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Abstract: Plant fiber/plastic composites (PPCs), with the benefits of low cost and easy processing,
have been widely used in the production of various food contact products. They are generally
considered to be economical and environmentally friendly because of their natural raw materials
(plant fibers) and recommended to be one of the ideal alternatives to traditional petrochemical-based
plastics. However, in addition to plastic resins and plant fibers, some indispensable additives are
involved in the production process of PPCs, which may pose food safety risks. To date, excessive
migration of hazardous substances (such as melamine) has been reported in some products made of
PPCs, and the safety and applicability of PPCs as food contact materials need to be further studied. In
this paper, the main raw materials of PPCs used for food contact are taken as the pointcut to analyze
the possible hazards, sources of hazards, and existing risk management measures in various countries.
The conclusion shows that PPCs used for food contact may have potential safety risks at present.
However, systematic research on migration methods and safety assessment are still insufficient, and
further studies are needed regarding the main safety risks and migration patterns.

Keywords: safety risk; plant fiber/plastic composite; food contact materials; potential hazards

1. Introduction

In the context of circular economy and sustainable development, countries all over
the world are looking for new materials which are more environmentally friendly and
economical, to replace traditional petrochemical-based plastics. Bio-based plastics refer
to a kind of polymeric material with plastic characteristics produced from biomass [1,2]
such as cellulose, starch, fiber, and protein. Most bio-based plastics are degradable, and
the development of bio-based plastics meets the developmental requirements of energy
conservation, environmental protection, and circular economy [3,4]. In China, industrial
restructuring proposals to encourage the development of bio-based materials have been
put forward, with an estimated economic impact of about 30 trillion yuan [5].

As a kind of bio-based material, plant fiber, which is a renewable resource, has
the characteristics of low cost, easy processing, low density, and biodegradability [6].
It is suitable for blending with starch, chitin, or other degradable materials to produce
degradable food contact materials [7]. At present, the PPCs made from natural plant fibers
such as bamboo, straw, rice husk, bagasse, coffee grounds, and synthetic resins have been
widely used in the production of tableware.

However, food contact materials and products produced by blending nature plant
fibers with synthetic resins may also have certain safety risks. Relevant studies have shown
the migration of various substances in this kind of material, including components derived

Toxics 2021, 9, 343. https://doi.org/10.3390/toxics9120343 https://www.mdpi.com/journal/toxics

https://www.mdpi.com/journal/toxics
https://www.mdpi.com
https://orcid.org/0000-0001-8492-0338
https://doi.org/10.3390/toxics9120343
https://doi.org/10.3390/toxics9120343
https://doi.org/10.3390/toxics9120343
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/toxics9120343
https://www.mdpi.com/journal/toxics
https://www.mdpi.com/article/10.3390/toxics9120343?type=check_update&version=1


Toxics 2021, 9, 343 2 of 14

from plant fibers, synthetic resins, or additives [8]. For example, tableware made of bamboo
fiber blended with melamine-formaldehyde resin (MF) has been repeatedly found to have
excessive migration of melamine or formaldehyde [9,10].

Here, we review the potential safety risks of food contact materials made of plant
fibers and synthetic resins, identify the possible hazards and sources of hazards, analyze
risk management measures in some countries and regions, and discuss the current status
and the possible trends of safety research (Figure 1).
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2. Product Types and Main Raw Materials
2.1. Product Types
2.1.1. Classification According to the Proportion of Ingredients

According to the different proportions of main raw materials and processing tech-
nology, food contact products made of PPCs can be divided into two categories (Table 1).
The first one is made of plant fibers (or powders) as the main raw material (up to 90%),
with a small amount of resins and other additives [11], and processed by dry molding
or wet compression molding process. This kind of material has poor heat and water re-
sistance, and generally has a relatively fast deterioration rate [7]. Therefore, it is difficult
to use them repeatedly for a long time. In order to enhance products’ waterproof and
oil-proof performance, coating of melamine resin or other materials usually be applied
after molding [12–14]. The second one uses plastic resins as the main raw material and
plant fibers (or powders) as a filler (30~70%), which are usually processed and molded by
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extrusion molding. These kinds of products are usually made reusable [15–19], and can
keep good performance on the premise of lower prices [7]. Considering the differences in
composition and application scenarios, the above two types of products should also be
treated differently in risk analysis and safety assessment.

Table 1. Two categories of plastic/plant-fiber composites (PPCs) according to composition and processing technology.

Categories Plant Fiber Content Processing Technology Coatings Food Contact
Application Scenario

PPCs with relatively higher
plant fibers content Up to 90% Dry molding or wet

compression molding process Usually necessary Disposable tableware

PPCs with relatively higher
plastic resins content 30~70% Extrusion molding Not necessary Reusable tableware

2.1.2. Classification According to Degradation Performance

Due to the degradable properties of plant fibers, the degradability of PPCs primarily
depends on materials other than plant fibers in the formulation [20]. Therefore, in terms
of degradability, PPC food contact materials can be divided into degradable materials
and non-degradable materials according to the degradation performance of raw materials.
Only PPC products produced by blending with degradable materials, such as starch,
polylactic acid (PLA), or poly (butyleneadipate-co-terephthalate) (PBAT) can be regarded as
degradable. Composites blended with traditional plastics cannot be completely degraded.
At present, although PPCs have the advantage of using plant fibers as renewable resources,
the mechanical properties, processability, and water vapor/oxygen barrier properties of
PPCs are still inadequate compared with traditional plastics [4,21].

2.2. Main Raw Materials

The main raw materials of PPCs include plant fibers, synthetic resins, and additives.
Plant fibers are also used as filling agents (additives) in certain materials, while in this
paper they were discussed as basic materials other than additives. As the intentionally
or non-intentionally added substances in the raw materials are the major components of
migration, the types and characteristics of raw materials are important factors that affect
the safety of PPCs.

2.2.1. Basic Materials
Plant Fiber

The chemical constitution of natural fiber is very complex, including cellulose, hemi-
cellulose, lignin, pectin, wax, pigment, and other substances [6]. Nowadays, many kinds of
plant fibers are used to produce PPCs intended for food contact, including bagasse, olive
pomace, jute, coconut shell, coffee pomace, bamboo fiber, and other varieties [6]. Due to
the difference in plant distribution, the types of plant fibers studied and applied also show
certain regional characteristics.

Compared to synthetic fibers, plant fibers of the same quality have stronger mechanical
properties [22]. Nevertheless, the disadvantages are their higher hydrophilicity and rela-
tively poor thermal stability [23]. The mechanical properties, hydrophilicity, and thermal
stability of plant fibers are related to the composition ratio of cellulose, hemicellulose, and
lignin. Generally speaking, the mechanical strength and thermal stability of cellulose that
has a higher molecular weight are stronger than those of hemicellulose and lignin, while
hemicellulose has stronger water absorptivity [24]. In addition, the quality of plant fiber is
unstable, which is easily affected by factors such as regions, seasons, or suppliers [25]. This
is also an important factor that limits its application.

Synthetic Resin

Synthetic resin is mostly used as a connecting phase or coating in PPCs, which has
adhesive, waterproof, and oil-proof properties [7]. All kinds of synthetic resins can be
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used in the production of PPCs. Traditional petroleum resins such as polypropylene
(PP) [26], polyethylene (PE) [27], and MF [11,12], and other biodegradable resin materials
such as PLA [3], poly (butylene succinate) (PBS) [27], hydroxybutyrate-co-hydroxyvalerate
(PHBV) [28,29], polyhydroxybutyrate (PHB) [21] are the most commonly used resins.

Because of their molecular structure and chemical bond characteristics, degradable
resins usually have low stability and heat resistance, therefore with a poor machining
performance compared with non-degradable resins [2]. For example, PLA, which is widely
used in food contact products, has a fast crystallization rate, low breaking elongation, and
poor toughness [30]. As a kind of polyhydroxyalkanoate, PHB resin has high hardness but
poor plasticity, which makes it easy to fracture during processing [31,32]. Most degradable
resins need modification, blending with other resins or adding filling agents to improve
their processability [33,34].

Interaction between Plant Fiber and Synthetic Resin

Adding plant fiber into resins can enhance the strength of the composite [35], but
will reduce the thermal stability, water vapor permeability, and oxygen resistance of the
composite to a certain extent [29,36,37]. Coffee jar lids made from 40% banana fiber with
equal HDPE and PLA showed a better impact resistance than pure PLA products [38]. E.L.
Sánchez-Safont et al. [21] blended 10–20% almond shell, rice husk, and seaweed with PHB.
It was found that, on the one hand, natural plant fibers could enhance the elastic modulus
of PHB without affecting its crystallization and degradation properties. On the other
hand, compared with pure PHB materials, the barrier properties and thermal stabilities of
the composites were reduced to varying degrees. The study of bio-composites made by
melt extrusion of coffee silverskin and PHBV showed that the increase of coffee silverskin
content could improve the crystallinity, hardness, and heat deflection temperature of the
bio-composites [39].

There may be significant differences in physical and chemical properties of plant
fibers of different kinds, different producing areas, and different processing methods,
thus affecting the performance of the final composites [40]. By comparing water-resisting
properties of films made by mixing cellulose and fiber extracted from bagasse and coconut
shells according to different proportions, it was found that, compared with pure cellulose
films, materials with a small amount of fiber (75% cellulose and 25% fiber) have better
water-resisting properties [41]. The olive pomace is a solid waste in the olive oil pressing
process, which is rich in lignocellulose. Lammi et al. [42] dried, ground and processed olive
pomace into three different fillers, which were then added to PP and PHBV to prepare
composites with 5–30% of olive pomace content. The results showed that olive pomace with
higher lignin content and weaker polarity could better retain the mechanical properties
of PP and PHBV. In contrast, the olive pomace with high cellulose content and strong
polarity, as well as the roughly processed olive pomace obviously reduced the mechanical
properties and water vapor permeability of composites but had little effect on the oxygen
permeability of the materials. The above effects become more significant with the increase
of olive pomace content.

Blending synthetic resins with natural plant fibers also has positive economic and
social benefits. On the one hand, this method can reduce the use of petrochemical raw
materials, promote the utilization of natural resources and reduce carbon emissions. On the
other hand, it can also reduce the production cost [4,43], which is beneficial to industrial
production and expansion of application scope. Especially for degradable resins, which
are usually more expensive, the addition of plant fibers can yield PPCs with good mechan-
ical performance, such as better toughness and elasticity of the materials, at a reduced
cost [21,38,44]. Moreover, plant fibers would not affect the degradation performance of
the products [45,46], which provides a new idea for the popularization and application of
degradable resins.
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2.2.2. Additives

The surface of plant fiber is rich in hydroxyl and carbonyl, which makes plant fiber
hydrophilic [24]. However, synthetic resins are mostly nonpolar structures resulting in poor
compatibility between the two phases when they are blended with plant fibers [26,33,34],
manifested by peeling between two phases, material strength decrease, and poor process-
ability [7]. To increase the compatibility and improve the performance of PPCs, it is usually
necessary to introduce proper functional groups for the surface modification of plant fiber
to reduce the hydrophilicity, or use additives such as plasticizers and compatibilizers in
the compounding process [4,6].

Surface Modification of Plant Fiber

Silane is a commonly used surface treatment agent. Cellulose can be treated with
silanol aqueous solution, or silane coupling agents [47]. Olive husk flour [28], and a bamboo
cellulose nanowhisker [47] treated with different silanes were all found to disperse more
evenly in composites. Furthermore, the interfacial compatibility of PPCs was enhanced,
and the mechanical properties and thermal stability properties were improved to varying
degrees. However, an excessive amount of silanes would lead to its self-condensation
reaction, which would cause insufficient silylation reaction and a lower grafting degree of
the functional group [47].

Besides silane, other substances can also be used for the surface modification of plant
fibers. Pyrrole can be oxidized and polymerized on the surface of bamboo fiber, and the
resulting polypyrrole can improve the compatibility between bamboo fiber and PLA, and
thus improve the mechanical properties and thermal stability of composites [48].

Alkali treatment is also a commonly used surface treatment method for plant fibers.
Alkaline alkylation reaction occurs on the treated fiber surface, which is beneficial to
blending with synthetic resins [7]. However, alkali treatment may reduce the inherent
strength of plant fibers [47,49]. In a study, palm fiber (Macaíba) was first treated with
maleic anhydride, sodium hydroxide or (3-methacryloxypropyl) trimethoxysilane (CAS:
2530-85-0), and then blended with polycaprolactone (PCL) [50]. The effect of this blend
on mechanical properties of the composites was investigated, which showed that PPC
with maleic anhydride-modified fiber had the best mechanical property, while sodium
hydroxide had the worst modification effect.

Compatibilizer

Compatibilizers are often used to improve the properties of PPCs. Maleic anhydride,
as a common reactive compatibilizer, can undergo esterification reaction with hydroxyl
groups on the fiber surface, thus enhancing adhesion power between plant fiber and syn-
thetic resin and improving the mechanical property of materials [7,51]. Compared with
common PLA, adding 0.3% maleic-anhydride-grafted-PLA as a compatibilizer can improve
the mechanical properties and waterproof performance of wood fiber/PLA composites [52].
Similar results were reported for the composite of bamboo fiber and PP using maleic-
anhydride-grafted-PP as compatibilizer [22], and corn straw powder/low-density polyethy-
lene (LDPE) composite compatibilized by maleic-anhydride-grafted-PE [53]. Lignin has
also been reported as a coupling agent to increase the compatibility between plant fiber
and plastic matrix, thus improving the mechanical properties of composites [42].

Other Additives

Additives commonly used in PPCs also include plasticizers, water and oil repellent,
filling agent, nucleator, etc. [54]. Commonly used plasticizers include glycerol, ethylene
glycol, urea, aliphatic acid, sugar alcohol, etc. [7]. Coffee silverskin/PHBV composites
plasticized by acetyl tributyl citrate (ATBC) showed a better processability [39]. In the
study of additives used in tableware made of ramie sticks, 3% liquid paraffin was found to
bring a better waterproof effect, while lime carbonate, talcum powder, and white clay as
composite filling agents could make the tableware have the strongest oil resistance [55].
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Nano-silica is a common nucleator, which was reported to enhance mechanical properties,
water resistance, and thermal stability of bamboo fiber/PLA composites when added up to
1.5% [56].

The functions and corresponding types of additives commonly used in current PPCs
and products for food contact are summarized in Table 2.

Table 2. Common additives for PPCs and products for food contact.

Function of Additives Common Types of Additives

Fiber surface modification agent Silanes, pyrrole, alkali (sodium hydroxide, etc.), maleic anhydride
Compatibilizer Maleic anhydride, lignin

Plasticizer Glycerol, ethylene glycol, urea, fatty acid, sugar alcohol, acetyl tributyl citrate (ATBC)
Waterproof and oil-proof agent Liquid paraffin wax

Filler Calcium carbonate, talcum powder, kaolinite
Nucleator Nano-silica

3. Potential Hazards and Possible Sources

Like other food contact materials and products, the components of PPCs may move
into the food through migration and diffusion via direct contact [57], thus causing safety
problems. It is of great significance to analyze the components and sources of potential
hazards for the safety assessment and risk control of PPCs. Due to the limited literature
on migration data, the potential hazards of PPCs were speculated based on their possible
ingredients. Hazards in PPCs may come from plant components, synthetic resins, additives,
pesticide residues, or microorganisms, of which the potential safety risk of plant fibers is
the key distinction between PPCs and common plastic materials.

3.1. Plant Ingredients

Apart from dominant ingredients with high molecular weight and stable structure,
such as cellulose, hemicellulose, and lignin, plant fiber also contains many bioactive com-
ponents, such as protein, polysaccharides, aldehydes, and ketones [24]. The composition
of plant fiber has strong species specificity, which may also be affected by the place of
origin and climate in which the plant is grown, for example, more terpenoids are needed
for plants under greater environmental stress [40].

Some species of plants will produce toxins or allergens during their growth, which is
one of the self-defense mechanisms of plants in long-term evolution [58]. Rosaceae plants
will produce amygdalin in their seeds, which will be metabolized into highly toxic cyanide
in the body after ingestion [59]. Flax contains linamarin and lotaustralin, that also belong
to Cyanogenic Glycosides and can be hydrolyzed into cyanide under acidic conditions [60].
Cyanide will affect the utilization of oxygen in mitochondria and cause poisoning or death
of the body. Ricin, a highly toxic and water-soluble protein, is contained in the seeds of
castor oil plants and can cause serious symptoms such as gastrointestinal bleeding with a
small amount [61]. Some studies have shown that lacquer sap from lacquer trees, natural
rubber from Hevea brasiliensis tree, rice straw, and wood flour can cause allergic reactions
such as contact dermatitis and asthma [62–64]. These substances may be removed during
fiber processing, but they may also exist in some roughly processed plant powders.

3.2. Synthetic Resins

The safety risks introduced by synthetic resins mainly come from residual monomers,
polymer decomposition products, oligomers, etc. MF resin, as a commonly used thermoset
material [65], has been blended with plant fibers to produce tableware in many applications.
However, MF resin will decompose under acidic conditions or high temperatures, resulting
in the migration of melamine and formaldehyde [66]. Formaldehyde residues were tested
in food contact materials made of various fiber/MF composites [57]. The migration of
25 volatile and semi-volatile substances, and 12 non-volatile substances have been found
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in bamboo/MF food contact materials, of which non-volatile substances were mainly
melamine and its derivatives [8]. Federal Office of Consumer Protection and Food Safety
of Germany (BMEL) randomly inspected 56 kinds of products on the German market
and found that 11% of bamboo powder or corn starch tableware samples had excessive
formaldehyde migration and 25% of samples had excessive melamine migration [67].

Microplastics would be another safety issue related to synthetic resins. These tiny
particles were found to have many negative health effects, such as bio-accumulating,
cytotoxicity, and reproductive toxicity, etc. [68,69]. Studies about polyethylene terephthalate
(PET) water bottles, PET/nylon tea bags and PP feeding bottles [70] have reported high
levels of microplastics release, which highlighted the risk of releasing microplastics directly
from food contact materials.

3.3. Additives

Additives, with relatively low molecular weight and high reactivity, are easier to
migrate and may have higher safety risks. Long-term exposure of maleic anhydride, which
is commonly used in PPCs, will cause certain damage to the respiratory system, digestive
system, and kidney [71,72]. Many countries and regions have also set a migration limit for
this substance [73,74]. The migration of phthalates as a plasticizer, benzophenonone (BP)
and 4-methylbenzophenonone (4MBP), which may be photoinitiators from photo-cured
printing inks or adhesives, were also found in plant fiber-based materials [67,75].

In addition, the persistent organic contaminants perfluorooctane sulfonate (PFOS) and
perfluorooctanoic acid (PFOA) that are refractory with long half-lives and have accumu-
lation effects in organisms, can be used in plant fiber-based materials as surfactants for
water-proof and oil-proof functions [76]. Relevant studies have shown that such substances
may have reproductive and developmental toxicity and are related to cancer and thyroid
diseases [77,78]. Thus, the possibility of perfluorinated or polyfluorinated substances
migration should also be considered to avoid associated risks.

3.4. Other Hazards Plant Fiber May Introduce

Hazards of PPCs may also come from pesticide residues, antimildew agents, heavy
metals or microorganisms. Plants, especially wheat, corn, and other crops, are susceptible
to diseases and insect pests during their growth, and thus a large number of pesticides are
needed. Antimildew agents and insecticides are also used during the storage process [7],
resulting in the residues of the above substances in plant fibers. An inspection of disposable
plant-based food contact materials conducted by BEUC, the European Consumer Organisa-
tion, reported a variety of insecticides residues, including some carcinogenic, teratogenic,
mutagenic (CMR) substances, and endocrine disruptors [79].

Some plants will accumulate heavy metals during their growth, and these plants are
often used for the treatment of contaminated soil [80]. Studies have shown that peanut
shells have strong bioaccumulation ability for Cr and Pb [81]. Wetland plants, such as reeds
have obvious adsorption effects on Cd, Cr, Cu, and other heavy metals [82]. Sugarcane
has a higher bioconcentration factor for metal ions such as Mg, Cr, and Cd [83]. The
heavy metals in plants will become part of the risks when these plants are made into food
contact products.

Aflatoxin, produced by Aspergillus flavus and Aspergillus parasiticus, is a Group 1
human carcinogen with hepatotoxicity and carcinogenicity, and its intake is related to the
incidence of liver cancer in the population [84]. Many studies have shown that peanuts,
including peanut shells, are susceptible to aflatoxins contamination during growth and
storage [81,85,86]. As aflatoxin has high thermal stability, the heat processing process can
not destroy its activity [81]. Therefore, it is difficult to remove once it remains in the plant
fiber. It is important to note that in order to control the growth of mold, besides optimizing
the storage conditions, antimildew agents are often preferred and thus become a potential
hazard in plant fibers.
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4. Risk Management Measures in Countries around the World

Many countries in the world have established corresponding laws and regulations for
the safety management of food contact materials to ensure food safety and public health.
As PPCs have been widely used in food contact materials and products at present, some
countries and regions have formulated relevant safety requirements for such materials
(Table 3).

Table 3. Safety Management of Plant Fiber/Plastic Composite Materials and Products for Food Contact.

Country or Region Management Mode Types of Allowed Plant
Fibers

Safety Requirements of
Plant Fiber

End Product Safety
Requirements

EU

No proprietary regulation;
Accordance with plastic

materials and products; Positive
list (PL) for raw materials

Wood flour and fibers,
untreated; Ground

sunflower seed hulls

Principle safety
requirements

Commission Regulation
(EU) No 10/2011

USA

No proprietary regulation;
Allowing certain resins to be

blended with plant fibers; FCN
procedure

Refined wood pulp, wood
flour, etc.

Principle safety
requirements 21CFR; FCN

Japan
No proprietary regulation;
Accordance with polymer

materials; PL for raw materials
Wood flour; Natural fiber Principle safety

requirements PL in Notification No.370

China

No proprietary regulation;
Accordance with plastic

materials and products; PL for
raw materials

Comply with the
provisions of GB 9685

standard

Principle safety
requirements GB 4806.7 standard

4.1. European Union

The European Union (EU) has established a relatively complete regulatory system for
the safety management of food contact materials, which mainly adopts the combination of
EU regulations, member states regulations, and Council of Europe (CoE) resolutions at the
official level [87]. For food contact materials that have established EU regulations, such as
Commission Regulation (EU) No 10/2011 for plastics [74], all member states are required
to comply with the requirements of EU regulations. For food contact materials that have
not yet established EU regulations, corresponding laws or regulations can be established
by each member state. In addition, the Council of Europe has also formulated a series
of guidelines for food contact materials, such as Res AP (2004) 4 for rubber products [88]
and Res AP (2004) 1 for coatings intended for food contact use [89], which have important
guiding significance for the safe production of corresponding materials.

In the EU, plastic materials and products added with plant fibers are treated as plastic
materials and should comply with the relevant provisions of Commission Regulation
(EU) No 10/2011. This regulation stipulates the safety requirements that plastic materials
should meet and the list of substances allowed to be used, in which it is stated that “wood
flour and fibers, untreated” and “ground sunflower seed hulls” can be used as additives
in the production of plastic materials and products for food contact. However, there is
no migration limit or quality specification for the above two kinds of plant fibers [74].
Currently, based on the discovered safety risks of PPCs, the European Commission has
requested the European Food Safety Authority (EFSA) to re-evaluate the safety of “wood
flour and fibers, untreated” as additives. Since the components in plant-derived materials
are closely related to plant species and the processing process, EFSA Panel on Food Contact
Materials, Enzymes and Processing Aids (CEP) holds that all plant materials to be used in
plastic as additives should be evaluated for their safety case by case [90].

4.2. USA

Substances that may migrate into food from food contact materials and products
are regarded as indirect food additives in the United States, and diversified management
methods are adopted for their safety management, including Title 21 of The Code of Federal
Regulations (21 CFR), Food Contact Notification (FCN), Threshold of Regulation (TOR),
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Generally Recognized as Safe (GRAS), and Prior-sanctioned Substances, etc. The relevant
regulations on food contact materials and products and the list of approved substances are
included in 21CFR [87].

Resins and additives used in plastics shall comply with the provisions of relevant
sections of 21CFR. Substances not listed in 21CFR shall be approved by FCN procedure
before they can be used in the production of food contact materials. However, the United
States has not established special regulations or standards for food contact PPCs. Only
in 21 CFR Section 177.1460 “Melamine-formaldehyde resins in molded articles” [91] and
Section 177.1900 “Urea-formaldehyde resins in molded articles” [92], it is stipulated that
the above two types of resins can be mixed with refined wood pulp to produce food
contact materials and products. Adjuvant substances and limits of the chloroform-soluble
extractives for the final product were also prescribed.

In addition, the FCN procedure has also approved the production and use of similar
products, such as wooden trays used in the cooling process for short-term contact with
food at low temperatures [93].

4.3. Japan

Before 2020, Japan mainly managed the safety of food contact materials through
Notification No.370 “Specifications and Standards for Food, Food Additives, etc.” issued
by the Ministry of Health and Welfare [94]. The third chapter of the notification stipulated
the safety indicators and inspection methods of glass, ceramics and enamel, synthetic
resin, rubber, metal, and other food contact materials. However, the list of raw materials
for organic polymer materials such as synthetic resin and rubber was not specified in
the notification, which allowed industry associations, such as Japan Hygienic Olefin and
Styrene Plastics Association (JHOSPA), Japan Hygienic PVC Association (JHPA), and Japan
Hygienic Association of Vinylidene Chloride (JHAVDC) to develop positive lists (PLs) of
permitted substances to guide companies in their production [87].

In 2018, the revised Food Hygiene Law stipulated that synthetic resin in packaging
material should adopt the management mode of PL, and only substances that have passed
the safety assessment can be included in the list. Based on the PLs developed by relevant
industry associations, the Ministry of Health and Welfare revised Notification No.370 and
formulated the PL of food utensils, containers, and packaging (UCP), listing the types
of polymers and additives allowed to be used in polymer materials such as plastics and
coatings for food contact. The list allows “wood flour” and “natural fiber” to be used in
plastics as additives, while specifying the application scope and maximum usage of the
two additives [95]. The list has been officially implemented since June 2020.

4.4. China

China has established a series of mandatory national food safety standards, including
general standards, product standards, inspection methods, and manufacturing process
standards for the safety management of food contact materials. At present, there is no
specific national food safety standard for food contact PPCs and its products. Such materials
should refer to the requirements of GB 4806.7-2016 “National Food Safety Standard—Plastic
Materials and Products for Food Contact” [96]. The use of resins and plant fibers should
comply with GB 4806.6-2016 “National Food Safety Standard—Plastic Resin for Food
Contact” [97], and GB 9685-2016 “National Food Safety Standard—Standards for the Use
of Additives for Food Contact Materials and Products” [73], respectively.

China also formulated a series of non-mandatory product standards for plant fiber-
based materials. GB/T 24398-2009 “Disposable Plant Fiber Chopsticks” describes the
“plant fibers” as crop fibers (including rice straw, wheat straw, corn straw, bagasse, rice
husk, peanut shell, etc.), bamboo fiber, wood fiber, etc., and stipulates the principled safety
requirements for plant fibers, such as not deteriorating, mildewing, or being contami-
nated [98].
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5. Conclusions

To date, PPCs have been widely used in construction, automobile, and other industries,
with many advantages such as lightweight, low price, and degradability. However, there
are still many safety problems to consider when they are applied to food contact materials.

First, according to the literature analysis, plant fiber itself may indeed introduce
a variety of potential safety risks, including phytotoxins, allergenic proteins, microbial
growth, heavy metals, and pesticide residues. These risks are usually ignored as plant fiber
is declared to be “natural”. However, such safety risks are the key distinction between
PPCs and traditional plastic materials and should be considered in risk assessment and
risk management. At present, the management agencies in many countries have noticed
the relevant problems and actively carried out countermeasures.

Secondly, due to the hydrophilic properties of plant fibers and the hydrophobic
properties of synthetic resins, it is necessary to improve the compatibility of the two
phases with various small molecule compounds when blending them together, and these
small molecules are easy to migrate or diffuse into food. It is still unknown whether the
compatibility between plant fibers and synthetic resins will decrease again, leading to the
separation of the two phases, as the additive substances continue to migrate. In addition,
the plant fiber will swell when it absorbs water and return to its original state again after
dehydration. As a result, in the case of long-term and repeated contact with food, this
phenomenon may also affect the compatibility between the two phases and then affect the
overall migration of PPCs.

Thirdly, at present, most countries in the world generally regard plant fiber as the
filling agent of plastic materials during product management. However, with technical
renovation, some products with plant fibers as the main matrix have appeared, and the
proportion of synthetic resin is very low. These products have a certain intersection
with paper products (such as molded products of plant pulp), or bamboo and wood
products (such as cork). Plant fiber has only certain plasticity, but it can still be called a
“plastic” material in broad categories. However, further research is needed on their safety
management, i.e., whether it is suitable to adopt exclusively the management of plastic
materials, or whether such materials should be classified and differently managed.

Finally, the studies on PPCs primarily focus on mechanical performance and pay little
attention to the safety risks. There is still a lack of relevant studies on the techniques of
migration tests, the applicability of food simulants, migration patterns and mechanisms of
hazards, systematic risk assessment methods, and safety requirements of plant fibers for
these food contact composites. To protect the safety and health of consumers, traditional
natural materials such as plant fiber still need further systematic studies.
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