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Abstract

Attempts to link the Big Five personality traits of Openness-to-Experience, Conscientiousness, 

Extraversion, Agreeableness, and Neuroticism with variability in trait-like features of brain 

structure have produced inconsistent results. Small sample sizes and heterogeneous methodology 

have been suspected in driving these inconsistencies. Here, using data collected from 1,107 

university students (636 women, mean age 19.69 ± 1.24 years), representing the largest sample to 

date of unrelated individuals, we tested for associations between the Big Five personality traits and 

measures of cortical thickness and surface area, subcortical volume, and white matter 

microstructural integrity. In addition to replication analyses based on a prior study, we conducted 

exploratory whole-brain analyses. Four supplementary analyses were also conducted to examine 

1) possible associations with lower-order facets of personality; 2) modulatory effects of sex; 3) 

effect of controlling for non-target personality traits; and 4) parcellation scheme effects. Our 

analyses failed to identify significant associations between the Big Five personality traits and brain 

morphometry, except for a weak association between greater surface area of the superior temporal 

gyrus and lower conscientiousness scores. As the latter association is not supported by previous 

studies, it should be treated with caution. Our supplementary analyses mirrored these 

predominantly null findings, suggesting they were not substantively biased by our analytic 

choices. Collectively, these results indicate that if there are associations between the Big Five 

personality traits and brain structure, they are likely of very small effect size and will require very 

large samples for reliable detection.
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1. Introduction

Studies regarding the basic structure of individual differences in personality traits have 

yielded a relatively consistent five factor model, comprised of the higher-order dimensions 

of neuroticism, extraversion, agreeableness, conscientiousness, and openness-to-experience - 

each capturing a wide array of feelings, thoughts, and behaviors (Digman, 1990). Individuals 

high in neuroticism tend to perceive the world as distressing or threatening and frequently 

tend to experience negative emotions such as anger and anxiety. Extraversion reflects a 

tendency to be outgoing and assertive, to experience frequent positive moods, and to 

approach and explore one’s environment. Agreeableness reflects a tendency to be trusting 

and compassionate, and to prefer cooperation over conflict. Individuals high in 

conscientiousness tend to be organized and planful, and to follow socially prescribed norms 

of behavior. Individuals high in openness-to-experience tend to be curious and reflective, 

show an appreciation for art and culture, and tend to be very imaginative.

The Big Five personality traits are considered to be broad and global factors that can be 

further partitioned to a set of hierarchically lower-order facets, reflecting narrower, yet 

intercorrelated, sub-components of each broad dimension. They have been found across 

cultures (McCrae and Costa, 1997), ages (Terracciano et al., 2010), and reporters (Goldberg, 

1990), shown to be moderately genetically influenced (Vukasović and Bratko, 2015) and to 

predict various psychological outcomes from educational attainment to mental health (Ozer 

and Benet-Martinez, 2006). However, despite the statistical consistency of the Big Five 

personality traits, uncovering the biological mechanisms that underlie them has been 

challenging.

Numerous studies have attempted to find links between personality traits and brain 

morphometry (e.g., Bjørnebekk et al., 2013; Coutinho et al., 2013; DeYoung et al., 2010; 

Ferschmann et al., 2018; Hu et al., 2011; Kapogiannis et al., 2013; Liu et al., 2013; Lu et al., 

2014; Owens et al., 2019; Privado et al., 2017; Schultz et al., 2017), but most have relied on 

relatively small samples (N < 300) and have not yielded consistent and replicable findings 

(reviewed in Allen and DeYoung, 2017; Yarkoni, 2015). Importantly, a recent study has 

suggested that even samples of 300 participants may be too small to reliably detect 

associations between psychological phenotypes and brain morphometry (Kharabian 

Masouleh et al., 2019). This lack of statistical power has been further compounded by varied 

methodological and analytic approaches across studies.

Here, we tested for associations between the Big Five personality traits and multiple features 

of brain structure in the largest sample to date of genetically unrelated individuals (N = 

1,107). Notably, other than its size, our sample also had the advantage of being relatively 

homogeneous in age (18–22 years), which may affect associations between personality traits 

and brain structure (Ferschmann et al., 2018). Surface-based parcellation analyses were 

conducted, rather than traditional vertex- or voxel-based analyses, to maximize spatial 

resolution otherwise lost to smoothing across tissue types (i.e., CSF, gray matter, and white 

matter) and anatomical regions (Coalson et al., 2018; Glasser et al., 2016), restrict the 

number of tests conducted to anatomically defined regions, and enable a straightforward 

correction for multiple comparisons across the whole brain, personality traits, and 
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morphometric measures (i.e., cortical thickness, surface area, subcortical volume, and white 

matter integrity), which is rarely done in personality neuroscience and may affect 

replicability. Furthermore, we explicitly controlled for race/-ethnicity, because previous 

research has found it to be linked with brain structure (e.g., Brickman et al., 2008; 

Pfefferbaum et al., 2016; Xie et al., 2015) and personality (Foldes et al., 2008).

Using the above general strategy, we conducted three related sets of analyses. First, we 

attempted to replicate the personality associations with brain morphometry reported by 

Hyatt et al. (2019), which represents the largest previously published study of the structural 

brain correlates of personality based on data from 1,104 participants, mostly twins and 

siblings, from the Human Connectome Project (age range: 22–36). Second, we conducted 

whole-brain exploratory analyses to examine all possible associations between the Big Five 

personality traits and brain morphometry. Third, in the hope of further informing future 

research in personality neuroscience, and to address previous findings and the possibility of 

parcellation scheme effects, we also conducted four supplementary analyses: a) we 

examined whether lower-order facets of the Big Five personality traits better correspond 

with brain structure (Bjørnebekk et al., 2013); b) we tested if associations differ by sex 

(Nostro et al., 2016), by testing for an interaction between personality and sex; c) we 

examined if associations can be detected when controlling for non-target traits (e.g., 

DeYoung et al., 2010; Liu et al., 2013; Riccelli et al., 2017); and; d) we explored the 

possibility that a different cortical parcellation scheme may affect the findings.

2. Methods

2.1. Participants

1330 participants (762 women, mean age 19.70 ± 1.25 years) successfully completed the 

Duke Neurogenetics Study (DNS), which assessed a range of behavioral and biological traits 

among young adult, university students. The DNS was approved by the Duke University 

School of Medicine Institutional Review Board, and all participants provided written 

informed consent prior to participation. All participants were free of the following study 

exclusions: 1) medical diagnoses of cancer, stroke, diabetes requiring insulin treatment, 

chronic kidney or liver disease, or lifetime history of psychotic symptoms; 2) use of 

psychotropic, glucocorticoid, or hypolipidemic medication; and 3) conditions affecting 

cerebral blood flow and metabolism (e.g., hypertension). Current and lifetime DSM-IV (the 

Diagnostic and Statistical Manual of Mental Disorders) Axis I or select Axis II disorders 

(antisocial personality disorder and borderline personality disorder), were assessed with the 

electronic Mini International Neuropsychiatric Interview (Lecrubier et al., 1997) and 

Structured Clinical Interview for the DSM-IV Axis II subtests (First et al., 1997), 

respectively. Importantly, neither current nor lifetime diagnosis were an exclusion criterion, 

as the DNS seeks to establish broad variability in multiple behavioral phenotypes related to 

psychopathology. However, no individuals, regardless of diagnosis, were taking any 

psychoactive medication during or at least 14 days prior to their participation.
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2.2. Brain morphometry analyses

Brain morphometry was assessed by measuring cortical thickness (CT), surface area (SA), 

subcortical volume, and white matter microstructural integrity. Based on the radial unit 

hypothesis (Rakic, 1988, 2009), SA is driven by the number of radial columns, while CT 

reflects the density of cells within a column. CT and SA exhibit different developmental 

trajectories (Wierenga et al., 2014) and are affected by distinct genetic factors (Panizzon et 

al., 2009). Consequently, we examined associations with CT and SA separately rather than 

the coarser measure of gray matter volume, which is the product of these two measures. To 

measure white matter microstructural integrity, we used fractional anisotropy (FA), which 

measures the directional diffusivity of water, and represents fiber diameter and density, 

degree of myelination, and fiber tract coherence (Basser, 1995; Basser and Pierpaoli, 1996; 

Beaulieu, 2002).

The current analyses of gray matter (i.e., CT, SA, and subcortical volume) were conducted 

on a subset of 1107 participants (636 women, mean age 19.69 ± 1.24 years) for whom there 

was T1-weighted structural imaging data available post quality control procedures (see 

below) as well as personality questionnaire and genetic race/ethnicity data. Amongst this 

subset, 224 participants had at least one DSM-IV diagnosis. Based on self-report, there were 

499 non-Hispanic Caucasians, 125 African Americans, 294 Asians, 71 Latino/as, 2 Pacific 

Islanders, and 116 multiracial or other participants in this subset.

White matter microstructure analyses were conducted on a further subset of 778 participants 

(443 women, mean age 19.67 ± 1.25 years) for whom there was diffusion weighted imaging 

data available post quality control procedures (see below) as well as personality 

questionnaire and genetic race/ethnicity data. Amongst this subset, 156 participants had at 

least one DSM-IV diagnosis. Based on self-report, there were 351 non-Hispanic Caucasians, 

92 African Americans, 213 Asians, 47 Latino/as, 2 Pacific Islanders, and 73 multiracial or 

other participants in this subset.

2.3. Race/ethnicity

Because self-reported race and ethnicity are not always an accurate reflection of genetic 

ancestry, an analysis of identity by state of whole-genome SNPs was performed in PLINK 

(Purcell et al., 2007). The first four multidimensional scaling components were used as 

covariates to reduce possible confounding effects of race/ethnicity. The decision to use only 

the first four components was based on an examination of a scree plot of eigenvalue, which 

showed that the eigenvalues became very similar after the fourth component (further 

information and relevant plots can be found at https://www.haririlab.com/methods/

genetics.html).

2.4. Personality

The 240-item NEO personality inventory revised (NEO-PI-R; Costa and McCrae, 1995), 

was used to assess the Big Five personality dimensions and their underlying facets: 1) 

Neuroticism (based on the anxiety, angry hostility, depression, self-consciousness, 

impulsiveness, and vulnerability facets); 2) Agreeableness (based on the trust, 

straightforwardness, altruism, compliance, modesty, and tender-mindedness facets); 3) 
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Conscientiousness (based on the competence, order, dutifulness, achievement striving, self-

discipline and deliberation facets); 4) Extraversion (based on the warmth, gregariousness, 

assertiveness, activity, excitement-Seeking, and positive emotions facets); and 5) Openness-

to-Experience (based on the fantasy, aesthetics, feelings, actions, ideas, and values facets). 

Each facet was a sum of 8 items, and each personality trait was a sum of the facet scores 

(with certain items reverse coded as indicated). Participants rated the 240 items on a scale 

ranging from (0) strongly disagree to (4) strongly agree. The 6 lower order facets for each 

personality trait were modeled in our supplementary analyses. Internal consistency of the 

personality traits was assessed by Cronbach’s alpha as fair to good, ranging between 0.70 

and 0.85.

2.5. MRI data acquisition

Each participant was scanned using one of two identical research-dedicated GE MR750 3T 

scanners stationed at the same facility, the Duke-UNC Brain Imaging and Analysis Center 

(891 participants on scanner 1 and 216 participants on scanner 2. Additional details on the 

scanners can be found elsewhere: https://www.biac.duke.edu/facilities/scanners.asp). Each 

identical scanner was equipped with high-power high-duty cycle 50-mT/m gradients at 200 

T/m/s slew rate and an eight-channel head coil for parallel imaging at high bandwidth up to 

1 MHz. T1-weighted images were obtained using a 3D Ax FSPGR BRAVO sequence with 

the following parameters: TR = 8.148 ms; TE = 3.22 ms; 162 axial slices; flip angle, 12°; 

FOV, 240 mm; matrix = 256 × 256; slice thickness = 1 mm with no gap (voxel size 0.9375 × 

0.9375 × 1 mm); and total scan time = 4 min and 13 s. Following an ASSET calibration 

scan, two 2-min 50-s diffusion imaging acquisitions were collected, providing full brain 

coverage with 2-mm isotropic resolution and 15 diffusion weighted directions (10-s 

repetition time, 84.9 ms echo time, b value 1,000 s/mm2, 240 mm field of view, 90° flip 

angle, 128 × 128 acquisition matrix, slice thickness = 2 mm). A variable indicating which 

scanner was used for each participant was included in all analyses as a covariate.

2.6. MRI data processing

To generate regional measures of brain morphometry, anatomical images for each subject 

were first skull-stripped using ANTs (Klein et al., 2009), then submitted to Freesurfer’s 

(Version 5.3) recon-all with the “-noskullstrip” option (Dale et al., 1999; Fischl et al., 1999), 

using an x86_64 linux cluster running Scientific Linux. Of the 1321 participants who 

completed the high-resolution T1-weighted imaging protocol, 11 were excluded for the 

presence of motion-related or external artifacts, 4 were excluded for incidental findings, and 

1 was unable to be processed with FreeSurfer. Additionally, the gray and white matter 

boundaries determined by recon-all were visually inspected using FreeSurfer QA Tools 

(https://surfer.nmr.mgh.harvard.edu/fswiki/QATools). This revealed small to moderate errors 

in gray matter boundary detection in 51 individuals who were consequently excluded.

CT and SA for 31 regions in each hemisphere, as defined by the Desikan-Killiany-Tourville 

atlas (Klein and Tourville, 2012), a modified version of the Desikan-Killiany atlas (Desikan 

et al., 2006), which was used in the Hyatt et al. (2019) study, were extracted using 

Freesurfer. The updated version of the atlas is meant to make region definitions as 

unambiguous as possible and define boundaries best suited to FreeSurfer’s classifier 
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algorithm. To ensure that our exploratory analyses were not contingent on a specific 

parcellation scheme, CT and SA for 74 regions per hemisphere, as defined by the Destrieux 

atlas (Destrieux et al., 2010), were also extracted using Freesurfer. Additionally, gray matter 

volumes from eight subcortical regions (Cerebellum Cortex, Thalamus, Caudate, Putamen, 

Pallidum, Hippocampus, Amygdala, and Accumbens area) were extracted with Freesurfer’s 

subcortical segmentation (“aseg”) pipeline (Fischl et al., 2002). Estimated Total Intracranial 

Volume (ICV), total gray matter volume, cerebral white matter volume, and left and right 

hemisphere mean CT were also extracted from the “aseg” pipeline, and average whole-brain 

CT was calculated based on the estimates for the left and right hemispheres.

Diffusion weighted images were processed according to the Diffusion Tensor Imaging (DTI) 

protocol developed by the Enhancing Neuro Imaging Genetics Through Meta-Analysis 

(ENIGMA) consortium (Jahanshad et al., 2013; or http://enigma.ini.usc.edu/protocols/dti-

protocols/). In brief, raw diffusion-weighted images underwent eddy current correction and 

linear registration to the non-diffusion weighted image in order to correct for head motion. 

These images were skull-stripped and diffusion tensor models were fit at each voxel using 

FMRIB’s Diffusion Toolbox in FSL (FDT; http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT), and the 

resulting two FA maps were linearly registered to each other and then averaged. Average FA 

images from all subjects were non-linearly registered to the ENIGMA-DTI target FA map, a 

minimal deformation target calculated across a large number of individuals (Jahanshad et al., 

2013). The images were then processed using the tract-based spatial statistics (TBSS) 

analytic method (Smith et al., 2006) modified to project individual FA values onto the 

ENIGMA-DTI skeleton. Following the extraction of the skeletonized white matter and 

projection of individual FA values, tract-wise regions of interest, derived from the Johns 

Hopkins University (JHU) white matter parcellation atlas (Mori et al., 2005), were 

transferred to extract the mean FA across the full skeleton and average whole-brain FA 

values for a total of 24 (partially overlapping) regions across the two scans. All FA measures 

from the right and left hemispheres were averaged. Additionally, volume-by-volume head 

motion was quantified by calculating the root mean square (RMS) displacement of the six 

motion parameters (three translation and three rotation components), determined during 

eddy current correction for each pair of consecutive diffusion-weighted brain volumes. The 

resulting volume-by-volume RMS deviation values were averaged across all images, 

yielding a summary statistic of head motion for each participant to add to the FA analyses as 

a covariate (M = 0.34, SD = 0.057), as previously recommended for DTI analyses (Yendiki 

et al., 2014).

2.7. Statistical analyses

We first attempted to replicate the significant associations between personality and brain 

morphometry reported by Hyatt et al. (2019; Table 1) at p < .005 (i.e., the significance 

threshold used in their paper). We next proceeded to conduct exploratory parcellation-based 

analyses across the whole-brain (31 SA regions, 31 CT regions, 8 subcortical regions, 24 FA 

measures, and total gray matter volume, cerebral white matter volume, whole-brain average 

FA, and whole-brain average CT) for each of the Big Five personality traits (a total of 5*98 

= 490 tests). Lastly, to assess the robustness of our findings, we conducted four 

supplementary analyses: 1) whole-brain parcellation-based analyses of the Big Five 
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personality facets; 2) whole-brain parcellation-based analyses of the interaction between sex 

and the Big Five personality traits; 3) whole-brain parcellation-based analyses of each Big 

Five personality trait while controlling for the other four traits; and 4) whole-brain 

parcellation-based analyses of each Big Five personality trait, while using a different cortical 

parcellation scheme, specifically, the Destrieux atlas (Destrieux et al., 2010).

Analyses were conducted in R version 3.5.1 (R Core Team, 2018), with the packages 

“broom” (Robinson and Hayes, 2018), “tidyr” (Wickham and Henry, 2018), “dplyr” 

(Wickham et al., 2019), “lmtest” (Zeileis and Hothorn, 2002), “readr” (Wickham et al., 

2018), and “sandwich” (Zeileis, 2004). Linear regression analyses with robust standard 

errors were performed with brain measures as outcomes (as previously done, e.g., 

Bjørnebekk et al., 2013; DeYoung et al., 2010; Liu et al., 2013; Nostro et al., 2016), 

personality measures as independent variables, and sex, age, scanner, and four ancestry-

informative genetic MDS components as covariates of no interest. With the exception of the 

Hyatt et al. (2019) replication analyses which included lateralized associations, all brain 

morphometry measures were averaged across the two hemispheres, as there is no strong 

evidence to support a lateralization effect of personality on brain structure. ICV, average CT, 

and average FA, were used as additional covariates for analyses of subcortical volume and 

surface area, CT, and FA, respectively. For the FA analyses, which can be particularly 

sensitive to motion, head motion was also included as a covariate. The Big Five personality 

traits were standardized (M = 0, SD = 1) in SPSS version 25 before analyses and for the 

interaction analyses sex was mean centered (Schielzeth, 2010). Variance explained (i.e., R2) 

by the independent variable of interest, when it is last in the regression, was calculated in R 

with the package “relaimpo” (Grömping, 2006). The “false discovery rate” (FDR) 

adjustment (Benjamini and Hochberg, 1995) was applied to correct for multiple comparisons 

with the p.adjust function in R.

3. Results

Descriptive statistics for the personality and brain morphometry variables are available in 

Supplementary Table 1.

3.1. Replication of Hyatt et al. (2019)

As reported in Table 2, none of the 15 associations that were significant at p < .005 in Hyatt 

et al. (2019) were significant in our analyses, even without correcting for multiple 

comparisons (i.e., using an uncorrected p < .05 threshold). As Hyatt et al. did not control for 

race/-ethnicity, we also ran analyses without the genetic MDS components to test whether 

these could account for the different results. Again, none of the associations remained 

significant after correcting for multiple comparisons, but three associations were significant 

at an uncorrected p < .05, although not necessarily in the same direction as found in Hyatt et 

al.: a positive association between the right supramarginal gyrus SA and neuroticism (b = 

24.047, SD = 11.43, p = .036, R2 = 0.23%; this association was negative in Hyatt et al.); a 

negative association between the left pars orbitalis CT and neuroticism (b = −0.013, SD = 

0.005, p = .021, R2 = 0.33%; this association was positive in Hyatt et al.), and a positive 

association between the left superior frontal gyrus CT and neuroticism (b = 0.0072, SD = 
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0.003, p = .02, R2 = 0.21%; this association was also positive in Hyatt et al.). When 

comparing the analyses with and without controlling for race/ethnicity (Table 2), it is 

noticeable that race/ethnicity can affect the obtained results.

As the race/ethnic composition of our sample differed from the race/ethnic composition of 

the Human Connectome Project (HCP) sample on which the analyses of Hyatt et al. were 

based (i.e., 44.6% vs. 74.8% of non-Hispanic Caucasians, 11.4% vs. 15.1% of African-

Americans, and 27% vs. 5.7% of Asian-Americans, which also included Native Hawaiian, or 

other Pacific Islander in the HCP), we also separately present the results from our three 

largest ethnic subsamples, as determined based on self-reports and genetic ancestry 

components, when available. Here, the sample sizes are larger because individuals with 

missing genetic data were also included based on self-reported race/ethnicity: non-Hispanic 

Caucasians (n = 559), Asians (n = 336), and African-Americans (n = 143). As shown in 

Table 2, there were differences between the groups, further supporting our decision to 

control for race/ethnicity (e.g., in Asians the association between the left superior frontal 

gyrus CT and neuroticism was positive and significant at an FDR corrected p value < .05, 

but it was somewhat negative in African Americans. This association was also significant at 

an uncorrected p < .05 in the mixed race/ethnicity sample, when race/ethnicity was not 

included as a covariate).

3.2. Exploratory whole-brain analyses

The top associations (i.e., uncorrected p < .005) are reported in Table 3 along with their R2. 

Only one of the associations between the Big Five personality traits and brain morphometry 

(CT, SA, subcortical volume, or FA) remained significant after the FDR correction for 

multiple comparisons: the association between the SA of the superior temporal gyrus and 

conscientiousness (b = −33.91, SE = 8.66, p = 9.55e-05, FDR adjusted p = 0.047, R2 = 

0.44%). All associations and related variance explained (R2) are presented in Supplementary 

Table 2.

3.3. Supplementary analyses testing for the robustness of our null findings

Our supplementary analyses (i.e., testing personality facets instead of the Big Five 

personality traits [Supplementary Table 3], examining interactions between the Big Five 

personality traits and sex [Supplementary Table 4], using non-target personality traits as 

covariates [Supplementary Table 5] or using a different cortical parcellation scheme 

[Supplementary Table 6]) revealed that these generally null findings were not biased by our 

analytic approach. Only the associations between the SA of the superior temporal gyrus and 

either the dutifulness facet of conscientiousness (b = −39.50, SE = 8.79, p = 7.76e-06, FDR 

adjusted p = 0.04; R2 = 0.62%) or conscientiousness itself (b = −41.13, SE = 9.56, p = 

1.85e-05,FDR adjusted p = 0.048; R2 = 0.52%), remained significant after the FDR 

correction for multiple comparisons across all the tests conducted in the current study (5,150 

tests in total). Higher dutifulness was associated with reduced superior temporal gyrus SA.

Although none of the interactions between the Big Five personality traits and sex remained 

significant after applying a multiple comparisons correction, the supplementary also 

includes whole-brain parcellation-based analyses of the Big Five personality traits for males 
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and females separately (Supplementary Tables 7–8). This was done to enable comparisons to 

previous studies and inform future meta-analyses.

4. Discussion

In the current study, with the largest sample of unrelated individuals to date, we failed to 

identify robust links between the Big Five personality traits and multiple, trait-like features 

of brain structure. Several supplementary analyses, in which we tested the facets of 

personality, explored a possible moderation by sex, included the non-target personality traits 

as covariates, and used a different parcellation scheme, confirmed these primary null 

findings. There was one exception: an association between greater SA of the superior 

temporal gyrus, an area involved in language perception and production, and lower scores on 

conscientiousness, and, more specifically, dutifulness. However, this association is novel and 

does not correspond with previous findings (Bjørnebekk et al., 2013; Hyatt et al., 2019; 

Lewis et al., 2018; Nostro et al., 2016). Consequently, it should be treated with caution. 

Generally, the supplementary analyses suggested that the primarily null results of the 

primary analyses did not depend on specific analytic or methodological choices. This is 

further supported by a recent large study which applied a voxel-wise approach and also did 

not find robust associations between personality traits and brain morphometry (Kharabian 

Masouleh et al., 2019).

There are several possible reasons for the lack of replicable associations between personality 

and brain structure, including the current failure to replicate associations identified by Hyatt 

et al. (2019). With regard to this specific failure, Hyatt et al., did not use statistical methods, 

such as multilevel modeling (e.g., Hanley et al., 2003; Huang, 2016; Liang and Zeger, 1993), 

that can account for the dependency and clustering within their data, which is derived 

primarily from twins and siblings (only 4% of the sample is not genetically related; https://

wiki.humanconnectome.org). Because individuals within families share genes and 

environments, not accounting for family clustering may have biased their findings. 

Additionally, even though we used a similar atlas (original study: the Desikan-Killiany atlas; 

our study: the updated Desikan-Killiany-Tourville atlas), a similar personality measure 

(original study: the 60-item NEO-FFI; our study: the 240-item NEO-PI-R), and a similar 

scanner (original study: the 3T Siemens Skyra; our study: the 3T GE MR750), it is possible 

that these small differences in data collection affected our results. However, if such 

differences account for the lack of replicability, this raises questions regarding the robustness 

of the original findings. We also used multiple regression analyses, which are more similar 

to semi-partial correlations, while Hyatt et al. employed partial correlations. To ensure the 

robustness of our findings, we repeated our analyses using partial correlations; our results 

were robust across either estimation procedure. More generally, most of the correlations 

reported by Hyatt et al. were smaller than 0.10, and, similarly, in our study almost all the R2 

were smaller than 1%. This suggests that effect sizes for associations between personality 

traits and brain structure are likely to be very small and will require very large sample sizes 

to be reliably detected.

Furthermore, differences between and within samples may also limit replicability in 

personality neuroscience. Age is known to affect brain structure, and indeed has been shown 
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to moderate associations between brain structure and personality (Ferschmann et al., 2018). 

Sex differences may also be relevant (Nostro et al., 2016), although interactions with sex did 

not remain significant after applying a multiple comparisons correction. Our results also 

suggest that accounting for race/ethnicity may be advised when testing for personality-brain 

structure associations. Indeed, previous research has shown differences in brain structure as 

a function of race/ethnicity (e.g., Brickman et al., 2008; Pfefferbaum et al., 2016; Xie et al., 

2015) and measures, such as stress (O’Doherty et al., 2015), that correlate with brain 

structure have also been shown to differ by race/ethnicity (Avinun et al., 2019). Furthermore, 

due to the identification of significant ethnic differences in brain structure between 

Caucasians and Chinese, a different brain atlas was constructed for Chinese (Tang et al., 

2010). Thus, it may be insufficient to simply control for race/ethnicity in statistical models.

Although we used the largest sample of unrelated individuals to date, relied on 240 items to 

assess personality traits, and employed different methodologies to test for the associations 

between the Big Five personality traits and brain structure, our study does have several 

limitations. First, we did not exhaust all the possible ways to assess personality. For 

example, an alternative classification approach is represented by personality “types,” which 

defines categories of individuals based on similar configurations of interacting traits. A large 

analysis of personality types indicated that there are 4 personality types that can be clustered 

based on scores on the Big Five personality traits (Gerlach et al., 2018). Thus, for example, 

someone low on neuroticism may also have an average or a high conscientiousness score, 

which may correspond differently with brain structure. Future studies could focus on such 

“types” in examining personality-brain structure associations. Second, our acquisition 

protocol precluded the application of more anatomically precise parcellation schemes (e.g., 

Glasser et al., 2016). Third, our sample of volunteer students at a top university may not be 

representative of the general population. Fourth, we examined each brain region and 

measure individually in the search for localized effects. Multivariate statistical methods 

(McIntosh and Mišić, 2013) that can jointly model several brain regions and personality 

traits and look for possible covariance patterns (Smith and Nichols, 2018), could help to 

decrease the number of analyses. Additionally, it is possible that these covariance patterns 

better reflect the complexity and interconnectedness between brain regions and personality 

traits, and may consequently lead to different findings and insights (Kharabian Masouleh et 

al., 2019). Lastly, we did not examine brain function or conduct network analyses. The brain 

correlates of personality may be more readily identified in functional measures and/or 

network analyses, such as functional connectivity. Importantly, as functional MRI studies 

often rely on small sample sizes, here as well caution will be needed in the interpretation of 

findings until replicable findings emerge.

Our largely null findings echo comments made by Yarkoni (2015): “There is no guarantee 

that any particular psychometric model of individual differences in personality will map 

onto underlying biological process models in any straightforward way. In fact … a clear-cut 

relationship between the two is likely to be the exception rather than the rule.” As well as 

those by Kharabian Masouleh et al. (2019) that associations between psychological 

measures (including personality) and specific brain structures in a healthy sample are 

“highly unlikely” (Kharabian Masouleh et al., 2019). That said, small effect sizes and 

possible moderating effects of sex, age, and race/ethnicity suggest the possibility that with 
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ever larger and more homogeneous samples reliable links between personality and trait-like 

features of the brain may yet emerge. The field of personality neuroscience may benefit from 

following the lead of genome-wide association studies that have, after many failed attempts 

with candidate gene studies and small samples (e.g., Avinun et al., 2018; Bosker et al., 

2011), begun to reveal the genetic architecture of complex traits through massive samples 

(Plomin and von Stumm, 2018). The growth of shared imaging data through research 

consortia (e.g., the “enhancing neuroimaging genetics through meta-analysis” project 

[ENIGMA]) may allow for such gains in personality neuroscience sooner than later.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 1

Significant personality and brain structure (SA and CT) associations reported by Hyatt et al. (2019).

CT SA Subcortical volume

Neuroticism Left caudal middle frontal gyrus (+)
Left pars orbitalis (+)
Left pars triangularis
(+)
Left superior frontal gyrus (+)

Left cuneus (−)
Left pars triangularis
(−)
Left superior parietal lobule (−)
Right supramarginal gyrus (−)
Superior frontal gyrus (−)

Openness Left rostral middle frontal gyrus (−)
Left superior parietal lobule (−)

Left inferior temporal gyrus (+) Left caudate
(+)

Agreeableness Left caudal middle frontal gyrus (−)

Extraversion Right superior frontal gyrus (+)

Note. +/− indicate the direction of the associations (i.e., positive or negative respectively). SA = surface area; CT = cortical thickness.
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Table 3

Top results (p < .005) from whole-brain exploratory analyses between the Big Five personality traits and 

structural brain measures in the Duke Neurogenetics Study.

b SE p value FDR adjusted p value R2

Superior temporal gyrus (SA) on Conscientiousness −33.912 8.659 9.55E-05 0.047 0.44%

Thalamus Proper on Conscientiousness −54.921 15.690 0.000483 0.12 0.49%

Postcentral gyrus (CT) on Openness 0.007 0.002 0.001413 0.23 0.45%

Cerebral peduncle on Neuroticism −0.002 0.0005 0.002643 0.32 0.82%

Transverse temporal gyrus (SA) on Conscientiousness −3.858 1.327 0.003724 0.36 0.44%
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