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Abstract: The rapid propagation of electrical activity through the ventricular conduction system (VCS)
controls spatiotemporal contraction of the ventricles. Cardiac conduction defects or arrhythmias
in humans are often associated with mutations in key cardiac transcription factors that have been
shown to play important roles in VCS morphogenesis in mice. Understanding of the mechanisms
of VCS development is thus crucial to decipher the etiology of conduction disturbances in adults.
During embryogenesis, the VCS, consisting of the His bundle, bundle branches, and the distal
Purkinje network, originates from two independent progenitor populations in the primary ring and
the ventricular trabeculae. Differentiation into fast-conducting cardiomyocytes occurs progressively
as ventricles develop to form a unique electrical pathway at late fetal stages. The objectives of
this review are to highlight the structure–function relationship between VCS morphogenesis and
conduction defects and to discuss recent data on the origin and development of the VCS with a focus
on the distal Purkinje fiber network.

Keywords: ventricular conduction system; Purkinje fiber network; cardiac morphogenesis; cardiac
progenitors; conduction defects

1. Introduction

Cardiac Purkinje fibers (PF) are named after the famous Czech physiologist Jean
Evangelista Purkinje who first described “large gray gelatinous fibers” in the sheep heart
in 1845 [1,2]. These cells were later described as specialized cardiomyocytes characterized
by distinct histological features with pale cytoplasm, few mitochondria, a large amount
of collagen, and a low number of myofibrils [3,4]. At the beginning of the 20th century,
the description of the “stimulus conduction system” as a tree-like structure by Suneo
Tawara was a major advance in our understanding of the link between cardiac structure
and function [5]. The cardiac conduction system (CS) generates and propagates electrical
activity through the heart to synchronize the consecutive contractions of the atria and
ventricles [6]. Electrical activity originates in the pacemaker cells of the sinus node in the
right atrium and is relayed to the atrioventricular (AV) node before being transmitted to the
ventricles by a well-defined pathway known as the ventricular conduction system (VCS).
The proximal part of the VCS, the His or AV bundle, emerges from the AV node, crosses
the fibrous AV junction, and divides into the left and right bundle branches (BB). The distal
portion of the VCS is composed of ramifications of BB into a complex network of PF fascicles
forming ellipsoidal structures in each ventricle [7] (Figure 1). The VCS is characterized by
fast conduction properties and automaticity through the expression of the high conductance
gap junction Connexin 40 (Cx40; Gja5 gene) and specific ionic channels [3,8]. This fast-
conducting pathway is necessary to activate ventricular myocardium from the apex to
the base, ensuring efficient expulsion of the blood through the great arteries. While these

J. Cardiovasc. Dev. Dis. 2021, 8, 95. https://doi.org/10.3390/jcdd8080095 https://www.mdpi.com/journal/jcdd

https://www.mdpi.com/journal/jcdd
https://www.mdpi.com
https://orcid.org/0000-0002-4760-6793
https://doi.org/10.3390/jcdd8080095
https://doi.org/10.3390/jcdd8080095
https://doi.org/10.3390/jcdd8080095
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jcdd8080095
https://www.mdpi.com/journal/jcdd
https://www.mdpi.com/article/10.3390/jcdd8080095?type=check_update&version=1


J. Cardiovasc. Dev. Dis. 2021, 8, 95 2 of 17

cells represent a tiny fraction of the ventricular volume (1–2%) [9], their pathogenic role is
disproportionately high given that they are thought to cause ectopic activation that can lead
to life-threatening ventricular arrhythmias in structurally normal hearts and particularly in
patients with cardiac disease [10]. In ventricular arrhythmia, Purkinje cells generate both
automatic and triggered focal rhythms, while the architecture of the PF network favors
re-entrant circuits, sustaining ventricular tachycardia and fibrillation [11,12].
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Figure 1. Morphological and cytoarchitectural similarities between human and mouse left ventricular
Purkinje network. (A) Drawing of the human left ventricular conduction system from Tawara [1].
(B) Fluorescent image showing the mouse left ventricular conduction system of a Cx40-GFP heart [13];
The complexity of the PF network formed by ellipsoidal structures are indicated by stars. AVB:
Atrioventricular bundle; LBB: Left Bundle branch; PF: Purkinje fibers. (C) Purkinje network (P) and
muscular trabeculae (T) in the human heart. Purkinje cells running in parallel within the trabeculae
are continuous with a delicate network of polygonal or stellate cells ×120 (a gift from Dr Shimada
with permission) [14]. (D) Cytoarchitecture of the mouse Purkinje network from a high-magnification
image of a Cx40-GFP heart shows similar organization with parallel fascicles (T) and Purkinje network
(P) ×80.

Modeling of the cardiac conduction system demonstrates a precise alignment of
activation maps and PF network anatomy, illustrating how morphology underlies func-
tion [15–17]. Acquiring more accurate modeling of conduction disorders requires detailed
imaging of the PF network [18,19]. However, this task is very challenging because it is not
currently possible to capture the intact three-dimensional Purkinje network structure in-
cluding Purkinje–myocardial junctions (PMJ) [20]. This complexity extends to architectural
and anatomical differences in the PF network among mammalian species [14,18]. The PF
network is uniquely present in mammalian and avian ventricles as a specific evolutionary
trait necessary for the rapid heart rate of endothermic vertebrates [21]. It is generally
localized at the subendocardial surfaces of the ventricles, as, for example, in human and
rodents, while in avian, ungulate, and cetacean hearts, such as chick, sheep, pig, or whale,
numerous penetrating fibers also invad the myocardial wall [22]. Other differences such
as PF network mesh size or the size and shape of PF cells have been described and may
reflect differences in conducting properties observed between species [14]. In the last two
decades, through the development of new genetic tools, several groups have been able
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to explore the morphology of the ventricular conduction system in the mouse. Indeed, a
specific staining or labeling by a reporter gene is required to fully appreciate the complex
anatomy of VCS network [13,23–25]. In mice, the architectur of the PF network is highly
similar to that of the human heart. In both species, the cytoarchitecture of the ellipsoidal
fascicles comprises strands of elongated Purkinje cells which are joined by a delicate net-
work of stellate cells [13,14,26] (Figure 1). The cardiac PF network presents a fascinating
and intriguing architecture, and understanding its development and morphogenesis rep-
resents a real challenge but one that is essential to provide new insights into the origins
of ventricular arrhythmias. Important results concerning the developmental origin and
genetic mechanisms involved in PF network morphogenesis have been obtained recently
using the mouse model and are presented in this review.

2. Developmental Origin of the Purkinje Fiber Network

While a better understanding of the origin and specification of the PF network is
essential to comprehend the etiology of ventricular arrhythmias, the low proportion of
PF cells within the adult heart and the lack of specific developmental PF markers render
this analysis challenging. The permanent labeling of progenitor cells using clonal analysis
and genetic tracing has been successful in determining from which progenitor cells the
conductive cells originate during embryogenesis and when specification toward the PF
lineage takes place.

2.1. Clonal and Genetic Tracing Analyses Reveal the Myogenic Origin of the VCS

Conductive cells were once thought to have a neuronal origin because of certain
similarities with neurons such as morphology, electrophysiology, and gene expression.
This idea was further reinforced as the localization or ablation of neural crest cells in the
developing heart strongly suggested that this population may participate in the develop-
ment of the proximal VCS [27,28]. However, genetic tracing of neural crest derivatives in
chick [29] or in mice [30] excludes any contribution of this lineage to the VCS. An important
finding came from clonal studies in chick which unambiguously showed a myogenic origin
of the VCS. Indeed, retroviral labeling of single myogenic progenitors results in derivative
cells forming clones composed of both PF cells and contractile cardiomyocytes [31]. Similar
results were obtained in mice where a defective nlaacZ reporter gene under the control
of the cardiac specific α-cardiac actin promoter was used to generate rare spontaneous
β-galactosidase-labeled clones. This retrospective clonal analysis revealed the existence of
mixed clones (composed of both conductive and contractile cells) and unmixed conductive
clones (exclusively composed of conductive cells) [9]. The presence of large clones covering
the different compartments of the VCS including AVB, BB, and PF argues in favor of a
very early common progenitor [30]. No clones were observed containing cells covering
both proximal (AVN-AVB) and distal (PF) VCS components, reflecting the independent
origins of these compartments [29]. Genetic lineage analysis has demonstrated that the
AVN derives from the atrioventricular canal while the AVB originates from ventricular
cardiomyocytes [32]. The presence of mixed clones demonstrated that conductive cells
from all CCS components share a common myogenic cardiac progenitor with neighboring
contractile cells [9,33]. The low number of cells per unmixed conductive clone revealed
that the proliferation rate decreases after restriction to the conductive fate. Indeed, cell
cycle exit has been demonstrated to be an early indicator of conduction system lineage
specification [34,35]. In the mouse, a genetic lineage study of mesodermal derivatives has
showed that about 80% of conductive cells expressing the CCS-lacZ transgene were labelled
in Mesp1-derived cardiomyocytes demonstrating further evidence for the myogenic origin
of VCS [36]. However, this study also highlights that a small part of the VCS may arise
from another embryonic layer, raising unresolved questions about their origin. Together
these results demonstrated for the first time that contractile and conductive cells originate
from the same myogenic progenitors, excluding a neuronal origin of the VCS, that proximal
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and distal conductive cells originate from different lineages and that segregation of VCS
cells is followed by limited outgrowth.

The heart is formed from two populations of cardiac progenitors, the first (FHF)
and second heart fields (SHF) which emerge sequentially in nascent mesoderm [37,38].
Additional lineage tracing experiments have demonstrated the dual contribution of the
FHF and SHF myogenic progenitor cells to the VCS [30,39,40]. The left BB and left PF
network derive exclusively from the FHF lineage whereas the right PF network and SAN
derive exclusively from the SHF lineage [41]. On the other hand, AVN, AVB, and right BB,
which develop at the level of the interventricular septum where the two cardiac fields meet,
derive from progenitors of both lineages. These data demonstrate that conductive cells do
not derive from an independent lineage but rather that development of the VCS follows
that of heart morphogenesis.

2.2. A model of VCS Morphogenesis Based on the Expression of Conductive Markers

Despite the fact that ventricular conductive cells form a unique fast-conductive path-
way in the adult heart, none of the specific markers identified so far are exclusively
expressed in these cells which would have been very helpful to draw a precise picture of
VCS morphogenesis. This implies that cardiac progenitors segregate into different lineages
as differentiation occurs. During development, several markers delineate a population
of cardiomyocytes forming a ring at the interventricular foramen at E9.5 in the mouse
embryo [42,43]. The CCS-LacZ transgene has been described to label the CCS and is also
present in the interventricular septum and valves [24]. Tbx3 is expressed in the proximal
VCS, including AVN, AVB, and BB, but not in distal PF cells [44]. These two markers
identify a population of cardiac progenitors previously described as the primary ring and
thought to label proximal VCS precursors [45]. At early stages of embryonic development
ventricular activation colocalizes with the primary ring [46].

In contrast, prospective clonal analysis of Cx40 expressing cells shows that the distal
VCS including PF cells originates from ventricular trabeculae [9]. Indeed, ventricular
trabeculae expressing the gap junction protein Cx40 constitute the primary fast-conductive
pathway during embryogenesis [47]. Cx40+ genetic tracing analysis demonstrated that PF
cells share a common progenitor with contractile myocytes localized within ventricular tra-
beculae [48]. Progressive lineage restriction to a conductive phenotype during development
is largely complete by E16.5 and followed by limited proliferative outgrowth [9]. These data
have been confirmed by genetic tracing analysis using the semaphorin 3A (Sema3A) gene
to specifically label embryonic trabeculae [49]. As trabecular cells differentiate into PF cells,
the ventricular activation pattern switches from the primary ring to an apex-to-base path-
way [46]. These data suggest progressive acquisition of a functional VCS during ventricular
morphogenesis. This model is supported by the gradual spatiotemporal restriction of the
expression of conduction-specific genes during ventricular myocardial growth controlled
by a complex transcriptional regulatory network [50,51]. Most PF markers analyzed to
date are expressed in surrounding contractile tissue prior to their restriction to conductive
cells including Cx40, Irx3, Etv1, and Sema3a which are expressed in ventricular trabeculae
before being progressively restricted to the mature VCS [13,52–54]. Consistent with this
model, the chick VCS has been shown to develop by a process of induction and recruitment
(ingrowth model) of localized cardiomyocytes through endothelial derived signals, i.e.,
endothelin, explaining in part why the distal avian VCS, unlike in the mouse, develops
next to coronary arteries [55–57]. In contrast to chick, specification of the murine cardiac
conduction occurs in the absence of endothelin signaling [58,59].

Other markers switch on during the progressive differentiation and physiological mat-
uration of conductive cells. This is the case for Cx40 in the AVB and BB at fetal stages, where
it is essential for fast conduction [60]. During embryogenesis, HCN4 (hyperpolarization-
activated cation-selective nucleotide-gated channel 4) expression also delineates the atri-
oventricular ring [61] and HCN4 is re-expressed during fetal stages (E16.5) in the entire CCS
where it mediates the pacemaker function of conductive cells [39]. The axonal glycoprotein
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Contactin-2 (Cntn2) is only expressed in the mature VCS from perinatal stages [25,51].
Recent single-cell transcriptomic analysis of CCS components at E16.5 has identified nu-
merous additional genes expressed within different CCS components. Many of the genes
expressed in the PF cluster are also expressed within other CCS clusters [62].

2.3. Identification of Conductive Progenitors and Early Commitment of Purkinje Fibers

In order to investigate the time at which early cardiac progenitors become restricted to
the conductive lineage during development, temporal clonal analyses were performed. The
multicolored R26-confetti reporter line was been crossed with a tamoxifen inducible Cre
line under control of the Smooth Muscle Actin (SMA) promoter to individually label early
cardiac progenitors at the cardiac crescent stage [63]. The observation of unicolor clones
exclusively in the AVB demonstrates the early segregation of cells towards a conductive
fate in this early cardiac progenitor population. Segregation towards the BB and PF lineages
arises later during development as non-conductive cells that are clonally related to cells
within these structures are also present in the surrounding septum. A population of cardiac
progenitors committed toward the conductive lineage thus exists at the linear heart tube
stage. In addition, a temporal genetic tracing of embryonic Tbx3+ cardiomyocytes reveals
the presence of AVB-committed cells in the outflow tract of the linear heart tube and the
establishment of the AVB by progressive fate restriction of Tbx3+ cardiomyocytes [64].
However, these Tbx3+ progenitors, representative of the primary ring, do not contribute
to the PF lineage [64]. More recently, clonal analysis has identified, for the first time, a
subpopulation of early cardiac progenitors committed to the PF lineage as early as the
onset of heart tube formation (E7.75), prior to the onset of trabeculation [65]. Labeling early
SMA+ cardiac progenitors at around E7.5 has been previously shown to mark derivatives
of FHF, confirming a FHF origin of the left ventricular PF network. The early commitment
of conductive cardiomyocytes has been proposed to constitute a “scaffold” for subsequent
growth of the PF network [65]. Temporal clonal analysis of single trabecular cells demon-
strated that committed PF cells are already present at the onset of trabeculation and their
proportion increases as the ventricle grows [65].

Thus, the VCS develops from two independent populations of early committed pre-
cursors in the form of the primary ring and ventricular trabeculae in the embryonic heart
that will give rise respectively to the proximal or distal components of the VCS. At fetal
stages, all cells of the VCS acquire a fast-conductive phenotype to form an integrated
functional ventricular electrical pathway, induced by the spatiotemporal control of complex
transcriptional mechanisms [50,66,67]. This is supported by optical mapping experiments
revealing that ventricular conduction switches from a single activation at the level of the
Primary ring to dual activation in both ventricles along an apex to base axis [46]. Future
single-cell transcriptomic analyses at different embryonic timepoints will be necessary to
more fully dissect the cellular heterogeneity of ventricular trabeculae and the molecular
landscape of these subcomponents of the VCS.

3. Defective VCS Morphogenesis Causes Conduction Defects in Mouse Models
3.1. Structure–Function Relationship between VCS Architecture and Cardiac Conduction

Ventricular conduction defects, including bundle branch blocks, represent unfavorable
prognostic signs linked with morbidity and mortality and are often associated with abnor-
mal Purkinje cell biology [68]. However, the role of the Purkinje network morphology in
the genesis and maintenance of certain types of conduction defects is not completely under-
stood. The rapid propagation of electrical activity in the ventricles results from two main
parameters, namely, conduction velocity and the architecture of the PF network, defects in
either of which represent a major substrate for ventricular arrhythmias [4]. Using mouse
genetic models, a striking correspondence has been revealed between VCS morphology
and electrical activation indicating a strong structure–function relationship [13,69]. The
CCS-LacZ mouse line expresses a beta-galactosidase encoding reporter gene in the develop-
ing VCS and its pattern of expression is correlated with the conduction pathway detected
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by optical mapping in embryonic heart [24,70]. In the adult mouse heart, the right and left
BBs are morphologically and functionally asymmetric as depicted by Cx40 expression in
knock-in Cx40GFP/+ mice [13,71]. Whole-mount fluorescent and optical mapping images of
each side of the septum show a unique thin right BB compared to a large left BB composed
of multiple strands. The PF network is also asymmetrical between ventricles with ramifica-
tions mainly present at the surface of the right ventricular free wall while the PF covers
the entire septal surface in the left ventricle [7,9]. Detailed analysis of PF distribution in
the LV indicates a peak of fibers about one-third of ventricular length above the apex at
the location where cell–cell communications through Cx43 junctions are seen between PF
and working myocardium suggesting a high density of PMJ in the distal part of the PF
network [72]. Three-dimensional mathematical models of heart activation based on the
asymmetrical distribution of the PF network in both ventricles match with experimentally
recorded activation maps [16,17,72]. The asymmetrical localization of the dense network of
Purkinje fibers between the right and left ventricles is necessary to optimally synchronize
contractions according to the blood flow pattern of each ventricle [7].

Until recently, conduction defects have been mainly attributed to reduced conduction
velocity or abnormal electrophysiological properties of cardiomyocytes [66], and the role
of VCS morphology was poorly appreciated. However, advances in deciphering the
molecular regulatory network responsible for PF specification and function have improved
our understanding of their contribution to conduction defects [67,73]. In 2004, two studies
described for the first time that abnormal VCS structure is associated with conduction
defects [74,75]. Since then, several genes have been implicated in VCS morphogenesis, and
their deletion results in either a reduction or an increase of conductive cells which impacts
on both VCS architecture and function.

3.2. Mouse Models with a Hypoplastic VCS

Neuregulin1 (Nrg1) is a paracrine factor and a member of the EGF family implicated
in the regulation of growth and differentiation of different cell types [76]. During cardiac
development, endocardial-derived Nrg1 is the initiating factor of trabeculae formation [77]
and is sufficient to induce a massive conversion of contractile cardiomyocytes towards a
conductive phenotype in organ culture of embryonic mouse hearts [70]. Downstream of
Nrg1, the Ras/MAPK pathway induces the activation of ETV1, a transcriptional activator,
member of the Pea3 group of ETS family transcription factors [52]. Similarly to Nrg1, ETV1
is sufficient to induce a conductive fate in vitro in rat neonatal ventricular myocytes and
human induced pluripotent stem cell-derived cardiomyocytes [52]. Mice lacking Etv1
develops a highly hypoplastic His–Purkinje network in which ventricular conduction is
affected, as measured by an increased QRS duration.

Like ETV1, transcription factors such as Nkx2-5, Tbx5, and Irx3 are fundamental regu-
lators of VCS specification and maturation and act synergistically in those processes [78]. In
consequence, hemizygous mutation of one or several of these genes leads to defects in VCS
morphology characterized by hypoplasia of one or multiple parts of the conduction system.

Nkx2-5 encodes a cardiac transcription factor that regulates major molecular pathways
involved in heart development and function, with a particular role in the morphogenesis
of the conduction system. NKX2-5 mutations have been described in many patients with
congenital heart defects and the majority of them present conduction defects or arrhyth-
mias [79–81]. NKX2-5 has been mainly found to be involved in atrial arrhythmias and AV
block, however, a long-term follow-up revealed a high incidence of sudden cardiac death
(SCD) on aging in these patients suggesting the occurrence of ventricular arrhythmias [82].
In mice, Nkx2-5 haploinsufficiency does not lead to major structural abnormalities of the
heart, except for very rare ASD [83]. However, mice lacking one copy of Nkx2-5 system-
atically develop hypoplasia of both the proximal and distal VCS [84]. Consistent with
a smaller AVN, Nkx2-5 heterozygote mice develop atrioventricular conduction delays
with age as measured by an increased PR interval from P7 [85–87]. The PF network ar-
chitecture of these mice is also greatly affected, especially in the apex, as they show a
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2–3-fold decrease in conductive cells numbers, together with a decrease in the number of
the ellipsoidal structures that characterize the Purkinje network [84]. As a consequence,
decreased conduction velocity in the ventricles is detected in Nkx2-5 haploinsufficient
hearts, together with a prolonged QRS [84,87]. The recording of a normal action potential
in Nkx2-5 haploinsufficient isolated PFs suggest that conduction defects are directly related
with PF network hypoplasia rather than a cellular dysfunction [84].

Tbx5 is a member of the family of T-box transcription factor-encoding genes. During
embryonic mouse development, Tbx5 is expressed in left ventricular myocardium and
a small portion of the right ventricle [88,89]. As development proceeds Tbx5, like Nkx2-
5, is transcribed at higher levels in the VCS than in the surrounding myocardium [75].
In human, TBX5 haploinsufficient mutations cause Holt–Oram syndrome characterized
by upper limb defects, heart defects, and conduction disturbances including AV and BB
blocks [90]. Similarly, haploinsufficient mice for Tbx5 (Tbx5+/−) fail to express the atrial
natriuretic factor ANF (Nppa) and Cx40 [91]. They also present a failure of AVB and BB
maturation manifested as a foreshortened AVB, large and immature LBB and hypoplastic, if
not absent, RBB [75]. Reduced gap junction expression together with morphological defects
result in the adult in prolonged atrioventricular (long PQ interval) and ventricular (long
QRS) conduction [75]. Together, this suggests a critical role of Tbx5 in the specification and
function of the proximal VCS.

Compound Nkx2.5+/−::Tbx5+/− heterozygous mice have also been generated [34]
and possess increased conduction system defects compared to the single heterozygotes.
Their VCS morphology is greatly affected as neither minKLacZ nor Cx40 expression can
be observed in the AVB and BB. Consequently, ventricular conduction is more severely
slowed in double Nkx2.5+/−::Tbx5+/− heterozygous mice compared to single mutants, as
measured by QRS duration in neonatal mice.

Irx3 is a member of the Iroquois transcription factor family that has been described
to have a dual action on the maturation of the VCS. During embryonic development,
Irx3 acts synergistically with Tbx5 and Nkx2.5 to upregulate the expression of Cx40 in
the developing VCS while downregulating the expression of Cx43 [54]. At postnatal
stages, Irx3 is also critical for the postnatal maturation of the VCS, as it plays a key role
in cell cycle exit and differentiation of the conductive progenitors [78]. As a consequence,
Irx3−/− mice possess a hypoplastic VCS characterized by slow ventricular conduction
(long QRS) and frequent right bundle branch block. Cellular conductance might also be
affected in Irx3−/− hearts as Cx40 content is reduced by 2-fold compared to controls. As
conduction in Cx40 heterozygous mutant mice is normal, many of the conduction defects
seen in Irx3−/− mice cannot be solely explained by reduced Cx40 expression. Thus, the
defective architecture of the VCS in Irx3−/− mice is likely to play an important role in the
development of cardiac conduction defects [78]. Ventricular tachycardia is also frequent in
Irx3−/− mice [92]. However, whether this ventricular arrhythmia originates from decreased
conduction protein levels or hypoplasia of the VCS has not been determined.

Thus, to date, Tbx5 is known to be critical for the proper maturation of the AVN and
proximal VCS mostly, Nkx2-5 is required for the specification of all components of the
VCS, while Irx3 regulates all components of the VCS development. This suggests that
the maturation of each component of the conduction system is controlled by unique gene
regulatory networks.

Altered expression of downstream effectors of these transcription factors could also
lead to hypoplastic architecture of the conductive system. This is the case for miR1 and Id2
for instance, which regulate conductive fate specification and/or conductive maturation.

miR1 is the most abundant cardiac microRNA and is a direct transcriptional target of
Nkx2-5 [93,94]. In mice, cardiomyocyte-driven overexpression of miR1 results in VCS hy-
poplasia arising at E13.5 and persisting in adulthood [95]. Indeed, premature upregulation
of miR-1 during embryogenesis inhibits proliferation of PF precursors, possibly through
downregulation of the cyclin dependent kinase Cdk6 which by consequence results in
an upregulation of the pocket proteins. Overexpression of miR1 also perturbed Ca2+
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handling in PF via its inhibiting effects on the SNARE protein Syntaxin 6 (Stx6), involved
in cellular trafficking [96]. Thus, miR1 overexpressing mice present various conductive
defects such as tachycardia, arrhythmia, slow atrioventricular conduction (long PR) or
AVB, and slow ventricular conduction (long QRS) [97]. Some of those defects, including
defective ventricular conduction, could be attributed to VCS morphological defects.

Id2, a member of the ID gene family of helix-loop-helix-containing transcription
repressors, is particularly enriched in the AVB and BB at fetal stages and is regulated both
by Nkx2-5 and Tbx5. In the conduction system, Id2 represses the activity of myogenic
factors such as MyoD [98], thus favoring a conductive fate. Similar to Tbx5−/− mice,
Id2−/− mice possess an immature-like AVB and LBB characterized by an absence of well-
defined His bundle and a broad LBB originating from the entire length of the ventricular
crest, although morphology of the PF has not been investigated in this mutant so far [34].
Consistent with the defective proximal VCS morphology, Id2−/− mice display conduction
defects in the BB, resulting in an increased QRS duration and frequent fragmented QRS
complex as described by RsR’ pattern on ECG indicative of LBB block.

Neural cell adhesion molecule-1 (NCAM-1) is an adhesion molecule of the immunoglob-
ulin superfamily (IgSF-CAMs). In addition to mediating cell–cell interaction, NCAM-1
binding triggers activation of downstream signaling cascades, which have been exten-
sively studied in the context of neural development. In Ncam-1 KO mice, the expression
of several PF specific genes is downregulated [99]. Among them, some are involved in
cellular conductance—such as Cx40 and Scn4b—whereas others, like ETV1, are necessary
for conductive cell specification. The subcellular localization of NCAM-1 is regulated by
its polysialic acid post-translational modification, and it is necessary for the localization of
Cx40, Cntn2, and Scn4b at the level of the intercalated discs. Moreover, NCAM-1 KO mice
display an 30% hypoplasia of the VCS, specifically in the mid and apical LV. Functionally,
ventricular conduction velocity is decrease in these mice, as shown by an increased QRS
duration. However, the relative contribution of altered cellular conductance and structural
defects of distal VCS to this phenotype was not compared.

Other downstream effectors of Nkx2-5, Tbx5, and Irx3 only act through regulation of
the expression of conduction proteins without impacting on VCS architecture. Hopx, a
homeobox transcription factor, is one example as it has been demonstrated to be required
for proper Cx40 expression in the VCS downstream to Nkx2-5 [100]. Knock-out mutation
of such downstream effectors leads to conduction defects, such as QRS elongation, without
causing architectural defects.

Taken together, these studies support the notion that hypoplasia of a part of the
conduction system is responsible for slowing down conduction in the corresponding
VCS compartment. Indeed, a hypoplastic AVB is characterized by slow atrioventricular
conduction, resulting in an increased PR duration. Similarly, a hypoplastic Purkinje
network shows slow ventricular conduction, and thus, a prolonged QRS interval (Figure 2).
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3.3. Mouse Models with Hyperplastic VCS

Increase of progenitors committed toward a conductive fate, and/or perturbed pro-
liferation of conductive progenitors, could lead to an excessive ventricular conduction
system. However, few hyperplastic models have been described to date (Figure 2).

The transcription factor Hand1 is expressed in the VCS in the adult heart [101]. Down-
regulation of Hand1 by deletion of a left ventricular specific enhancer in transgenic mice
provokes morphologically abnormal development of the VCS. In contrast to the PF hy-
poplasia seen in Nkx2-5+/− mice, Hand1 mutant hearts display a dysmorphic and hyper-
plastic VCS [101]. Interestingly, an excessive VCS in this model is also associated with
reduced conduction velocity in the ventricles (long QRS and perturbed activation map
upon atrial pacing).

Pocket proteins p107, p130, and Rb are key regulators of the cell cycle exit in many
cell types. They are expressed in the myocardium during development—for p107 and
p130—and during the neonatal and adult periods for Rb [102]. The impairment of their
activity in p107−/−, p130−/−, or α-MHCCre::Rbfl/fl mice perturbs cell cycle exit of conductive
progenitors, leading to hyperplasia of the developing VCS. However, the phenotype is
lethal during late fetal stages making functional study impossible.

These examples illustrate that while morphological defects are invariably associated
with conduction defects, the opposite is not true. Malfunction and/or malformation of
the Purkinje network can lead to conduction delay, dyssynchronous contraction, and
tachyarrhythmias, and these are important sources of morbidity in patients with congenital
and acquired heart disease [4,10]. However, classification as a function of their etiology
would be valuable in terms of developing preventive or curative therapeutic strategies
in patients. Up to now, no morphological defects of the PF network have been reported
in human patients. The main limitation of these studies is that not all of these genes are
specific to the conduction system during development and defects in other non-conductive
cardiomyocytes could impact cardiac function in these models. In addition, many of these
mice do not survive after birth, making it impossible to analyze the mature morphology of
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the adult conduction system. To address these problems and to understand the intrinsic
role of each of these genes on the development of the ventricular conduction system as well
as their genetic interactions, conditional loss of function of these genes specifically in the
different subcomponents of the VCS should be performed in the future. However, while
the regulatory determinants of this developmental program have not been fully established,
a key factor in determining the functional properties of the whole unit is the maintenance
of the appropriate ratio of conductive to working cardiomyocytes: PF hypoplasia leads
to conduction defects and ventricular tachycardia [74,78] while PF excess causes reduced
contractile force and conduction defects [102].

4. A Two-Step Model of PF Network Morphogenesis Involving Scaffold and
Recruitment Phases

The development of the VCS is far from linear, as proposed by the primary ring model
with a committed progenitor population that expands with the growth of the interventric-
ular septum (outgrowth model) [45]. As described above, the progressive restriction of
the conductive lineage during ventricular development highlights an alternative model
with a gradual development of the different components of the VCS resulting in a unique
and functional electrical pathway [51]. The development of the PF network appears to
be intimately linked to ventricular wall morphogenesis and trabecular cardiomyocytes in
particular [103]. Thus, the Cx40-CreERT2 mouse line which targets ventricular trabeculae
and VCS represents an invaluable tool to investigate the relationship between trabecular
cell fate and the development of the VCS. Temporal genetic tracing of single trabecular
cells has shown to be a powerful approach to decipher PF morphogenesis by comparing
their cellular fate and behavior in control and in Nkx2-5+/− mice [65].

4.1. The PF Network Grows by Two Phases of Recruitment

At early embryonic stages, a large proportion of trabecular cells are bipotent and
give rise to conductive and contractile cardiomyocytes; however, this number decreases
progressively during ventricular development and disappears at birth (Figure 3A). Com-
mitted conductive or contractile cells are already present at the onset of trabeculation
and the proportion of conductive cells increases with time while remaining constant for
contractile cells. The increase in proportion of committed PF is low until fetal stage and
high around birth suggesting a late cell fate decision of many trabecular cells to enter
the PF lineage. In Nkx2-5 heterozygous mutant mice, the number of early committed PF
is slightly reduced in comparison to control, while the commitment of new PF cells to
the network at late fetal stage is almost completely abolished leading to a hypoplastic PF
network. In each clone, the number of conductive cells is constant over time and in different
genotypes, suggesting that the growth of the PF network does not result from proliferation
of precursor cells but rather by the recruitment of newly committed PF from the pool of
bipotent trabecular cardiomyocytes. In summary, PF network morphogenesis is highly
polyclonal (Figure 3B) and occurs by an initial specification of committed conductive cells
from early cardiac progenitors to form a scaffold, followed by a progressive recruitment of
PF from bipotent trabecular cells in two phases. The first recruitment phase is slow and
independent of Nkx2-5 while the second phase is rapid and sensitive to a reduced level of
Nkx2-5 expression.
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(green cells) and represents the primary scaffold of the VCS network. During trabeculation and compaction of the ventricles,
trabecular progenitors (gray cells) are progressively fate-restricted, and many conductive cells are recruited to the primary
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Nkx2-5-dependent recruitment to contribute to ellipsoidal structures of the PF network. In Nkx2-5+/− mice, the conductive
potency is progressively lost leading to a hypoplastic PF network with very rare ellipsoidal structures. (B) Whole-mount
fluorescence images of the left PF network from Mesp1-Cre::R26R-Confetti mice at P21. Immunostaining for Contactin-2
(CNTN2) is used to label the mature PF network. Multicolor confetti cells show the polyclonal morphogenesis of the PF
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4.2. Cell-Autonomous Specification and Recruitment of the PF Network

The exact mechanisms involved in the progressive recruitment of committed PF within
trabecular myocardium are still not yet understood, although Nkx2-5-dosage is essential for
their specification and late fetal recruitment. The reduced number of PF in the Nkx2-5+/−

mutants results from a failure of trabecular cells to differentiate into PF rather than a loss of
PF cells [84]. Moreover, cardiac progenitor cells failed to develop proximal and distal parts
of the VCS in the absence of Nkx2-5 suggesting that a minimal level of Nkx2-5 is essential
for the specification of the conductive phenotype [104]. Chimeric hearts made from a mixed
population of Nkx2-5+/+ and Nkx2-5+/− cells show a similar contribution of these cells
in trabecular progenitors while PF originate mainly from wild type cells demonstrating
that Nkx2-5 is required cell-autonomously for PF differentiation [84]. However, the lack of
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ellipsoidal structures persists in these chimeric hearts demonstrating that Nkx2-5 wild type
cells do not rescue the defect in late fetal recruitment in Nkx2-5 mutant hearts [84]. These
data suggest that Nkx2-5 mutant cells are not efficient to recruit new PF. These results are
supported by the lack of development of a complex PF network after conditional deletion
of one Nkx2-5 allele in embryonic ventricular trabeculae [104]. Conditional deletion of
one Nkx2-5 allele at birth using Cx40-CreERT2 mice does not affect the architecture of the
PF network or the differentiation of trabecular cells to PF [65]. However, if one allele of
Nkx2-5 is deleted during trabecular development, the PF network is severely affected. Thus,
Nkx2-5-dosage is required for the morphogenesis of the PF network during embryonic
and fetal development and not at postnatal stages. Together, these data suggest that the
morphogenesis of the PF network complexity relies on a cell-autonomous recruitment to
the primary scaffold.

4.3. PF Network Complexity Is Linked to Ventricular Trabeculae Compaction

The PF network is formed by complex ellipsoidal structures that are reminiscent of
the morphology of embryonic ventricular trabeculae [105]. Our clonal analyses suggest
that the formation of complex ellipsoidal PF structures is independent from trabecular cell
fate but rather the consequence of ventricular myocardium maturation. Indeed, at late
fetal stages, the trabecular myocardium coalesces to form a smooth ventricular wall by a
process designed as compaction [106]. The conditional deletion of Nkx2-5 in ventricular or
trabecular myocardium leads to the development of an hypertrabeculated myocardium,
showing that Nkx2-5 plays an important role in trabecular development and not only
in PF differentiation [86,104]. The association between the formation of the PF network
and trabecular compaction may explain differences of PF localization between the chick
and the mouse. The presence of deep PF in the chick would originate from extensive
trabecular compaction in comparison to the mouse in which trabecular compaction is
restricted to subendocardial cardiomyocytes [107–109]. PF network morphogenesis is thus
integrally related with ventricular maturation potentially explaining conduction defects
associated with congenital malformations or inherited cardiomyopathies. A recent genetic
association study has shown that the trabecular morphology in human is important for
cardiac performance and found a causal relationship between trabecular morphogenesis
and risk of cardiovascular diseases [110]. Interestingly, Meyer et al. identified 16 genes
associated with the fractal structure of the heart that may be new players in shaping
VCS architecture. Note that one of these genes, HAND1, has been recently implicated in
VCS morphogenesis as shown by an excessive VCS after deletion of Hand1 enhancer in
mice [101]. Together, this suggests that slight dysregulation of the gene regulatory network
controlling ventricular compaction during development may unveil a predisposition to
cardiac dysfunction in the adult.

5. Conclusions

The VCS is a unique electrical circuit made of fast-conductive cardiomyocytes nec-
essary to synchronize ventricular contractions. The architecture of the VCS is relatively
complex and mirrors the pattern of ventricular activation. Conduction defects and ven-
tricular arrhythmias are multifactorial disorders, and the functional importance of VCS
architecture has recently emerged from studies of genetic models in mice. These models
have revealed how anomalies in VCS morphogenesis during development contribute to
conduction defects in adult mice. Thus, the structure–function relationship between VCS
morphogenesis and electrical conduction is an important parameter to consider in cardiac
conduction disease and ventricular arrhythmia. These mouse models have also provided
insights into the embryonic origin and formation of the VCS and establish a model of PF
network morphogenesis. The VCS derives from two pools of cardiomyogenic progeni-
tors which will give rise separately to the AVB and BB from primary ring cells or to PF
from ventricular trabeculae. Trabecular cells are progressively restricted to the conductive
lineage starting at the linear heat tube stage until birth. The number of committed PFs
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increases by recruitment from trabecular cells in two phases. The scaffold phase is slow
and independent of reduced levels of Nkx2-5, while during late fetal stages, a massive
recruitment takes place, failure of which in Nkx2-5+/− mice leads to PF network hypoplasia,
highlighting how anomalies in VCS morphogenesis during development contribute to
conduction defects in adult mice.
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