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Abstract
Atypical hemolytic uremic syndrome (aHUS), C3 glomerulopathy (C3G), and paroxysmal nocturnal hemoglobinuria (PNH) are
prototypical disorders of complement dysregulation. Although complement overactivation is common to all, cell surface alternative
pathway dysregulation (aHUS), fluid phase alternative pathway dysregulation (C3G), or terminal pathway dysregulation (PNH)
predominates resulting in the very different phenotypes seen in these diseases. The mechanism underlying the dysregulation also
varies with predominant acquired autoimmune (C3G), somatic mutations (PNH), or inherited germline mutations (aHUS) predispos-
ing to disease. Eculizumab has revolutionized the treatment of PNH and aHUS although has been less successful in C3G.With the next
generation of complement therapeutic in late stage development, these archetypal complement diseases will provide the initial targets.

Keywords Complement . C3G, aHUS . PNH

Introduction

Atypical hemolytic uremic syndrome (aHUS), C3 glomeru-
lopathy (C3G), and paroxysmal nocturnal hemoglobinuria
(PNH) serve as exemplars of the mechanisms by which com-
plement dysregulation may cause disease. In this review, we
shall compare and contrast the underlying pathophysiological
mechanisms and the response to treatments.

Atypical HUS

Classification of atypical hemolytic uremic syndrome

The last 20 years has seen striking advances in our under-
standing of the molecular mechanisms underlying thrombotic
microangiopathies (TMAs) and with this has come a complex

and rapidly evolving nomenclature [1]. Historically, TMAs
were categorized on clinical findings: HUS for renal dominant
disease, thrombotic thrombocytopenic purpura (TTP) for pre-
dominant neurological involvement. Subsequently, TTP was
defined by severe ADAMTS13 deficiency; HUS caused by
shiga toxin-producing Escherichia coli (STEC) defined as
STEC-HUS, with aHUS broadly used for all other causes of
TMA. With the discovery of genetic and acquired complement
dysregulation in a proportion of patients with aHUS, the term
complement-mediated aHUS was used to refer to this sub-
group. When reviewing historical literature, “aHUS”may refer
specifically to complement-mediated TMA, or be more loosely
applied to any TMA that is not TTP or STEC-HUS (reviewed
[1]). In this review, we use the term complement-mediated
aHUS when the etiology is defined as such, and use aHUS
where etiology is ill defined. Current classifications describe
acquired primary TMAs, inherited primary TMAs, secondary
TMAs, and infection-associated TMAs (Table 1) although it
should be borne in mind that underlying complement genetic
predispositions often require a secondary trigger for TMA to
manifest. The role of complement in secondary TMAs and
infection associated TMA is yet to be defined (Fig. 1).

Pathology

The pathological findings seen in complement-mediated
aHUS reflect tissue responses to endothelial injury:
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endothelial swelling and mesangiolysis in active lesions, dou-
ble contours of the basement membrane in chronic lesions
(reviewed [2]). The absence of overt platelet fibrin thrombosis
from renal biopsies of TMA has recently led to a suggested
reclassification to microangiopathy +/− thrombosis [2].

Inherited primary complement-mediated aHUS

First described in 1998 by Warwicker et al. [3], mutations in
factor H (CFH) are the commonest cause of inherited
complement-mediated aHUS, accounting for around 25% of

cases [4]. Factor H (FH) is the most important fluid-phase
regulator of the alternative pathway (AP) of complement.
FH is composed of 20 complement control protein modules
(CCPs), also known as short consensus repeats (SCRs). The
four N-terminal CCPs (CCPs 1–4) mediate the complement
regulatory functions of the protein by competing with factor B
for C3b binding, accelerating the decay of the C3 convertase
into its components, and acting as a cofactor for factor I-
mediated proteolytic inactivation of C3b [5, 6]. The vast ma-
jority of CFH mutations seen in complement-mediated aHUS
do not occur in this region, but instead in the C terminal
domains (CCP 19–20) [4]. It is this region which mediates
FH self-surface binding via its interaction with C3b, sialic
acid, and glycosaminoglycans [7, 8]. In complement-
mediated aHUS, the mutations are usually heterozygous, do
not result in a quantitative deficiency of FH but instead have
variable consequences on binding to GAGs, sialic acid, and
C3b which impairs cell surface complement regulation [9, 10]
(reviewed4).

In addition to point mutations, its location in the RCA
cluster makesCFH particularly prone to genomic rearrange-
ments. This is an area of the genome that arose from several
large genomic duplications, and these low copy repeats can
cause genome instability in this region. The CFHmutations
S1191L, V1197A, and combined S1191L/V1197A arose
through gene conversion between CFHR1 and CFH [11].
A hybrid (fusion) gene comprising the 21 N-terminal exons
of CFH and the 2 C terminal exons of CFHR1 was demon-
strated to have arisen through nonallelic homologous recom-
bination and resulted in complement-mediated aHUS [12].
More recently, several other hybrid genes consisting of the
N-terminal exons of CFH and the 5 C-terminal exons of
CFHR3 have been reported [13, 14]. As with C-terminal
point mutations in CFH, these hybrid genes also result in
loss of cell surface complement regulation.

Membrane cofactor protein

Membrane cofactor protein (MCP; CD46) is a surface-bound
complement regulatory protein that acts as a cofactor for the
factor I (FI) mediated cleavage of C3b and C4b that are de-
posited on host cells [15]. Mutations in CD46 are the second
commonest cause of complement-mediated aHUS accounting
for around 15% of patients.

The majority of mutations are found in the extracellular
domains of CD46 that are responsible for C3b and C4b bind-
ing. Unlike CFH, most CD46 mutations result in a quantita-
tive defect in CD46 (~ 75%) [4].

Complement factor I

Complement factor I is a serum serine protease, which func-
tions as a critical mediator of complement regulation by

Table 1 Classification of thrombotic microangiopathies

Primary TMA: hereditary

aHUS with complement gene mutation

(CFH; CFI; CFB; C3; CD46; CFHR1 hybrid)

TTP with ADAMTS13 mutation

MMACHC TMA

DGKE TMA

Primary TMA: hereditary

aHUS with complement autoantibodies

(anti-FH; anti-FI)

TTP with ADAMTS13 autoantibody

Secondary TMAs

TMAwith glomerular disease

(FSGS; IgAN, C3G/MPGN, MN, AAV)

Malignancy associated TMA

Drug induced TMA

Direct toxicity (interferon B; bevacizumab)

Immune mediated damage (e.g., quinine)

TMAwith autoimmune conditions

(SLE, SRC, CAPS)

De novo TMA after solid organ transplant

HELLP

Infection associated TMA

STEC-HUS

Pneumococcal HUS

HIVassociated aHUS

Other

AAVANCA (anti-neutrophil cytoplasmic antibody) associated vasculitis;
ADAMTS13 a disintegrin and metalloproteinase with a thrombospondin
type 1 motif, member 13; aHUS atypical hemolytic uremic syndrome;
C3GC3 glomerulopathy;CAPS catastrophic antiphospholipid syndrome;
MMACHC Methylmalonic aciduria and homocystinuria, cblC type;
DGKE gene encoding diacylglycerol kinase ; FH factor H; FI factor I,
FSGS focal segmental glomerulosclerosis; HELLP syndrome of hemoly-
sis, elevated liver enzymes, and low platelets; HIV human immunodefi-
ciency virus; HUS hemolytic uraemic syndrome; IgAN IgA nephropathy;
MN membranous nephropathy; MPGN membranoproliferative glomeru-
lonephritis; SLE systemic lupus erythematosus; SRC scleroderma renal
crisis; STEC, shiga toxin-producing Escherichia coli; TMA thrombotic
microangiopathy; TTP thrombotic thrombocytopenic purpura
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cleaving C3b and C4b in the presence of its cofactors (FH for
C3b; C4BP (C4b binding protein) for C4b, CD46 and CR1
(complement receptor 1) for both [4].

Around 10% of complement-mediated aHUS is
predisposed to by mutations in the FI gene (CFI) [16].
The CFI mutations described in complement-mediated
aHUS are all heterozygous.

Complement C3

C3 is the central component of the complement cascade. C3 is
cleaved to form the anaphylatoxin C3a and C3b, which is
highly reactive and can bind to cell surfaces via its reactive
thioester. C3b can then interact with factor B (FB) in the pres-
ence of factor D to form the alternative pathway convertase
introducing a positive-feedback loop.

Mutations in C3 account for around 2–10% of
complement-mediated aHUS. The mutations in C3 linked to
complement-mediated aHUS result in complement over acti-
vation by either (1) preventing complement regulators binding
to C3 and inactivating it or by binding to FB with greater
affinity [17–19]. These mutations result in increased comple-
ment activation on platelets and glomerular endothelium.

Complement factor B

Factor B carries the catalytic site of the complement AP
convertase (C3bBb). Mutations in CFB are very rare in
complement-mediated aHUS. As with C3 mutations, com-
plement over activation occurs by impaired complement
regulation or increased convertase formation [20]. These
muta t ions have been demons t ra ted to inc rease
complement deposition on endothelial cells.

Thrombomodulin

Thrombomodulin (THBD) plays a key role in regulating
clot formation by the activation of protein C by throm-
bin and enhancing thrombin-mediated activation of plas-
ma procarboxypeptidase B (CPB2), an inhibitor of fibri-
nolysis. Procarboxypeptidase B also inactivates
complement-derived anaphylatoxins C3a and C5a.
THBD has also been suggested to have a role in the
regulation of the AP by accelerating FI-mediated inacti-
vation of C3b [21].

Rare genetic variants have been described in some aHUS
cohorts but their causality remains to be established [21].
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Fig. 1 The role of complement in
thrombotic microangiopathies. A
mutation or autoantibody
resulting in complement
dysregulation predisposes to
complement-mediated aHUS.
Complement-mediated aHUS
frequently only manifests upon
exposure to an environmental
trigger, which can include other
causes of TMA. In some TMAs, a
high proportion of individuals
carry a mutation (e.g., pregnancy
associated aHUS, ~ 70%, and de
novo post-transplant TMA, ~
30%) but in others the incidence
of mutations is unknown or low
(e.g., STEC-HUS). In other
TMAs, complement activation
may be seen in vivo but whether it
plays a role as a disease modifier
or is simply a bystander is yet to
be clarified
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Common genetic susceptibility factors

In addition to rare mutations, a number of common single
nucleotide polymorphisms (SNPs) in CD46 and CFH have
been associated with complement-mediated aHUS. A CD46
haplotype (CD46ggaac) block has been associated with a two-
to threefold increased risk of complement-mediated aHUS
[22–24]. This encompasses 2 SNPs in the promoter region
of CD46, and reporter gene assays have suggested that this
haplotype reduces transcriptional activity by 25% albeit with-
out decreased CD46 cell surface expression in vivo [24, 25]. A
CFH haplotype (CFH-H3; tgtgt) has been shown to increase
the risk of complement-mediated aHUS two- to fourfold [22,
26]. This risk haplotype contains a SNPCFH-Val62 which has
a subtle decrease in cofactor activity compared to the protec-
tive variant [27, 28].

Acquired primary complement-mediated aHUS

Acquired defects in complement regulation have been seen in
the form of autoantibodies to FH. First reported in 2005, these
account for ~ 10% of complement-mediated aHUS [29]. It
predominantly presents in childhood, frequently with a gas-
trointestinal prodrome [30].

There is a strong association with a homozygous deletion
of CFHR3 and CFHR1, which encodes complement factor H-
related proteins (FHR) 3 and 1 [31]. Subsequently, FHR1
deficiency resulting from point mutations in CFHR1 or from
a deletion incorporating CFHR1 and CFHR4 has been report-
ed in individuals with FH autoantibody-mediated aHUS [32].
Although this suggests a key role in the deficiency of FHR1 in
the generation of FH autoantibodies, the mechanism remains
obscure and several patients have been reported with factor H
autoantibodies in the absence of the CFHR1/CFHR3 deletion.

The majority of autoantibodies bind to the C-terminal do-
main of FH, thus mimicking the defects see in the inherited
form. The antibodies have been shown to reduce binding to
C3b and other C3 fragments [33, 34]. They perturb FH-
mediated cell surface protection and in some individuals the
autoantibodies also impair cofactor activity or decay acceler-
ating activity [33, 34].

Autoantibodies against FI have also been reported, but are
rare and their functional relevance remains to be established
[35].

Clinical presentation and outcome

The incidence of aHUS is ~ 0.4/million population [36].
Hemolysis and ischemic organ injury, predominantly in the
kidney, define the clinical presentation of aHUS [1]. Extra-
renal manifestations (cardiac, ocular, pancreatic) are reported
although it is not known whether they are a direct

consequence of the TMA, a direct effect of complement acti-
vation, or relate to the associated severe hypertension and
uremia [4].

Historically, the prognosis for patients with aHUSwas poor
and in the pre-eculizumab era at 3–5 years after onset, 36–
48% [22, 37] of children and 64–67%, [37] of adults had died
or reached ESRD. The underlying genetic cause predicted the
outcome of disease with those carrying CD46 mutations hav-
ing the best prognosis (3 year renal survival 94%). In individ-
uals with CFH mutations, up to 77% of patients had devel-
oped ESRD or had died at 3–5 years. Only 30–40% of indi-
viduals with CFI and C3 mutations will be alive with native
kidney function at 3–5 years, [4, 37]. In those with FH-auto-
antibodies, 36.5–63% die or reach ESRD over a similar
timescale.

The outcome following renal transplantation was also poor
and again the outcome was predicted largely by the underly-
ing genetic abnormality. The overall recurrence was 68% and
5-year death-censored graft survival 51% with highest risk
associated with CFH, CFB, and C3 mutations and the lowest
with CD46 mutations. [38, 39]

Disease penetrance

The genetic mutations seen in complement-mediated aHUS
are not causative but are instead predisposing, suggesting that
additional genetic and environmental modifiers are important.
Penetrance of disease is age related and has been reported to
be as high as 64% by the age of 70 for individuals carrying a
single genetic mutation [2]. A small proportion of aHUS pa-
tients (~ 3%) will have more than one mutation with increased
penetrance per additional mutation [40]. Risk haplotypes have
also been shown to increase disease penetrance. Even where
an individual has multiple genetic risk factors, a trigger is
frequently required (e.g., infections [41], pregnancy [42]) to
unmask a latent complement defect. These triggers usually
activate complement: complement activation is the normal
physiological response to infection and occurs in the placenta
in normal pregnancy.

Eculizumab in aHUS

The elucidation of the role of complement in disease provided
the rationale for the use of eculizumab in complement-
mediated aHUS. Eculizumab, a recombinant humanized
monoclonal antibody directed against C5, blocks the cleavage
of C5 into its effector components C5a and C5b. Landmark
studies in primary aHUS published in 2013 demonstrated its
efficacy which have been replicated in subsequent extension
studies [43], prospective (non-randomized) studies [44, 45],
and cohort analysis [36]. The role of eculizumab in secondary
aHUS remains to be established (reviewed [46]).
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In individuals requiring a renal transplant with a diagnosis
of primary complement-mediated aHUS, the high recurrence
rate following transplantation necessities pre-emptive
eculizumab [2, 39].

The optimal length of treatment with eculizumab for indi-
viduals presenting with complement-mediated aHUS is un-
clear although the current license for eculizumab is for life-
long treatment; eculizumab withdrawal has been reported in a
large series of aHUS patients with relapse reported in around
one third of patients, all carrying complement mutations [47].
In those patients experiencing a relapse post withdrawal, rapid
reintroduction of complement inhibition normalized the renal
function. This suggests that a disease-driven intermittent re-
gime could be used although prospective trials are required.

Eculizumab non-responsive aHUS

There is no biomarker currently that will confirm the diagnosis
of a primary complement-mediated aHUS in the acute setting,
and the diagnosis is therefore one of exclusion. As early initi-
ation of eculizumab has been shown to lead to better out-
comes, treatment is often commenced in patients with
suspected primary complement-mediated aHUS, and
discontinued if an alternative etiology is subsequently identi-
fied. With the increasing use of eculizumab in clinical prac-
tice, it has become apparent that there are subgroups of aHUS
that do not respond to eculizumab. In the recent pediatric trial,
Greenbaum et al. highlighted that for those with a rare genetic
variant in the complement system or an autoantibody to FH,
all had an improvement in estimated glomerular filtration rate
(eGFR), while 27% of individuals without an identified com-
plement abnormality failed to show an improvement [45]. It is
not clear whether this represents late presentation of disease or
true non-response.

More recently, individuals presenting with a TMA with
failure to respond to eculizumab have been demonstrated to
have genetic variants in the non-complement genes DGKE
[48], INF2 [49], and MMACHC [50].

DGKE

Diacylglycerol kinase epsilon (DGKE) is a lipid kinase that
catalyzes the phosphorylation of diacylglycerol substrates
(DAGs) to phosphatidic acid. Recessive mutations causing
aHUS were first reported in 2013 [48]. The exact mechanisms
resulting in the TMA are yet to be fully elucidated; however,
loss of DGKE function results in enhanced signaling through
arachidonic acid-containing DAGs (AADAGs) and enhanced
activation of PKC (protein kinase C). In the endothelium,
PKC activation results in upregulation of prothrombotic fac-
tors and the downregulation of VEGFR2 signaling and these
may play a role.

Only a small number of cases have been published, but it
appears to present aged < 1 year and commonly results in
progressive chronic kidney disease (CKD) and ESRF [37].
There is insufficient evidence to determine optimal manage-
ment; there are reports of both response and non-response to
eculizumab. Concomitant mutations in complement genes
have been reported. Genetic pleiotropy is seen: DGKE muta-
tions have also been associated with mesangioproliferative
glomerulonephritis (MPGN) [51] .

Inverted formin 2

Mutations in inverted formin 2 (INF2) have recently been
reported in families with TMAs which was non-responsive
to eculizumab [49]. INF2 is a ubiquitously expressed formin
protein which accelerates actin polymerization and depoly-
merization, thus regulating a range of cytoskeleton dependent
cellular functions including the secretory pathway. As with
DGKE, genetic pleiotropism is also seen with most individ-
uals with INF2 mutations presenting with focal segmental
glomerulosclerosis (FSGS) and nephrotic syndrome. It re-
mains to be seen whether this is a primary aHUS or secondary
phenomenon in association with FSGS.

Methylmalonic aciduria and homocystinuria,
cobalamin C (cblC) type

Homozygous or compound heterozygous mutations in the
MMACHC gene result in a disorder of cobalamin (cbl; vitamin
B12) metabolism that causes aHUS. Although the pathophys-
iologic mechanisms that result in endothelial damage are un-
clear, metabolic therapy with hydroxycobalamin is very effec-
tive at preventing disease. It appears that MMACHC-
mediated aHUS is complement independent as the small num-
ber of published reports of eculizumab use describe non-
response [50].

Polymorphisms in C5 and the use of Coversin to treat
TMA

A rare polymorphism in C5 (p.R885H) has been reported in
the Japanese population which prevented eculizumab binding
[52].More recently, a European with a functionally significant
CFH mutation (p.D1119G) and a TMA post-bone marrow
transplant was shown to carry this SNP preventing the use
of eculizumab [53]. In this case, an alternative C5 inhibitor,
Coversin, was used. This is a recombinant protein derived
from the tick, Ornithodoros moubata. As this binds to a dif-
ferent epitope on C5, this completely blocked the terminal
pathway and there appeared to be a clinical response although
there was a limited supply of the drug and the patient died
[53].

Semin Immunopathol (2018) 40:49–64 53



C3 Glomerulopathy

Introduction

C3 glomerulopathy (C3G) is a recently identified pathological
entity describing a group of diseases in which uncontrolled
complement activation can lead to complement deposition
within the glomerulus [54]. Historically, uncontrolled comple-
ment activation has been associated with the disease,
membranoproliferative glomerulonephritis (MPGN) [55,
56]. These diseases are ultra-rare, affecting ~ 1 per million
population [57–59].

Classification and pathology of C3G

The classification of diseases in uncontrolled complement ac-
tivation resulting in glomerulopathy continues to evolve. The
term C3G was introduced to alert the clinician to the possibil-
ity of an underlying abnormality of the complement system
[54]. C3G can be further classified by the pattern of dense
deposits on electron microscopy. Dense deposit disease
(DDD) is a specific form of C3G that is classified by the
presence of dense osmiophilic intramembranous deposits seen
on electron microscopy. C3 glomerulonephritis (C3GN) are
forms of C3G in which deposits on electron microscopy may
be light dense, amorphous mesangial, paramesangial,
subendothelial, or subepithelial.

A diagnosis of C3G requires a renal biopsy. The presence
of C3 dominant staining on immunofluorescence (IF), with an
intensity of at least two orders of magnitude greater than any
other immunoreactant (IgG, IgM, IgA, and C1q) provides the
best sensitivity and specificity for C3G [60]. This current def-
inition of C3G captures about 90% of cases of DDD, and
possibly fewer cases of C3GN [60]. Once C3G has been di-
agnosed on renal biopsy, light microscopy then identifies di-
verse patterns of glomerular injury that include MPGN [54,
60], and detects additional features such as crescentic disease
or markers of chronic disease such as interstitial fibrosis and
tubular atrophy.

MPGN is a pattern of glomerular injury characterized by
the presence of mesangial expansion, cellular proliferation,
and double-contouring of the glomerular basement membrane
[61]. The classification of MPGNwas historically based upon
the position of electron dense deposits relative to the glomer-
ular basement membrane. Three types ofMPGNwere defined
in this manner, type 1 (subendothelial), type 2 or DDD
(intramembranous), and type 3 (subendothelial and
subepithelial) [62]. Type 1 and type 3MPGN typically stained
positive for immunoglobulins and C3 on IF whereas type 2
MPGN typically stained for C3 only. MPGN of all types were
previously associated with uncontrolled complement
activation.

Overlap of C3G and MPGN

The classifications of C3G and MPGN overlap [63]. The new
classification of C3G includes cases of MPGN that were pre-
viously classified as type 1, 2, or 3. Furthermore, the definition
of C3G identifies cases withoutMPGN, in which uncontrolled
complement activation might not have been recognized [64].
Evidence of uncontrolled complement activation continues to
be found in cases of MPGN that do not meet the diagnostic
criteria of C3G [65–67]. Currently, these cases are termed
immune-complex MPGN. Therefore, suspicion of uncon-
trolled complement activation should include the current def-
inition of C3G and an overlap with cases of immune-complex
MPGN (Fig. 2).

Immune-mediated glomerulonephritis

Although uncontrolled complement activation may result in
immune-complex MPGN, other secondary causes of MPGN
should also be considered. These causes are summarized [68].
Treatment can then be directed at the secondary cause.

Monoclonal gammopathy of renal significance

The absence of immunoglobulin on renal biopsy (in the set-
ting of C3 deposition) is the hallmark of a diagnosis of C3G,
usually indicative of an underlying disorder of complement
regulation. However, it is increasingly recognized that depo-
sition of monotypic immunoglobulin may be masked [69],
and only identified following pronase digest. Upon identifica-
tion of monoclonal deposits on the renal biopsy, the possibility
of a monoclonal gammopathy needs to be considered.
Treatment of these conditions is usually directed at the cause
of the monoclonal gammopathy [70].

Complement derangement in C3G and MPGN

A range of acquired and inherited abnormalities have been
described as a cause of complement dysregulation in cases
of C3G andMPGN. Unlike in aHUS, these abnormalities tend
to result in fluid phase dysregulation of AP and acquired ab-
normalities predominate.

FH deficiency

FH deficiency leads to uncontrolled activation of AP in the
fluid phase [71, 72] and causes MPGN and C3G [56, 64, 73].
Genetic causes of FH deficiency are summarized in Table 2.
Briefly, FH deficiency can be quantitative and due to muta-
tions in CFH, inherited in homozygosity or heterozygosity,
resulting in complete or partial FH deficiency, respectively.
Other pathogenic mutations in CFH lead to a functional defi-
ciency of FH due to the expression of proteins that have
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defective binding to C3b resulting in impairment of fluid
phase complement regulation [80, 81, 83]. Overall, the prev-
alence of rare genetic variants in these cohorts ranges from 4
to 16.2% of patients [65, 66, 87]. The functional significance
of a number of other rare genetic variants reported in these
case series of MPGN or C3G is not known (Table 2). [96]

FHR proteins

Recent studies suggest an important role of FHR proteins in
complement regulation. FHR proteins may compete with FH
for C3b binding and prevent the regulatory activities of FH on
surface-bound C3b [97]. SCR1 and 2 of FHR1, 2, and 5 have
a very high degree of sequence homology (Fig. 3) and share a
dimerization motif. These studies show that these FHR pro-
teins exist in dimeric form. FHR proteins do not have com-
plement regulatory domains and as a result, dimeric forms of
FHRs with high avidity to C3b act as competitive antagonists,
preventing the normal regulatory function of FH and therefore
“deregulating FH” [97].

Genomic abnormalities in C3G

First identified in a large Cypriot pedigree [98], a number of
genomic abnormalities in the RCA cluster have been de-
scribed in familial cases of C3G (Table 3). In all cases, the
genomic abnormality resulted in the formation of a larger
CFHR gene resulting in FHR proteins with additional SCRs
[97–105]. Functional study of dimeric forms of abnormal
FHR proteins demonstrated an enhanced ability to compete

with FH resulting in enhanced deregulation of FH as a possi-
ble mechanism of disease [97, 102]. In the case of the
FHR2-FHR5 hybrid protein reported byChen et al., functional
studies showed evidence of stabilization of C3bBb in the pres-
ence of the hybrid FHR2-FHR5 protein resulting in comple-
ment activation in the fluid phase [99] and a possible role in
binding properdin [100].

Rare genetic variants in CFHR5 have also been reported in
C3GN and include C269R [106] and N216P [79]. The func-
tional significance of both variants has yet to be determined.

Complement factor I and membrane cofactor

Rare genetic variants in other complement regulators (CFI and
CD46) are infrequently identified in C3G and MPGN
(Table 2). Reported variants have all been inherited in hetero-
zygosity. A few (resulting in low FI levels [65, 89, 90]) are
pathogenic but their importance in disease pathogenesis has
not been established.

Components of the AP C3 convertase—C3 and FB

Detailed functional studies of several familial rare genetic var-
iants in C3 in C3G have been described. In a case of familial
DDD, the variant Δ923-924DG does not undergo conforma-
tional change to C3b but does form a C3 convertase that is
resistant to decay by FH [84]. In a report of familial C3GN, the
variant I756T results in defective C3b inactivation by FI in
setting of cofactors CR1 and FH [85].

Fig. 2 Overlap of C3G and
MPGN. A cause of uncontrolled
complement activation should be
suspected in cases of C3
glomerulopathy (bold circle).
Specific forms of C3G include
C3GN, DDD, and CFHR5
nephropathy. Light microscopy
identifies a diverse pattern of
glomerular injury that includes
MPGN. Uncontrolled
complement activation has also
been identified in cases of
immune-complex MPGN
(shaded)—these are cases of
MPGN that do not fulfill current
criteria for C3G. Causes of
uncontrolled complement
activation should be considered in
an overlapping group of C3G and
MPGN
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Rare genetic variants in C3 and CFB have also been de-
scribed in cohorts of C3G and MPGN [87] [66] and includes
the S367R variant in CFB in one familial case of C3GN [95].
Most of these variants have not been functionally studied
(Table 2).

Polymorphisms

Common genetic susceptibility factors have been reported in
MPGN and C3G. In DDD, the Y402H polymorphism inCFH
[65, 107, 108] associates with an increased risk of disease.

Table 2 Rare genetic variants in CFH, CFI, CD46, C3, and CFB reported in C3G and MPGN

Gene Effect Variant Gene Effect Variant

CFH Complete FH deficiency
(homozygous)

P88T* [66, 74] CFH VUS (normal FH levels) P26S £

R127L* [73] ΔG122-E128 [65]

C431S [65, 73] D130N [65]

C597R [65] A161S [65]

P621Y [75] IVS11 + 5 [65]

C673S [73] G334A £

Y899X [76] G650V [64], £

Y1008X [66] F717L [65]

W1096R* £ H878Y 2

Partial FH deficiency P76X [64] A892V 3

L77X [65] R1210V [65]

V143I [65] VUS (FH levels not
known)

R127C [66]

I216T [77] S199G/E1172X £

R232X [65], £ C431S £

C673R [65] N516K [78]

K768X [76] V609I £

C1043X [65] M725X [79]

Functional FH deficiency
(homozygous)

R78G [66] V837I/E1145D [78]

ΔK224* [80] Q950H [66]

R53C [65, 81] T956M [78] [82] [66]

Functional FH deficiency R83S* [83] C3 Gain of function Δ923-924DG* [84]

R1210C [64] [66] I756T* [85]

R53C [65] [86] R161W [87]

CD46 VUS K66N [66, 88] VUS R148Q [87]

V181M [65] A443S [87]

CFI FI deficiency G119R [65, 89–91] L1100P [87]

A240G [65, 92, 93] L1318R [87]

C309R [65] V86I [66]

C327R [65] R505C [66]

VUS c.1-4C > T [66] V619M [66]

G57D [66] G637R [66]

None G261D [65, 79, 91, 94] R1042Q [66]

I306S [65] S1063N [66]

CFB Gain of function I242L [87] R1303H [66]

VUS D279E [87] R1320Q [66]

S367R* [95] D1362N [66]

G161R [66] C1518R [66]

H451R [66] D1625H [66]

R679W [66] None K1051M [66]

All variants heterozygous except where indicated

VUS variant of uncertain significance, FH complement factor H, FI complement factor I. * reported in familial disease, £ unpublished, Δ amino acid
deletion
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Conversely, the V62I polymorphism was shown to be protec-
tive against DDD [26, 66].

Risk haplotypes in CFH also associate with disease. The
H1 haplotype that carries the at-risk Y402H SNP in DDD
associates with an increased risk of DDD [26, 107]. The H2
haplotype that carries the protective SNP V62I was shown to
be protective in DDD [26].

Common SNPs and haplotypes in CD46 have been studied
in cohorts of C3G andMPGN. The intronic SNP c.-652G was
protective in MPGN and C3GN. This association was also
observed in cases of MPGN type 1 and C3GN, in which the
haplotype CD46AAGGT was observed more frequently, while
the haplotype CD46GAGGTwas observed less frequently [65].
These findings were not observed in a later study [66]. In this
later study, the SNPs c.-366A>G and c. *783 T>C were ob-
served more frequently in immune-complexMPGN than con-
trols [66]. In the same later study, the SNP c.-366A was ob-
served more frequently in DDD compared to controls [66].

Several common SNPs in C3 and CFB have been studied
in C3G andMPGN. The SNPs, R102G [108, 109], and P314L
in C3 are associated with DDD [108]. The SNPs in CFB,
R32W, and R32Q were not associated with C3G or MPGN
[66].

Acquired abnormalities in C3G and MPGN

The first acquired abnormality discovered in MPGN was a
circulating factor in serum that was found to increase cell lysis
in the fluid phase [55]. This was later discovered to be IgG that
stabilized C3bBb by 10-fold [110, 111] now known as C3

nephritic factor. There is a strong association of C3 nephritic
factor with all forms of C3G and MPGN, and is prevalent in
up to 80% of DDD and 50% of MPGN and C3GN [65, 78].
C3 nephritic factors are not specific to MPGN and C3G and
have been observed in acquired partial lipodystrophy [112]
and in normal individuals [113].

Autoantibodies to individual complement components and
their regulators have been reported in cases of C3G and
MPGN. Autoantibodies to FB were first described in DDD
[78, 114]. In one patient, these were shown to stabilize
C3bBb, causing C3 consumption and terminal pathway acti-
vation [114]. No functional data are available in a further
report in which three DDD patients with autoantibodies to
FB are described [78]. Autoantibodies to C3b and FB in the
same patient were described in two cases of DDD. These
patients lacked C3 nephritic factor but the antibodies en-
hanced C3bBb activity [115]. Autoantibodies in FB and C3b
have recently been reported in a cohort of C3G and MPGN
[67]. Functional studies of purified IgG from patients in this
cohort also result in AP activation.

Autoantibodies to FH have also been described in patients
with C3G and MPGN. These bind predominantly to the N-
terminal domain of FH and impair the regulatory activity of
FH [78, 116]. The prevalence of autoantibodies to FH was
11% in a MPGN/C3G cohort [117]. In this cohort, patients
with autoantibodies to FH did not associate with homozygous
deletion of CFHR3/1. These autoantibodies associated with
C3 nephritic factor in children and monoclonal gammopathy
in adults [117]. The association of autoantibodies to FH and
monoclonal gammopathy had been previously described in
case reports [118, 119].

Fig. 3 FHR1, FHR2, and FHR5 have a dimerization motif but lack
regulatory domains. Shaded ovals denote regulatory and recognition
domains of FH. Percentages shown within ovals of FHR proteins
indicate degree of shared homology with corresponding SCR of FH
depicted directly above. FHR proteins do not have shared homology

with the regulatory domains of FH. However, SCR1 and 2 of FHR1,
FHR2, and FHR5 (patterned ovals) have a high degree of shared
homology with each other—highlighted in boxed inset. These domains
share a dimerization motif
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Clinical presentation and outcome of C3G and MPGN

MPGN and C3G, especially the subset of patients with DDD,
are typically diseases of childhood and young adulthood [57,
65]. They present with similar clinical features that include
proteinuria, hematuria, and renal failure [57, 65]. Renal failure
is progressive and 40% of patients develop end-stage renal
disease (ESRD) at 10 years [57, 65, 120]. Recurrence in trans-
plantation is common in all types, ranging from 30 to 40% in
MPGN type 1 to 80–90% in DDD [121]. Plasma C3 levels are
often low [57, 65, 66, 122]. Individual complement abnormal-
ities have not been associated with a greater risk of adverse
outcomes [57, 65] although the absence of a C3 nephritic
factor or a rare genetic variant did have a higher risk of pro-
gression to ESRD in an Italian cohort [66].

There is an association of C3G andMPGNwith extra-renal
manifestations: acquired partial lipodystrophy [123, 124] and
drusen [125].

The clinical features of patients with FHR5 nephropathy, a
subset of patients with C3G, differ from other forms of C3G.
First reported in large pedigrees with Cypriot ancestry, these
patients often have Synpharyngitic hematuria. Prognosis is
often worse in males with FHR5 nephropathy [98].

Treatments in C3G and MPGN

There are no universally effective treatments for C3G or
MPGN. The only double blind randomized control trial in this
group of patients was performed in 1992 [126]. Eighty chil-
dren (with MPGN types 1, 2, and 3) were randomized to
receive 40 mg/m2 of prednisolone on alternate days. In this
study, long-term treatment with prednisolone did appear to
improve the outcome of patients with MPGN. Other studies
suggest some benefit from the use of cyclophosphamide
[127], mycophenolate mofetil (MMF) [128, 129] and the
combination of aspirin and dipyridamole [130–132]. The use

of rituximab has been described in case reports only
[133–135].

Complement inhibition

Unlike in aHUS, the role of complement inhibition in C3G
and MPGN is not clear, despite the role of uncontrolled com-
plement activation in disease. To date, there is one clinical trial
of eculizumab in MPGN that is currently underway [136].
Nonetheless, eculizumab use has been reported in a growing
number of cases of C3G andMPGN. Current reports suggest a
more beneficial role for eculizumab in cases where prominent
terminal pathway activity is seen [137–141].

Other reported therapies that modulate complement include
the replacement of FH in patients with a functional deficiency
of FH using plasma exchange [142] and soluble CR1 [143].
Further studies are required to determine whether complement
inhibition in C3G can be effective.

Paroxysmal nocturnal hemoglobinuria

Paroxysmal nocturnal hemoglobinuria (PNH) is a rare hemo-
lytic anemia first described in 1882 [144]. In addition to he-
molysis, thrombosis, muscle dystonias, chronic kidney dis-
ease, and bonemarrow failure may occur [145]. The incidence
of PNH is ~ 1–1.5 cases per million individuals worldwide
[146]. Most patients present between the ages of 30–59
[146] and it is rare in children [147].

Genetics

Unlike the germline mutations described commonly in aHUS
and less commonly in C3G, PNH is caused by somatic muta-
tions in the phosphatidylinositol glycan anchor biosynthesis
class A gene (PIGA) in one or more long-lasting hematopoi-
etic stem cell (HSC) clones [148–150]. The majority of muta-
tions seen are indels resulting in frameshifts [151, 152].
PIGA’s location on the X chromosome accounts for the ability
of one somatic mutation to cause PNH as only one allele is
functional in men and women.

The expansion of PIGA-deficient HSC clones is central to
the clinical phenotype of PNH; however, the PIGA mutations
do not themselves confer a growth advantage [153, 154]. Both
intrinsic (additive genetic and epigenetic variations [155]) and
extrinsic (bone marrow failure [156]) clonal mechanisms have
been suggested to account for the clonal expansion (reviewed
[145]).

Although there are multiple genes involved in GPI synthe-
sis, there is only one case of PNH reported where PIGA mu-
tations were not seen. In this case, one somatic mutation in
addition to a germline mutation in PIGT caused lack of GPI
anchored cells and the PNH phenotype [157, 158].

Table 3 Abnormal FHR proteins described in C3G

Abnormal FHR
protein

Phenotype Effect Reference

FHR212FHR51–9 DDD Stabilizes C3bBb [99, 100]

FHR512FHR51–9 CFHR5 nephropathy De-regulates FH [97, 98]

FHR512FHR21–4 C3GN Not known [101]

FHR11234FHR11–5 Low C3 De-regulates FH [102]

FHR312FHR11–5 C3GN De-regulates FH [97, 103]

FHR1123FHR51–9 DDD/C3GN overlap De-regulates FH [104]

FHR512FHR21–4 C3GN De-regulates FH [105]

Abnormal FHR protein—the subscript indicates the SCR of each FHR
protein that form the abnormal FHR protein

FHR factor H-related, DDD dense deposit disease, C3GN C3 glomeru-
lonephritis,C3bBbC3 convertase of the alternative pathway, FH factor H
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Pathogenesis

PIGA encodes for a glycosyl transferase that is required in the
biosynthetic pathway for the synthesis of glycosyl phos-
phatidylinositol (GPI) [159]. PIGA mutations lead to a defi-
ciency of GPI-anchored proteins including CD14, CD16b,
CD48, and the complement inhibitor proteins CD55 (decay
accelerating factor; DAF) and CD59.

CD55 accelerates the decay of the alternative and classical
pathway C3 and C5 convertases while CD59 is a terminal
pathway regulator which binds C8 preventing C9 recruitment
and formation of the membrane attack complex. Deficiency of
these complement regulators is critical to PNH erythrocytes
being susceptible to complement-mediated attack.

In addition to the dominant hemolytic clinical feature of
PNH, thrombosis is commonly seen. The exact mechanisms
of thrombosis in PNH are unclear (reviewed by Hill et al.
[160]) although the interplay of the complement and coagula-
tion cascades, particularly C5 receptor signaling pathways,
activation of platelets and intravascular hemolysis have been
suggested.

Clinical presentation and outcome

In PNH-affected erythrocytes, the constant activation of the
AP causes a chronic low-level hemolysis and at time of infec-
tions or other complement triggering events there may be a
hemolytic attack [161]. The most common cause of mortality
of PNH is thromboembolism, with venous thrombosis more
common than arterial thrombosis [160]. Smooth muscle
dystonias including back pain, abdominal pain, erectile dys-
function, and dysphagia are seen [162]. Chronic kidney dis-
ease can occur with hemosiderin deposition leading to
tubulointerstitial inflammation [163, 164]. Bone marrow fail-
ure is commonly seen in PNH but is not a consequence of the
somatic mutations in PIGA [145].

Historically, the median survival of patients with PNH was
approximately 10 years [165–167]; however, since the intro-
duction of eculizumab, in those without bone marrow failure,
a normal lifespan can be expected [146, 168].

Eculizumab in PNH

Eculizumab is currently the only licensed therapy for PNH. Its
introduction resulted in improvement in intravascular hemo-
lysis [169, 170], thrombosis [171], renal function [172], and
survival [168]. Variable response to treatment is seen with
some patients presenting with residual hemolysis and requir-
ing red blood cell transfusions. Low-level extravascular he-
molysis is seen in most PNH patients on eculizumab. In this
setting, C3 fragments opsonizing erythrocytes are recognized
by macrophages in the spleen and liver resulting in their de-
struction [173]. It has recently been shown that a

polymorphism in Complement receptor 1 (CR1) alters the
level of CR1 on erythrocytes and consequently the level of
C3 opsonization of erythrocytes [174]. This increases the
clearance of the erythrocytes.

As seen in aHUS, a polymorphism in C5 can limit
eculizumab’s effectiveness and complete blockage should be
confirmed (AH50/CH50/sC5b-9) [52].

Novel complement inhibitors in PNH

Several novel complement inhibitors are in various stages of
development for the treatment of PNH including the C5 in-
h ib i t o r s ALXN1210 (A lex ion ; NCT02946463 ,
NCT03056040), RA101495 (RaPharma NCT03030183,
NCT03078582), ALNCC5 (NCT02352493 Alnylam),
Coversin (NCT02591862; Akari), the C3 inhibitor compstatin
analogue APL-2 (NCT02588833; Apellis), and the factor D
inhibitor ACH-4471 (Achillion). These are reviewed in more
detail in this issue by Harris [175].

Summary

Together, these classical diseases of complement dysregula-
tion provide a window on the vastly different phenotypes that
can result from the subtle variations in complement regulation.
These diseases will provide the test bed for the next generation
of complement inhibitory agents.
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