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A Commentary on

A posterior-to-anterior shift of brain functional dynamics in aging

by Zhang, H., Lee, A., and Qiu, A. (2017). Brain Struct. Funct. 222, 3665–3676.
doi: 10.1007/s00429-017-1425-z

In the late stages of life, the brain undergoes remarkable structural and functional changes, which
lead to cognitive decline. Evidence from functional magnetic resonance imaging (fMRI) studies
has shown widespread changes of regional activity and functional connectivity in aging brain,
including the prefrontal cortex (PFC), temporal lobe (TL), and subcortical structures (Damoiseaux
et al., 2008; Ferreira and Busatto, 2013). To explain cognitive aging by incorporating neuroimaging
evidence, the Scaffolding Theory of Aging and Cognition (STAC) posits that the brain alterations in
aging may underlie a compensatory process of cognitive scaffolding, in which cognitive functions
could be protected via recruitment of additional brain regions and/or networks (Goh and Park,
2009; Park and Reuter-Lorenz, 2009; Sala-Llonch et al., 2015). In accordance with the STAC, a
posterior-to-anterior shift in aging (PASA) has been found in different kinds of cognitive tasks
using task-related fMRI, showing an age-related decreased activation in occipitotemporal regions
coupled with increased activation in frontal regions (St Jacques et al., 2010; Ansado et al., 2012).
Resting-state fMRI, which measures regional interactions in the absence of an external task, has
been widely used in scientific and clinical research due to its simplicity and reliability. Although the
PASA phenomenon has been documented in a variety of task-related fMRI studies, the neural basis
that underlie the cerebral reorganization in aging remains poorly understood. Moreover, there has
been less evidence in support of PASA in resting-state brain fMRI studies.

Zhang and his colleagues investigated the PASA hypothesis by examining brain functional
dynamics of resting-state blood-oxygen-level-dependent (BOLD) signals, in a large sample (n
= 277) aged from 22 to 79 (Zhang et al., 2017). Brain dynamics during rest has been found
associated with processing efficiency and cognitive demand (Cole et al., 2016). In their study,
parcellations from the Automated Anatomical Labeling (AAL) atlas were grouped into 12 large
regions as regions of interest (ROIs) for extracting the brain functional dynamics. Functional hub
probability was calculated to characterize functional hub dynamics, with lower hub probability
indicating lower stability to be a hub. Subsequently, dynamic functional connectivity was computed
to measure the temporal variability of functional connectivity between each pair of the ROIs.
According to the PASA model, aging brain shows hypoactivity in the posterior regions and
hyperactivity in the anterior regions in response to cognitive decline. Thus, authors postulated
that the frontal regions would become less stable to be hubs as age increased, accompanied
by recruiting additional regions as hubs in the occipital regions. This could be reflected by:
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(1) a decreased hub probability in the anterior brain and an
increased hub probability in the posterior brain; (2) an enhanced
variability of the functional connectivity in the frontal lobe to
adapt to cognitive challenges in aging.

The results showed significant negative effects of age on
functional hub probability in the anterior brain regions,
including the PFC, sensorimotor cortex (SMC), and subcortical
structures. In contrast, they found significant positive effects of
age on functional hub probability in the posterior brain regions,
including the temporal lobe (TL) and occipital cortex (OC). The
decreased hub probability in the anterior brain suggest a more
flexible role of frontal regions to adapt to cognitive needs in aging.
In dynamic functional connectivity analysis, older adults showed
augmented dynamics in the anterior regions, and attenuated
dynamicsmainly within the posterior regions. In other words, the
frontal brain became more flexible in modulating its functional
networks as reflected by increasing variability of its functional
connectivity in aging. The consistent findings in functional
hub probability and dynamic functional connectivity further
support the PASAmodel in resting-state BOLD activities in older
adults. Additionally, they found decreased dynamic functional
connectivity of posterior regions associated with age-related
episodic memory decline, which accounted for the disrupted
posterior function in PASA.

Zhang’s study provides new evidence on the hub probability
and variability of functional connectivity in support of the
STAC model in aging brain. More importantly, their findings
demonstrate that the alterations of resting-state functional
dynamics in aging brain is in line with the PASA hypothesis.
The augmented recruitment of frontal regions in older adults
may be a compensatory effect in response to aging-related
cognitive impairment. Similarly, additional usage of frontal
networks has been implicated as a compensatory response in
multiple psychiatric disorders, including Alzheimer’s disease
(Grady et al., 2003), Parkinson’s disease (Gerrits et al., 2015), and
Huntington’s disease (Georgiou-Karistianis et al., 2007). While
these above findings are interesting, there are some limitations
in Zhang and colleagues’ study. First, they only involved a
global screening instrument [the Mini-Mental State Examination
(MMSE)] to assess the cognitive function in older adults, which
was not sufficiently sensitive for identifying cognitive decline in
aging. Thus, more specific neuropsychological assessments and
cognitive tests should be involved in the future studies, such as
the Montreal Cognitive Assessment (MOCA), Mini-Cog test and
so on (Tsoi et al., 2015). Second, it is necessary to domore work to
confirm the compensatory effect of frontal regions based on their
findings, since there was no correlation between altered frontal
dynamics and MMSE. In addition to functional dynamics, more
indices of resting-state brain activity [e.g., amplitude of low-
frequency fluctuations (ALFF)] should be involved to examine
the “posterior-to anterior shift” in future studies. Third, Zhang
and colleagues grouped the ROIs in AAL atlas to obtain 12 large
regions, which needs to be validated using other functional or
anatomical atlas.

Consistent findings from aging studies suggest that the
frontal cortex is closely associated with compensatory effect in
aging-related cognitive decline (Franzmeier et al., 2017b, 2018;
Gonzalez-Escamilla et al., 2018). Based on previous studies and
Zhang’s findings, we argue that the “posterior-to anterior shift”
may be a common mechanism of cerebral reorganization in
response to cognitive impairment not just in normal aging, but
also in psychiatric disorders. For instance, converging evidence
has shown hyperactivation of frontal regions could be used
to compensate cognitive deficits in Autism Spectrum Disorder
(Livingston and Happe, 2017). Similarly, the compensatory
process by recruiting additional fontal regions has been found in
major depression (Chechko et al., 2013), schizophrenia (Sapara
et al., 2014), Parkinson disease (Simioni et al., 2017), and
Alzheimer’s disease (Franzmeier et al., 2017a). Our recent work
reported a similar posterior-to-anterior shift pattern in cognitive
fatigue (CF) modulation in healthy older adults, suggesting an
aging-associated neural reliance on frontal regions to compensate
CF-induced cognitive inefficiency (Ren et al., 2019). In addition,
the findings in cognitive reserve studies indicate that the brain
functional and structural measurements for compensation could
be influenced by combination of molecular and genetic factors
(Bartres-Faz et al., 2019; Pietzuch et al., 2019).Thus, future
studies need to explore the compensatory mechanism in the
“posterior-to anterior shift” brain alteration, and reveal the
differences between normal aging and psychiatric symptoms.
More interestingly, the anterior and posterior brain regions are
considered to play different roles in perceived consciousness
according to two opposite theories: the global workspace theory
(GWT) and integrated information theory (IIT) (Mashour,
2018). Recently, the Templeton World Charity Foundation
(TWCF) funded a new project to explore the neural mechanism
of consciousness by examining the GWT and IIT (Reardon,
2019). We speculate the “posterior-to-anterior shift” may play a
critical role in altered states of consciousness in some psychiatric
disorders (e.g., schizophrenia), which needs to be examined in
future studies.
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