
bilistic models are shown in Supplementary Fig. S3 online.

SDMs cross‑prediction. The species-level model had the same successful prediction of the records at both 
the landscape and local scales. Predictive performance of the S model was enhanced at the local scale relative to 
the landscape scale (Table 2). Lineage-level models were more successful than the species-level model in predict-
ing N and S records at the landscape scale and were the same at the local scale (Table 2). Overall, the lineage-level 
model had a better predictive performance. Cross-prediction tests showed that a model built with occurrence 
records of one lineage could not retrieve climatically suitable areas for the other lineage. At the local scale, the 
S model could accurately predict most of N populations’ occurrence, but the S model was not much successful 
(Table 2).

Combination of landscape and local scale models. The local scale model predicted less suitable habi-
tat area than the landscape scale model, substantially through lineage-level modelling approach (Table 3).

Results of the lineage-level modelling predicted more unique, suitable habitats for Kaiser’s newt compared to 
the species-level model (combining all the presence points for modelling and ignoring the intraspecific distinc-
tion; Table 3, Fig. 4).

The lineage- and species-level models had low Schoener’s D overlap at the landscape scale (D = 0.33) but 
were very similar at the local scale (D = 0.86). Although, the distribution maps resulted from the two different 
evolutionary-level models were relatively similar (D = 0.62), predicted ranges were considerably different (Fig. 4).

Potential area of occupancy (pAOO). The suitable habitat for Kaiser’s newt accounted for 1006 and 1297 
 km2 as predicted by species-level and combined lineage-level models, respectively. Agreement of species-level 

Figure 3.  Potentially suitable areas according to (a) Species-level binary model, (b) N lineage binary model, (c) 
S lineage binary model and (d) overlay of binary models of the two lineages (N + S binary model) for Neurergus 
kaiseri at the local scale. The Dez River is depicted as a reference for lineages distribution.

Table 2.  The percentage of correct classification of each lineage’s occurrence records by species-level and 
lineage-level models for each of the two studied landscape and local scales, and the percentage of correct 
classification of each lineage’s records by another model (cross-prediction) based on minimum training 
presence of known occurrences.

Landscape scale Local scale

Species model Lineage model

N

Species model Lineage model

N

S S

N lineage (18 records) 94% 94%
94%

94% 94%
94%

0% 55%

S lineage (10 records) 70% 90%
0%

90% 90%
90%

90% 90%
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and combined lineage-level models assigned approximately 805  km2 suitable area for the species (Fig. 4a). After 
overlapping with the modelled spring map, the suitable habitat for Kaiser’s newt (pAOO) was reduced by 8% and 
was respectively 928  km2 and 1186  km2 by species-level and combined lineage-level model (see Supplementary 
method and Fig. S4 online). Agreement of species-level and combined lineage-level models after eliminating 
non-spring areas assigned approximately 743  km2 suitable area for the Kaiser’s newt (Fig. 4b). Comparatively, 
predicted pAOO based on the IUCN standard 2 × 2 grids was estimated 3120  km2 by species-level model and 
6364  km2 by combined lineage-level model. After eliminating non-spring areas, pAOO at species-level remained 
with the same extension, while combined lineage-level model assigned approximately 6180  km2 pAOO based on 
IUCN recommended grid size (see Supplementary Fig. S5 online).

Table 3.  The number of suitable pixels (30 × 30 m) predicted by each model (N pixels), the percentage of 
correct classification of occurrence records by each lineage-/species-level model based on minimum training 
presence cut-off threshold (% CCR), and Schoener’s D prediction at the two evolutionary ranks. *Northern and 
southern lineages are shared some areas (pixels).

Spatial scale Rank N pixels* % CCR Schoener’s D

Landscape

Species 3,141,807 85%

0.33
Lineage

N
8,218,898

1,881,323
92%

94%

S 6,557,992 90%

Local

Species 2,995,407 96%

0.86
Lineage

N
2,810,175

2,703,309
92%

94%

S 1,227,324 90%

Landscape + local

Species 1,118,135 78%

0.62
Lineage

N
1,441,800 85%

88%

S 80%

Figure 4.  (a) Predicted geographic distribution of Neurergus kaiseri by species- and lineage-level models, 
derived from the combined landscape and local scale binary models. (b) Potential area of occupancy (pAOO) 
after eliminating non-spring areas at 30 m resolution. Discrepancies and agreements are depicted. The Dez River 
is depicted as a reference for lineages distribution.
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Discussion
We developed a multi-scale modelling approach to approximate the potential area of occupancy (pAOO) of 
habitat-specialist taxa with contrasting levels of intraspecific genetic and climatic niche divergence. Using the 
spring-dwelling amphibian Neurergus kaiseri as a model species, we show the importance of considering species 
intraspecific variability and fine-scale local environmental variables to obtain reliable predictions of distributional 
ranges for conservation purposes.

Our analyses recognised two climatic variables (i.e. annual mean temperature and precipitation seasonality) 
plus elevation as the most important parameters determining N. kaiseri’s distribution. Ectothermic organisms are 
highly dependent on environmental conditions, mainly topoclimatic, to develop their  activities8,24. In addition, 
local scale variables limit species distribution within the climatic distribution. Similar to the findings of other 
studies on newt  species25–28, TPI, and forest and formation distances were the most important factors limiting 
the species distribution range. This implies that at local scale, biophysical rather than bioclimatic variables may 
be important in limiting or extending species distribution range, as has also been documented by Manzoor 
et al.29. Negative TPI may allow for humidity to be retained and solar radiation to be blocked, providing a more 
stable local condition (suitable habitat) for Kaiser’s newt. As direct sunlight causes rapid evaporation of shallow 
waters in the hot and dry climate of the species range, sites incorporated enough shaded areas may be selected by 
the species. Canopy cover appears to supply the required shade for the northern populations, while topography 
provides shade for the southern populations. Several studies indicated a dependency of intraspecific lineages 
on distinct environmental  drivers30–32. In our case, the S lineage could compensate for the harsh climate of the 
southern region by being limited to local topographic  refugia33. Our study therefore, contributes to the growing 
literature which indicates that including multi-scale predictors into SDMs produces a more accurate species’ 
environmental niche  approximation34, especially if within-species genetic variation is  considered21,22.

A previous related study showed that climatic niches of the two lineages of N. kaiseri were not  identical17. 
Consequently, we expected that the predicted landscape distribution of the species was dependent on whether to 
consider the species or intraspecific lineages as the unit of modelling. We found support for this expectation in 
the low Schoener’s D overlap found for topo-climatic niches of lineages, the different variable weights obtained 
for species- and lineage-level landscape models and the low cross-prediction capacity of lineage-level models. 
In contrast, at the local scale at which lineages had identical occupied  niches17, the predicted areas by the two 
different evolutionary-level models were very similar. Also, both species and lineage models were affected by the 
same local variables, i.e. forest distance, formation distance and TPI, and the associated response curves showed 
a similar profile for these three factors.

We found that incorporating intraspecific genetic information firmly improves the prediction of SDMs. The 
combination of topo-climatic niches of both lineages provided a wider range size compared to the topo-climatic 
niche inferred for the species; consequently, spatial predictions differed at these two evolutionary levels. Due 
to unequal sample size, the species-level model was biased in favour of lineage N, which likely resulted in los-
ing variables’ dependency and consequently reducing the suitable range of lineage S (see Pearman et al.21). The 
lineage-level models predicted the occurrence sites with higher accuracy compared to that of the species-level 
model and identified climatically suitable unique areas within the distribution range of both lineages (i.e. high 
sensitivity). A comparable pattern was recently reported by Lecocq et al.22, and Chardon et al.30. Still, our infer-
ences are based on small sample size (n < 30), and although we used a robust algorithm capable to deal with 
small sample  size35, our findings must be considered with  caution36. Increasing studies are demonstrating the 
necessity of considering intraspecific lineages in SDMs, particularly those with unique evolutionary  histories6,37, 
and predicting the response of lineages to anthropogenic climate  change5,21,22,38. Our findings revealed that the 
two lineages of the Kaiser’s newt may act differently in response to climate change and should be considered as 
separate conservation management units.

In a heterogeneous landscape, habitat-specialist species occupy only a small fraction of their extent of occur-
rence that represents the AOO. Kaiser’s newt is limited to particular topo-climatic and habitat conditions occur-
ring nearby springs and ponds in the South-West Zagros Mountains. Our study is the first applying a SDM to 
develop a multi-stage, fine-grid-based procedure for approximating the potential AOO of a spring-dwelling 
amphibian. As suggested by Jiménez-Alfaro et al.11, we used fine-spatial-scale data to reduce the uncertainty of 
our SDMs for estimating AOO. The use of SDM for AOO estimation has been criticised due to probable extinc-
tion events across the predicted potential suitable range of  species39. However, we show it can be useful for rare 
species where detectability hampers a good knowledge of distributional  range39, particularly when appropriate 
spatial resolution mirroring resource (i.e. spring/ponds) dependency is considered in model  building8.

The IUCN recommends a standard 2 × 2 km resolution to estimate AOO, which frequently requires downscal-
ing or upscaling distributional  ranges40. Distinct works have pinpointed that downscaling ranges for estimating 
AOO may result in overestimations of this  metric11,41, especially for freshwater  taxa25. Here, we recommend 
developing taxon-specific standard resolutions to homogenously estimate AOO for conservation applications. In 
our study, the use of a very fine grid size (30 × 30 m) for the final model to match the area of species core breeding 
habitat reduces overestimations in the pAOO. Still, our pAOO estimation can be upscaled and standardised based 
on IUCN recommendation for determining the conservation status of a species. Considering the relatively similar 
habitat use pattern of spring-dwelling amphibians, the developed procedure for estimating pAOO can be used 
for other spring dwellers worldwide. The developed modelling process can be improved by including finer scale 
predictors such as microclimate data and biological covariates (e.g. larvae predators and competitors) if available.

Our results highlight the importance of incorporating fine-scale environmental variables, as well as intraspe-
cific genetic information to estimate AOO. Incorporating this all information will provide us with a more accurate 
understanding of the species distribution/AOO for redlisting. Grid-based, standard approaches are known to 
introduce an important bias into range measures, particularly in habitat-specialist  species25. Eventually, bias 



7

Vol.:(0123456789)

Scientific Reports |          (2021) 11:597  | https://doi.org/10.1038/s41598-020-79783-0

www.nature.com/scientificreports/

may result in misclassifications of taxa on the Red List of threatened  Species24. Where possible, conservation 
planning for spring-dwelling species should be informed by output of lineage-based rather than species-level 
SDMs incorporated with fine-scale environmental variation.

Methods
Model species and study area. The Zagros Mountain range represents the southern, Asian branch of 
the Alpine geosynclines. Annual precipitation of over 500 mm has formed a relatively dense oak forest. Karstic 
carbonate aquifers, which are highly fed during the wet season, are characteristic of these mountains; where they 
meet in contact with nonkarstic formations or alluvium, water emerges as  spring42.

Kaiser’s newt is endemic to the South-West Zagros Mountains of  Iran18, patchily occurring in springs sur-
rounded by woodland with rock outcrops. We delimited a study area of 12,635  km2 covering the entire identified 
distribution range of the species and some potentially suitable localities (Fig. 1). The climate through the study 
area varies from wet in the north to dry in the south, mainly due to the influence of dry-warm weather from 
the Arabian Peninsula in the south-west. The elevation ranges from 57 to around 3,000 m above sea level. Land 
use pattern includes intermixed oak woodland and cropland (mainly dry farming), urban and rural residential, 
and transportation development leaving a preponderance of forest cover on higher elevations. Lowland steep 
slopes are dominated by deciduous and evergreen shrubs with more than 30% cover and desert steppes with 
over 10%  cover43.

We conducted two systematic surveys during April-June in 2015 and 2016 to locate occupied sites of rare 
Kaiser’s newt. The sampling effort included all known permanent breeding sites of the species reported by the 
Department of Environment (DOE) and previous  studies44,45. We also recorded and verified new localities (n = 6) 
with the assistance of local people. To reduce observer heterogeneity bias, all occupied springs/ponds were sur-
veyed similarly by one person through dip-netting46. We recorded a total of 30 sites (encompassing springs and 
neighbouring ponds) at GPS resolution inhabited by adults and/or larvae of Kaiser’s newt (Fig. 1). Our recorded 
localities represented the known range of N. kaiseri as of the final collection in 2017. We avoided the inclusion 
of eight further records available in the literature (e.g. Mobaraki et al.45 and Vaissi and  Sharifi19) due to their 
coarse-scale resolution. The average migration distance in closely related species (e.g. crested newts) is about 400 
 m47. Hence, to ensure preserving at least 500 m distances between localities, we spatially trimmed occurrence 
points. The final dataset comprised of 28 occupied sites by the whole species, including 18 by the lineage N and 
10 by the lineage S considering the evolutionary history of the species.

Spatial predictors. Landscape scale predictors. Climate is the primary driver of species distribution by 
limiting individuals’ establishment and  dispersal48. Freely available variables, such as the bioclimatic variables 
from  Worldclim14 (http://www.world clim.org/biocl im), are likely spatially biased for our study area due to the 
scarce number of weather stations across the region; furthermore, these variables do not match to our sampling 
period and are not available for lower resolutions than 30 s (~ 1  km2). Therefore, we derived the 19 bioclimatic 
variables from temperature and rainfall data recorded over 13–26 recent years at 20 synoptic stations around our 
study region using the ‘biovars’ function in the ‘dismo’49 package in  R50. These 19 variables at ~ 500 m resolution 
were interpolated using the Spline algorithm that accounts for the elevation (Japan Aerospace Exploration Agen-
cy; JAXA) in ArcGIS 10.451. We selected the input variables considering the physiological and ecological require-
ments of newts and a comprehensive literature  review52–56. Furthermore, variables were tested for correlation 
and only a set of low correlated variables (Pearson’s pairwise correlations ≤ 0.75) composed of five bioclimatic 
(annual mean temperature, Bio1; mean temperature diurnal range, Bio2; temperature seasonality, Bio4; annual 
precipitation, Bio12; and precipitation seasonality, Bio15) plus elevation were retained for further analyses.

Local scale predictors. Incoming Solar Radiation (SR), Topographic Wetness Index (TWI) and Topographic 
Position Index (TPI) were extracted from 30 m resolution Digital Elevation Model (DEM) (Japan Aerospace 
Exploration Agency; JAXA) in ArcGIS 10.451 and used as a proxy of the local climate. SR affects habitat con-
ditions and contains the information on aspect, slope, and  latitude57. The spatial variation of solar radiation 
(Wh/m2) is severely influenced by the topography at the landscape scale, which along with temporal (daily and 
annual) variation contributes to local climate variability. Average solar radiation was calculated hourly for the  1st 
and 15th of each month from March to October (active season of the study species) using the Solar Radiation 
tool of the  ArcGIS51 Spatial Analyst extension. TWI is a steady-state wetness index used for quantifying effects of 
topography on hydrological processes, such as surface flow and is calculated from the flow accumulation across 
the landscape. TPI is an index of topographic roughness and compares the elevation of each cell in a DEM to 
the mean elevation of a specified neighbourhood around that cell (local window). As TPI is naturally very scale-
dependent, it was calculated relative to 10, 30, 50, 70, 90, 110, 130 and 150 m neighbourhoods using the Land 
Facet Corridor  Tool58. The absolute value of TPI increased with increasing neighbourhood size up to 90 m, and 
then remained unchanged beyond that; thus, a 90 m neighbourhood TPI was considered the most representative 
of the terrain roughness of the study area and was used for modelling. Negative values represent grids that are 
lower in elevation than their surrounding (e.g. ravines), positive values represent grids that are relatively higher 
(e.g. ridge) and zero means a flat or low slope area. In addition, NDVI (the Normalised Difference Vegetation 
Index) was derived from non-cloudy images of Landsat-7 ETM (9 and 15 June 2015). We considered the influ-
ence of the terrestrial habitat surrounding breeding sites by measuring the distance from breeding sites to the 
edge of the forest, Forest distance. We used a worldwide 30 m resolution land cover map produced by Chen 
et al.43. According to this map, the forest in the study area includes a canopy cover of more than 30% and sparse 
woodlands with a cover of 10–30%.

http://www.worldclim.org/bioclim
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Many ecological studies on amphibians have concluded that geological substrate is a key driver of amphibian 
habitat  suitability28,59. We used the National Iranian Oil Company’s 1:100,000 geological map and considered dis-
tance to conglomerate formation across the study area as a geological predictor, Formation distance. In the study 
region, conglomerate substrates (i.e. Kashkan and Bakhtiari formations) have high porosity and the capability 
to store phreatic  water27. This physical property provides water and hiding cavities for newts; hence, it increases 
the probability of their presence. Since there were no significant pairwise, correlated variables, as tested using 
the Band Collection Statistics tool in  ArcGIS51, all six variables were employed in the model building.

Multi spatial scale distribution modelling. Collecting true absence data is difficult in species with 
secretive behaviour such as most of the amphibian species. Lack of true absences hampers the use of presence/
absence approaches, which are based on the strong assumption that species are perfectly detected. We used Max-
ent V.3.4.160, a presence-background method for model building, which has a high predictive power even when 
there is only a small sample of presence  points60, and has been widely used in spatial ecology (e.g. Martínez‐Frei-
ría et al.6, Rodríguez-Rodríguez et al.3, Banerjee et al.5).

We selected a total of 11 predictive variables gathered at distinct spatial scales (i.e. landscape and local scale). 
Integrating all of these variables in a unique model would imply upscaling the local variables from 30 to 500 m 
resolution, causing the loss of fine-scale habitat information. On the other hand, considering our small sample 
size, incorporating many predictors introduce complexity that would affect model  prediction61. Hence, we imple-
mented a two-step modelling procedure dividing the selected variables into the two steps.

SDMs development. We used three occurrence datasets for model building: (1) all occurrences for the spe-
cies (28 records), (2) occurrence of lineage N (18 records), and (3) occurrence of lineage S (ten records). Our 
approach followed these steps (see Supplementary Fig. S6 online): (1) Landscape and local predictors were sepa-
rately employed to construct species-level and lineage-level models in Maxent (six distinct models in total); (2) 
Average variable contribution and permutation importance of the models, as well as response curve profiles, 
were considered to identify the most important variables affecting the distribution of the species and lineages at 
both landscape and local scales; (3) Minimum training presence logistic threshold (MTP) was used to convert 
the continuous predictions generated by Maxent to binary predictions due to its capacity in classifying all the 
localities with records of N. kaiseri as suitable (see Supplementary Note and Table S3 online); (4) N and S binary 
models were overlaid and compared to the species-level binary model to assess the predictive power of the two 
different evolutionary level SDMs (species‐level model versus lineage‐level models); (5) Binary landscape scale 
models were resampled into 30 m resolution and overlaid with local scale models at the two different evolution-
ary levels (i.e. species- and lineage-level). Congruent pixels depicting suitable areas at both spatial scales were 
selected.

We developed all Maxent models with the following settings. We ran 30 bootstrap replicates for N and 
S populations. A 75/25 ratio was devoted to randomly splitting the occurrence data into train/test in model 
building. We implemented the random seed option to guarantee utilising a separate train/test dataset in every 
run. Recent studies have claimed that using the default setting is not always the appropriate option (e.g. Merow 
et al.62; Radosavljevic and  Anderson63) especially when the sample size is  small64. In addition, the number of 
model parameters affects model complexity, which may cause over-fitting65. To control the model complexity 
and over-parameterisation, we calculated the beta multiplier and also reduced the number of included features 
and  covariates66. We ran the model using different regularisation beta-multiplier values (0.5, 1, 2) and assessed 
the most parsimonious N and S models based on Akaike’s Information Criterion corrected for small sample size 
 (AICc). Accordingly, the final models were built with a beta-multiplier of 1. We also selected different features 
based on the available number of occupied sites for each model: Linear, Quadratic and Hinge for lineage N with 
18 records and Linear and Quadratic for lineage S with 10  records67.

Model evaluation. For assessing the performance of the models at the landscape and local scales (hypothesis 
1) in discriminating suitable/unsuitable areas, we took the advantages of two evaluators. To show the general 
accuracy of the models, we used the Area Under the Curve of Receiver Operating Characteristic (AUC), and 
to evaluate the predictions after being transformed with the selected threshold, the True Skill Statistic (TSS)68 
was  employed6,21. For assessing the predictive performance of different models at different evolutionary ranks 
(hypothesis 2), we calculated the percentage of correct classification records by each of the intraspecific lineages 
and binarised species SDMs based on MTP cut-off threshold. To calculate sensitivity (proportion of correctly 
identified presences) we employed the recorded N. kaiseri occurrences which used to calibrate the SDMs. We 
also quantified the similarity of the prediction of the two model types based on Schoener’s D  index69 using 
 ENMtools70. For more comparison, we also calculated the suitable area predicted by each model type.

Potential occupancy areas. Kaiser’s newt is a spring-breeder; a characteristic derived from its stream-breeding 
 ancestors16. To find the sites potentially suitable for being occupied by Kaiser’s newt, we masked the two models 
(i.e. species and combined lineage-level model) by a spring map produced through a distribution modelling 
approach (see Supplementary Method online). This assisted to eliminate the areas other than spring sites where 
the species could not persist. We also estimated the AOO adapted from the IUCN Red List criteria (i.e. 2 × 2 km 
grid  cells40), and ran through the  R50 package ‘Redlistr’71. We specified that at least one per cent of a grid cell 
should be potentially occupied to be counted in estimating pAOO.

Data availability
Distribution data will be available on reasonable request.
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