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Peripheral nerve injury is a significant public health challenge, with limited treatment options and
potential lifelong impact on function. More than just an intrinsic part of nerve anatomy, the
vascular network of nerves impact regeneration, including perfusion for metabolic demands,
appropriate signaling and growth factors, and structural scaffolding for Schwann cell and axonal
migration. However, the established nerve injury classification paradigm proposed by Sydney
Sunderland in 1951 is based solely on hierarchical disruption to gross anatomical nerve
structures and lacks further information regarding the state of cellular, metabolic, or
inflammatory processes that are critical in determining regenerative outcomes. This review
covers the anatomical structure of nerve-associated vasculature, and describes the biological
processes that makes these vessels critical to successful end-organ reinnervation after severe
nerve injuries. We then propose a theoretical framework that incorporates measurements of
blood vessel perfusion and inflammation to unify perspectives on all mechanisms of nerve injury.
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INTRODUCTION

Unlike the central nervous system, peripheral nerves undergo genetically defined programs for
regrowth and consequent restoration of function; however, this regenerative capacity is
dependent on nerve injury severity, and patient outcomes can be frustratingly inconsistent
(1, 2). For the estimated 18,700 individuals annually in the United States who experience a
traumatic peripheral nerve injury, a substantial fraction will endure lifelong pain or loss of
function (3–5). The challenge in improving outcomes is our inadequate understanding of the
key mechanisms underlying injury severity.

The classic Seddon grading scheme classifies peripheral nerve injuries based on clinical
outcomes and into three grades: neurapraxia, a temporary conduction block; axonotmesis,
muscular atrophy consistent with axonal discontinuity; and neurotmesis, a complete disruption
of the nerve. Sunderland expanded on this system in 1951 (6) to add greater scientific and
microanatomical basis and to further differentiate the highly variable recovery potential seen
clinically. To expand and explain variable outcomes in axonotmetic injuries, a third-degree
injury was described as internal disorganization of the endoneurium with intact perineurium,
fascicular architecture, and epineurium that leads to nerve recovery; a fourth-degree injury as
disruption of the perineurium and fascicular architecture with intact epineurium which does
not regenerate; and fifth-degree injury as complete loss of nerve trunk continuity. Although
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FIGURE 1 | Blood supply in peripheral nerves (Reprinted from Lundborg, G:
Nerve Injury and Repair, New York, page 43, 1988) (25).
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Sunderland’s nerve injury grades provided a finer distinction,
evidence for their specific mechanistic description is
questionable; particularly the intact epineurium of fourth-
degree injury (7).

Since Sunderland, no other grading system has been
established, despite the diversity of mechanisms underlying
nerve injury. Moreover, these systems lack information on
both the cellular mechanisms underlying injury outcomes, and
the role of nerve-associated blood vessels in regeneration.
Inflammation (8–10) and ischemia (11–14) play critical roles
in whether recovery from injury is successful or dysfunctional.
Additionally, ischemia and inflammation are intimately
connected and can lock together in feedback loops that lead
to poor outcomes (15).

We seek to outline the known implications of the role of
nerve-associated vasculature, as well as its interplay with the
immune system in response to injury, so that this element can
be considered in future conceptual models. Furthermore, we
discuss the development of meaningful diagnostics that
include the impact of injury-related ischemia into prognostic
consideration.
NEUROVASCULAR COLOCALIZATION
AND COORDINATION

Blood vessels and peripheral nerves are often found running
parallel to each other in the body (16, 17), share many
analogous mechanisms during development and regrowth
(18), and serve as structural guidance cues during
regeneration, as blood vessels can direct neurite outgrowth in
the absence of intact basal lamina tubes (19). The branching,
arborized similarities in structure between nerves and blood
vessels were first noted by Vesalius in 1543 (18), and the first
study of the blood supply of peripheral nerves was performed
in 1768 (11). Details of vascular supply to nerves were
expanded by Ramon y Cajal in 1890 (20), and further
descriptions and characterizations were published by Adams
(1942) (21, 22) Sunderland (1945) (23), Blunt (1957) (24),
and Lundborg (1975) (11).

Because of their high metabolic demands, peripheral nerves
are highly vascularized tissue, with two separate but
interconnected supply networks: intrinsic and extrinsic vessels
(Figure 1) (11). The extrinsic supply originates from nearby
large arteries and veins in adjacent tissue, which connect into
the intraneural intrinsic system via coiled, tortuous vessels that
allow relative movement and stretching of the nerve (7, 26).
The intrinsic system is comprised of the arterioles and venules
of the epineurial, perineurial, and endoneurial plexuses that
run longitudinally along the nerve, along with perpendicular
communicating vessels, anastomoses, and arteriovenular
shunts (11, 13). These highly interconnected and redundant
networks have each been shown to provide adequate supply to
maintain nerve function, even when the alternate system is
completely ligated (11, 22, 27, 28). Although nerves are
resilient to ischemia, sufficient mobilization or disruption of
the extrinsic system along the length of the nerve has been
Frontiers in Surgery | www.frontiersin.org 2
shown to cause ischemic injury. Lundborg (11) showed that
mobilization of 15 cm of intact rabbit sciatic nerve was
enough to impair intraneural microcirculation, and that with
additional disruption of the intrinsic system via transection
this critical distance dropped to 7 cm; highlighting the
importance of perfusion in nerve regeneration.
PERFUSION AND ISCHEMIA IN NERVE
INJURY

The importance of preservation of blood supply has been known
since the 1940s, when cable grafts, which use multiple small
donor nerves, or pedicled nerve grafts, where nerves are
transferred in stages to maintain blood flow, were used to combat
central necrosis seen when using medium to large caliber nerve
grafts (29). The resumption of perfusion in nerve autografts relies
on both the proximal and distal stumps as well as the surrounding
tissue which occur at differential rates (30). However, the relative
importance of each component to graft survival, and whether the
primary mechanism for vascular integration is centripetal
neovascularization or inosculation from surrounding tissue,
remains controversial (31). By the 1970s, free vascularized nerve
grafts were performed (32), and subsequent studies showed
improved or inconclusive recovery of vascularized grafts vs.
nonvascularized grafts (29, 33). Unfortunately, the increased
technical challenge and the risk of thrombosis in vascularized
nerve grafts (34) have limited their application to large defects or
complex cases. Proximal nerve lesions such as brachial plexus
injuries were another common target for vascularized nerve graft
(35); however, direct measurement of efficacy has been
inconclusive because of heterogeneity in case application and
outcome measures.

Ischemia has been implicated as an important mechanism
leading to failed regeneration after nerve trauma, primarily as a
promoter of a proinflammatory environment through cellular
2022 | Volume 9 | Article 862478
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necrosis, macrophage activation and polarization, and endothelial
upregulation of adhesive molecules, such as ICAMs and selectins,
that recruit circulating leukocytes and lead to further
inflammation and cell death (36, 37). Experimental models of
nerve ischemia have required extensive upstream ligation (12, 13)
to outweigh distal extrinsic perfusion, and models using whole-
limb pressure cuffs have noted that even with six hours of
constriction, blood flow returns within minutes (38). In response
to ischemic conditions, vasodilators such as calcitonin gene-
related peptide and endothelial nitric oxide synthase accumulate,
leading to hyperemic conditions immediately after reperfusion
(39). Hyperemia has also been directly measured after nerve
constriction, crush, and transection injuries (13, 38, 40). Extended
periods of ischemia causes damage to endothelial cells, resulting
in a long-term reduction in perfusion, termed “no-reflow,” which
has been seen after three (12) to eight (38) hours of vessel
compression. These numerous pathophysiologic responses lead
to a complex temporal profile of neural blood flow after injury,
and this complexity of mechanisms is reflected by the varied
and conflicting reports published on the role of neurovascular
ischemia.

Stretch (41, 42) and compression (43–46) injury models have
been used to examine the impact of blood flow on nerve function.
Transient nerve compression of 50 mmHg reduces nerve
conduction velocity and increases epineurial vascular
permeability (47), while more severe crush models using
clamps or forceps create a focal injury that can result in axonal
degeneration. Blood flow measurements of crush-injured nerves
found a 30% reduction in perfusion 24 h after crush injury,
followed by significant hyperemia at 48 h after injury (48).
Nerve stretch results in acute reduction in blood flow beginning
FIGURE 2 | Confocal image (100×) of neuroma-in-continuity formation at the zone o
core (yellow asterisk) is visualized by nuclear disintegration, as hallmarked by b
demonstrated by large aggregation of CD11b+ cells (orange), a pan-granulocyte m
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at 8% elongation, with complete cessation of flow around 15%
(49). When the nerve is relaxed hyperemia occurs, although
some vessels may remain occluded or suffer microthrombi and
emboli. Surgical repair under tension causes significant
reduction in neurite outgrowth (50), and repair under tension
demonstrates worse outcomes than low-tension repair with
autograft, despite two neurorrhaphy and suture sites (51).
Ischemia, along with repair site failure, may be part of the
explanation. Unsurprisingly, experiments that involved
supplying nerves with hyperbaric oxygen removed the
conduction block produced at high strain conditions (41).

Rapid nerve stretch experiments (52, 53) have observed that
stretch injury first disrupts the epineurium, the primary
anastomotic vascular layer, at lower strain values than the
endoneurium, a finding that contradicts Sunderland’s injury
grades. At lower stretch severity, intraneural blood vessels remain
intact, and the nerve is not ischemic despite the loss of the
epineurium. When the nerve is ruptured and intraneural vessels
are torn, histologic evidence indicative of necrosis ensues
(Figure 2). This is consistent with Lundborg’s findings:
endoneurial perfusion appears to be more crucial than epineurial.
Furthermore, necrosis leads to a worsened regenerative fate, as
discussed above in relationship to nerve grafting.
DUAL INFLUENCE OF HYPOXIA AND
VASCULATURE ON NERVE
REGENERATION

In addition to providing oxygen and nutrients to regenerating
tissue, nerve vasculature may also provide crucial structural
f stretch-rupture injury at the hamstring bifurcation, 14 days after injury. Necrotic
lurring of nuclear staining (4′,6-diamidino-2-phenylindole). Necrosis is further
arker, which have been associated with clearance of nonviable cells.
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guidance for regenerating axons across damaged tissue and gaps.
The process of axonal regeneration has been described in detail,
involving the coordinated action of neurites, Schwann cells, and
fibroblasts. Nerve regeneration begins with formation of a
longitudinally aligned fibrin cable or bridge by day 2 that
unites nerve discontinuities (54, 55). More recently, it has
been identified that the processes that coordinate Schwann cell
migration and neurite guidance depend partially on hypoxia-
driven vascular growth as scaffolding in areas of nerve
disruption (19).

Histological examination of the fibrin bridge reveals a
mixture of inflammatory cells (50% macrophages, 24%
neutrophils, 13% fibroblasts) and disorganized extracellular
matrix (19, 56, 57), presenting an adverse environment for
directional migration and growth. Further investigation of the
bridge environment revealed that macrophages act as hypoxia
sensors through hypoxia-inducible factor-1α (HIF-1α)
stabilization, which results in vascular endothelial growth
factor-A (VEGF-A) upregulation that initiates polarized
angiogenesis into the bridge volume (19). These vessels guide
Schwann cell migration into the bridge, with axonal growth
cones following the Schwann cells (Figure 3). VEGF has
been shown independently to be a major driver of both
angiogenesis and nerve regeneration (58, 59). Blood vessels
fully infiltrate the bridge by day 3 when the fraction of
hypoxic cells drops to less than 10%; while Schwann cells are
still fragmenting their myelin sheaths, proliferating, and
starting to migrate (60, 61). Artificial misdirection of blood
vessel growth via exogenous VEGF-A results in misdirection
of axonal regrowth, showing that vasculature alone is enough
to independently control nerve guidance (19). Additionally,
inhibition of VEGF-A via cabozantinib, as well as knockout
VEGF-A models, shows a total lack of Schwann cell and
axonal migration into the bridge (62).

Other studies have found similar results in different models.
Ablation of HIF-1α slowed nerve regeneration and eliminated
the conditioning injury effect (63). Another study simulated
increased hypoxia in nerves by targeting its inhibitory
molecules prolyl hydroxylase 1–3 (PHD1-3), showing improved
axonal outgrowth and nerve regeneration in PHD-knockout
FIGURE 3 | Hypoxia-driven macrophage infiltration into the fibrin bridge leads to p
guides Schwann cell migration and neurite outgrowth.
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mice in response to stimulated angiogenesis (64). VEGF has
been well established to improve vascularization, Schwann cell
migration, and functional recovery in nerve repair allografts
(65–68). Novel treatments for nerve injury have utilized VEGF
combined with additional growth factors, including insulin-like
growth factor-1 (IGF-1) (69), glial cell–derived neurotrophic
factor (GDNF) (70), or nerve growth factor (NGF) (65, 71).
Various combinations of nerve regeneration constructs have
been reported to support improvements in outcomes, including
VEGF and brain-derived neurotrophic factor (BDNF) mimetic
self-assembling peptide epitopes embedded in hydrogel matrix
(72), VEGF and NGF loaded in an emulsion electrospun
fibrous scaffold (73), and gel delivery of VEGF and IGF-1 used
to promote functional innervation (69).

Macrophage-driven angiogenesis via VEGF secretion
highlights an important contribution of vascular dysfunction.
Hypoxia is a driver of chronic inflammation that creates
secondary nerve injury and increased fibrosis. Hypoxia is a
major chemoattractant for circulating neutrophils and
macrophages (56, 57), as well as an activator for resident
fibroblasts (19) and vascular endothelial cells (74). Recently,
cyclic or intermittent hypoxia, similar to the profile of
changing perfusion after nerve injury, was shown to promote
a proinflammatory tumor necrosis factor-α and interleukin-8/
macrophage inflammatory protein-2–producing macrophage
phenotype through activation of the Jun kinase/p65 pathway
(75). Similar conditions of prolonged inflammation, such as
infection, lead to longer healing times, worse scar formation,
and reduced tissue function, whereas nerve regeneration into
ischemic wound beds such as skin grafts or poorly perfused
limbs is limited (76). Other situations where hypoxia may
inhibit nerve health include microvascular disease such as that
resulting from diabetes mellitus or radiation injury. Another
result of ischemic inflammation relevant to nerves is the
induction of inflammatory and neuropathic pain, which can
negatively impact regeneration. Macrophage-driven inflammation
has been investigated in neuropathic pain, with angiotensin II
(77), colony-stimulating factor-1 (78), and transient receptor
potential ankyrin 1 (79) pathways implicated as potential
therapeutic targets.
olarized angiogenesis via VEGF and other growth factor expression, which then
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There is a fundamental duality to hypoxia for nerve
regeneration. Physiologic hypoxia-driven macrophage activity
and angiogenesis, which guide and promote axonal regrowth,
reside in tension with pathophysiologic chronic inflammation
resulting from prolonged hypoxic conditions; this fine balance
emphasizes the need for any future therapeutic intervention to
incorporate appropriate hypoxia and blood flow on a
biologically relevant timeline. Additionally, the critical and
early role that blood vessels play in successful nerve
reinnervation may indicate that blood flow could be used as a
diagnostic tool to inform whether surgical intervention will be
required, and to shorten the delay between injury and repair.
MEASURING BLOOD FLOW

Because perfusion is critical to successful nerve regeneration
after injury, it should be considered as a potential biomarker
of either nerve injury severity or early regenerative success
after nerve repair. One challenge for assessment is the absence
of a gold-standard measurement technique to determine blood
flow in the nervous system. Studies have used a variety of
techniques (Table 1), including intravital microscopy (49),
hydrogen clearance (HC) (13, 80–82), laser Doppler flowmetry
(42, 48, 83–85), ultrasound (86–88), and numerous magnetic
resonance imaging (MRI) sequences, including arterial spin
labeling (89, 90), dynamic contrast enhancement (DCE) (91,
92), phase contrast (93, 94), blood oxygenation level–
dependent (BOLD) (95, 96), and intravoxel incoherent motion
(IVIM) (97). HC measures hydrogen gas washout via
electrode probe, whereas laser Doppler and ultrasound work
by measuring frequency shift from reflected light or sound
from moving red blood cells; these all require close proximity
or direct contact of the probe head with the nerve. These
techniques all have different advantages and disadvantages,
but an ideal diagnostic technique should not be invasive
(eliminating intravital microscopy, laser Doppler) or terminal
(HC), leaving ultrasound and MRI as potential options.
Ultrasound is complementary to electrodiagnostic studies, but
TABLE 1 | Partial list of blood flow measurement techniques.

Method Advantages Disadvantages

HC Quantitative Terminal

Laser
Doppler

Spatially sensitive Invasive

Ultrasound Ubiquitous, noninvasive Operator dependent, depth
limited

MRI-ASL Endogenous contrast Low signal to noise, resolution

MRI-DCE Higher resolution, time
specificity

Injected contrast agent, single
measurement

MRI-PC Measures velocity Unknown

MRI-BOLD Measures blood
oxygenation

Unknown

MRI-IVIM Measures perfusion Unknown

Frontiers in Surgery | www.frontiersin.org 5
has reduced resolution for deeply located nerves and is highly
operator dependent (98).

MRI multiplanar T1, fat-suppressed T2, and diffusion tensor
imaging (DTI) sequences have shown promise in detecting
microstructural nerve features and remodeling (98–100).
Fractional anisotropy (FA), a measure resultant from DTI, has
been correlated with successful nerve regeneration as well as
failure (101). However, FA remains a retrospective evaluation
and does not include flow information that may prove to be
prognostic. DCE imaging is a well-established technique that
offers reasonable resolution that has recently been used to
measure increased blood flow after crush injury (102), but it
requires an injected contrast agent and can only capture a
“first-pass” effect (92, 103). Additionally, gadolinium has
limited diffusion through the blood–nerve barrier, which
means it will reflect the status of extrinsic blood vessel
networks, but not perfusion within the endoneurium. Arterial
spin labeling (ASL) uses endogenous water in blood as the
tracer, but is limited by reduced signal-to-noise ratio and
spatial and temporal resolution (89, 90). Other flow-sensitive
methods such as phase contrast, BOLD, and IVIM are available
but have rarely been applied to the peripheral nervous system
(98). Preliminary evidence (Figure 4) suggests that IVIM,
which determines microcirculation from DTI, demonstrates the
ability to capture perfusion within nerves (104).
INTEGRATION OF PERFUSION INTO
INJURY CLASSIFICATION

On the basis of the data presented, perfusion should be
incorporated as an essential biomarker for nerve injury and
regeneration. However, perfusion does not stand independent
of the other aspects of nerve injury. Therefore, to factor
perfusion into nerve injury assessment, we conceptualize a
three-component model for the evaluation of nerve injuries:
(1) anatomical microstructure disruption, advancing
considerations of Sunderland’s conceptualization; (2) nerve
ischemia from injury; and (3) acute and persistent or
pathological inflammatory response.

All three elements are deeply integrated. Mechanical
disruption of the nerve leads to loss of endoneurial tube
guidance, as well as ischemia from vessel injury. The
consequent inflammatory repair microenvironment impacts
extracellular matrix remodeling, neurite growth, and
angiogenesis. Multidimensional evaluation would potentially
allow incorporation and comparison among diverse nerve
injury mechanisms, providing a simplified landscape for
depicting nerve injuries into one heuristic. For example,
principally ischemic injuries, such as positional palsies, versus
largely inflammatory injuries, such as amyotrophic neuralgia,
can be placed alongside complex, multidimensional injuries
such as rapid-stretch injuries (Figure 5). In clinical injuries,
all three components are inter-related, as exemplified by
fascicular torsion in inflammatory nerve palsies where severe
inflammation leads to local ischemia and derangement of
nerve microstructure (105). In a three-axis model, the
2022 | Volume 9 | Article 862478
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FIGURE 4 | In-vivo primary eigenvector RGB component colormaps weighted by fractional anisotropy (FA) for (A) Dfast and (B) Dslow tensors in the sciatic nerve of
a rat. Mean diffusivities of 2.2 × 10−3 mm2/s and 1.0 × 10−3 mm2/s, respectively, indicates blood flow along the longitudinal direction of the nerve.

FIGURE 5 | Schematic representation of three-axis nerve injury severity model. Three prototype injuries are shown, comparing primarily ischemic injury, inflammatory
injury, and stretch-rupture injury. All three pathophysiologic process are shown to be interconnected, such as a primary perfusion injury impacts inflammation and
both have effect upon microstructural remodeling. The more severe the injury on all three axes, the greater the combined area, and thus spontaneous
regeneration is less likely.
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worsening along one axis increases the area of a triangle created
with the other two axes—mathematically representing the
negative synergistic effect.

Appropriate linked metrics and component weighting will
require significant further elucidation. Specifically, our
suggested three-axis evaluation could be achieved in clinical
practice through:

1. Assessment of microstructural disruption using DTI/FA
measurements.

2. Blood flow measurements via IVIM or DCE imaging.
Frontiers in Surgery | www.frontiersin.org 6
3. A peripheral nerve injury–specific biomarker panel; measured
by blood draw, tissue biopsy, or tagged-tracer imaging.

DTI allows for measurements of tissue anisotropy and thus axon
and nerve fiber physical integrity, while both IVIM and DCE
imaging provide instantaneous information on perfusion and
blood flow in the nerve. Biomarker assays would examine
evidence of nerve-specific structural proteins or transcripts
such as: myelin basic protein, neurofilament, or tau;
inflammatory molecules such as IL6 or TNFα, nerve
regeneration associated cytokines such as NGF, BDNF, or
2022 | Volume 9 | Article 862478
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GDNF; or other nervous system related molecules such as S100,
peripherin, or PMP22 (8, 106, 107). We suspect that biofluids
will provide meaningful evidence of nerve injury severity or
pathophysiologic regeneration, in the same manner that
cancer diagnostics are being aided by assessment of
extracellular RNA and DNA (108). Either proteomic or
transcriptomic approaches may help identify signatures of
nerve tissue breakdown, which may better characterize both
the severity as well as the consequent recovery potential.

These enhanced metrics may have the potential to predict
peripheral nerve injury outcomes and would be of use in
assessing the contribution of diseases of microcirculation and
inflammation, such as diabetes mellitus, which have profound
impact on nerve regeneration. To this end, advances in
imaging to identify physiologic process within the nerve in
addition to microstructure should be developed concurrently.
This multicomponent, diagnostically accurate, prognostically
impactful evaluation would then allow optimal decision
making, rather than a ‘wait-and-see’ approach that has
surrounded nerve injuries for the past two centuries.
CONCLUSION

Peripheral nerve injury is a significant and compelling health
challenge that would benefit from pathophysiologic-based
injury classification. Blood flow is a compelling component of
both nerve injury mechanisms and regenerative potential.
Frontiers in Surgery | www.frontiersin.org 7
Peripheral nerve injuries directly impact blood flow within the
nerve, and re-establishing vascular networks is critical in nerve
regeneration. A classification system that assesses the
pathophysiologic components of nerve injury may help better
establish peripheral nerve injury severity and its consequent
management.
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