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Glioma is the most common malignant primary brain tumor diagnosed in adults. Current
therapies are unable to improve its clinical prognosis, imposing the need for innovative
therapeutic approaches. The main reason for the poor prognosis is the great cell
heterogeneity of the tumor and its immunosuppressive microenvironment. Development
of new therapies that avoid this immune evasion could improve the response to the
current treatments. Natural killer (NK) cells are an intriguing candidate for the next wave of
therapies because of several unique features that they possess. For example, NK cell-
based immunotherapy causes minimal graft-versus-host disease. Cytokine release
syndrome is less likely to occur during chimeric antigen receptor (CAR)-NK therapy,
and CAR-NK cells can kill targets in a CAR-independent manner. However, NK cell-based
therapy in treating glioma faces several difficulties. For example, CAR molecules are not
sufficiently well designed so that they will thoroughly release functioning NK cells.
Compared to hematological malignancies, the application of many potential NK cell-
based therapies in glioma lags far behind. Here, we review several issues of NK cells and
propose several strategies that will improve the efficacy of NK cell-based cancer
immunotherapy in the treatment of glioma.
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INTRODUCTION

Gliomas are the most common intracranial primary malignant tumor (1). The incidence of gliomas
is approximately of six cases per 100,000 individuals worldwide. Glioblastoma (GBM), the most
common glioma histology, has a 5-year relative survival of ∼5%. While the majority of cases are
sporadic, a small portion of these tumors are associated with neurofibromatosis type I, tuberous
sclerosis, and Li-Fraumeni syndrome. Standard medical care, including the most extensive tumor
resection followed by radiotherapy and chemotherapy. Surgery is commonly performed with both
diagnostic and therapeutic intent. The therapeutic goal of surgery is to remove as much tumor tissue
while preserving neurological function. Even for diffuse gliomas, a biopsy is recommended to
acquire tissue specimens for molecular profiling (IDH mutations,1p/19q codeletion, MGMT
promoter methylation, EGFR amplification et al) (2). Most patients receive chemotherapy.
Classic schemes including Stupp (NCT00006353) and PCV (Procarbazine, CCNU, and
Vincristine) (3). The strategies of radiotherapy are determined by the disease subtype and
prognostic factors, including residual tumor volume, age, KPS. The details of novel strategies
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including tumor-treating fields (TTFields), checkpoint inhibitor,
vaccine and oncolytic virus are described in Table 1. In general,
the prognosis of high-grade glioma is still unpleasant, which calls
for more efficient approaches.

Adoptive cell therapy (ACT), especially CAR-armed cell
therapy, has great potential due to its high cytotoxicity and
precise strikes. ACT consists of a series of infusions of autologous
or allogeneic immune cells to kill targets, and T cell-based
immunotherapy is an example of a mainstream form of ACT
that is well-studied. Chimeric antigen receptor (CAR) T cells
targeting CD19 is one therapy that has resulted in encouraging
success in patients with B cell malignancies and has been
approved by the US Food and Drug Administration (FDA) (5–
7). However, there are numerous logistic and clinical limitations
to the use of autologous CAR-modified T cells. Personalized
CAR-T products are time-consuming and expensive to produce.
Allogeneic T cell-based therapy can cause substantial toxic
effects, such as graft-versus-host disease (GvHD) and cytokine
release syndrome (CRS) (8). Furthermore, the results of CAR-T
cell therapy for solid tumors are suboptimal. These shortcomings
of CAR-T cells have called for interest in other candidate.

NK cells are a subpopulation of the innate immune system (9,
10). NK cells can be identified by CD3(-) CD56(+). Depending
on the level of CD56 and CD16 expression, NK cells can be
divided into CD16+CD56dim and CD16−CD56bright cells.
CD16+CD56dim NK cells predominate in peripheral blood
while CD16−CD56bright NK cells are distributed into secondary
lymphoid organs (11). CD16−CD56bright NK cells are robust
cytokine producers and are weakly cytotoxic while the
CD16+CD56dim NK cell population can mediate serial killing
of infected and/or malignant cells. NK cell receptors are
germline-encoded without a requirement for ‘V(D)J ’
recombination. Natural killer (NK) cells have gained attention
as a promising alternative candidate for ACT owing to their
unique biological attributes.

NK cells do not require any prior antigen and can rapidly
recognize and kill cells for which major histocompatibility
Frontiers in Oncology | www.frontiersin.org 2
complex (MHC) class I molecular expression is compromised
by infection or transformation (9). Once activated, NK cells can
release perforin and granzyme, contributing to target cell lysis.
NK cells upregulate death ligands on their surface, such as FAS
ligand and TRAIL, and initiate the caspase pathway of tumor cells
and induce apoptosis when binding to death receptors on target
cells. NK cells can eradicate cancer cells through antibody-
dependent cellular cytotoxicity (ADCC) mediated by FcgRIIIA/
CD16a. Furthermore, NK cells produce interferon gamma
(IFN-g), regulating and activating the adaptive immune response.

NK cell-based therapy is safe and has potential generated as
off-the-shelf cellular therapy products. Autologous NK cells exert
limited cytotoxicity against autologous tumors, while allogeneic
NK cells are highly cytotoxic and cause minimal risk of GvHD
(12–16). Thus, NK cells can originate from different sources,
such as peripheral blood NK cells (PBNK), induced pluripotent
stem cells (iPSCs), umbilical cord blood (UCB) and NK-92 cells,
and this eliminates the need to produce a personalized CAR-NK
product. However, the claim that allogeneic NK cells cause no or
minimal GvHD and CRS is controversial and originated from
observations obtained during clinical trials, especially in the
setting of hematopoietic cell transplantation (HCT), the
mechanism of which has not been thoroughly discussed. Here,
we review important issues regarding NK cells and glioma and
discuss several options that can be used to improve the efficacy of
CAR-NK in glioma treatment.
THE SAFETY OF NK CELL-BASED
IMMUNOTHERAPY

NK Cell Alloreactivity
All NK cells are non-responsive towards healthy autologous cells,
which involves the interaction of at least inhibitory killer
immunoglobulin-like receptors (KIRs) or CD94-NKG2A with
one autologous MHC class I molecule. KIRs can be classified
based on two factors: the number of immunoglobulin-like
TABLE 1 | Applications of novel strategies in glioma.

Strategies Interventions Results Tumors Phase Reference/
NCT

TTFields TTFields plus temozolomide VS
temozolomide alone

TTFields plus temozolomide improve PFS and OS significantly Glioblastoma III NCT00916409

Checkpoint
Inhibitor

nivolumab VS bevacizumab Nivolumab failed to improve OS Recurrent
Glioblastoma

III NCT02017717

Neoadjuvant pembrolizumab Neoadjuvant extended OS and enhanced both the local and
systemic antitumor immune response

Recurrent
Glioblastoma

/ Cloughesy
et al. (4)

Vaccine Rindopepimut (CDX-110), a vaccine
targeting EGFRvIII

Rindopepimut did not increase OS Glioblastoma III NCT01480479

peptide vaccine (IDH1-vac) targeting
mutant IDH1

IDH1-vac increased PFS and immune responses, but accompanied
by a high frequency of pseudoprogression

Grade III and IV
Astrocytomas

I NCT02454634

autologous dendritic cell vaccine
ICT-107

ICT-107 significantly improved PFS Glioblastoma II NCT01280552

Oncolytic
Virus

intratumoral infusion of polio-
rhinovirus chimera (PVSRIPO)

PVSRIPO therapy increased OS Recurrent
malignant Glioma

I NCT01491893

intratumoral injection of oncolytic
adenovirus (DNX-2401)

DNX-2401 resulted in dramatic responses with long-term survival Recurrent
malignant Glioma

I
NCT00805376
October 2021 | Volu
me 11 |
 Article 751183

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Pan et al. NK Cell Therapy for Gliomas
domains (2D and 3D) and the length of the intracytoplasmic tail
(L or S). Inhibitory KIRs usually possess a long cytoplasmic tail
(KIR2DL), whereas activating KIR possess a short one (KIR2DS),
except for the activating KIR2DL4, which has a long cytoplasmic
tail. Inhibitory KIRs contain immunoreceptor tyrosine-based
inhibition motif (ITIM) sequences responsible for the
inhibitory signal. Unlike cytotoxic CD8+ T cells, which are
highly specific for antigens, NK cells express clonally
distributed inhibitory receptors termed KIRs that recognize
determinants (KIR ligands) shared by subsets of HLA-B or -C
allotypes (17–20). More than fifty KIR family members have
been identified, and each of these genes is highly polymorphic
and has thousands of alleles (21). Three subfamilies and
associated inhibitory specificities are well determined
(Table 2). The CD94-NKG2A heterodimer, belonging to C-
type lectins, is specific for HLA-E (24–26).

Major models used to predict NK cell alloreactivity include
‘missing self’ and ‘missing ligand’ (Figure 1). Missing self-
recognition (the ‘ligand–ligand’ model) was proposed by Karre
Frontiers in Oncology | www.frontiersin.org 3
et al. and occurs under HLA haplotype-mismatched transplants in
the graft-versus-host direction (27).DonorNKcells express aKIR for
the self HLA class I group that is absent in the recipient, which
mediates alloreactions (28–30).HLAtesting is required topredictNK
cell alloreactivity due to the missing self-model.

Because the genes for KIR, HLA, and CD94–NKG2 are located
on different chromosomes (31–33), KIR genes segregate
independently of the HLA genes, and thus, KIR mismatches can
exist in twoHLA-matched individuals. Also, it was found that many
individuals have 3 inhibitory KIRs (for HLA-C1 and -C2 and for
HLA-Bw4 alleles), while their own cells only express 1 or 2 HLA
KIR ligands (22, 34, 35). KIR expression is donor specific, but not
related to the donor or recipient HLA and is not affected by the
recipient’s HLA groups (36). The missing ligand model (the
‘receptor-ligand’ model) was based on these. According to this
model, NK cell alloreactivity occurs not only in HLA haplotype-
mismatched transplants, but also in HLA haplotype-matched
transplants from donors possessing ‘extra’ KIR(s), for which
neither donor nor recipient possess HLA ligand(s) (35–37). The
donor’s potentially self-reactive NK cells can trigger an alloreactive
effect in the recipient while maintaining anergy in the donor.
Analysis of the KIR expression on the donor’s NK cells and HLA
testing of the recipient’s cells are required to predict NK cell
alloreactivity due to the missing ligand model.

The missing self and missing ligand models can be used to
predict NK cell alloreactivity. Although alloreactive NK cells can
eradicate tumor cells, the anti-tumor effect is not confined to
alloreactive NK cells. NK cell activity depends on the balance
between inhibitory and stimulatory receptors. An anti-tumor
effect can be mediated by NK cells expressing stimulatory
receptors, such as activating KIR and NKG2D (38–40).
A CB D

FIGURE 1 | T-CAR designs. (A–D) show the four generations of T-CAR. In brief, CAR contains three parts: extracellular domains are comprised of a single-chain
variable fragment (scFv) for recognizing targeted antigen and transmembrane domains, and endocellular domains for transducing signals. First generation CARs
consist of the basic structure with CD3z (A). Second generation CARs contain an additional costimulatory domain such as CD28 or 4–1BB (B). Third generation
CARs possess multiple costimulatory domains (C). Fourth-generation CARs, also known as ‘armored CARs’ can be designed to secret cytokines to improve the
proliferation, persistence.
TABLE 2 | Three subfamilies of KIRs and specific ligands.

Groupa HLA-class I specificityb

KIR2DL1(CD158a) C2(-Cw2, -Cw4, -Cw5, -Cw6)
KIR2DL2/3(CD158b1/b2) C1(-Cw1, -Cw3, -Cw7, -Cw8)
KIR3DL1(CD158e1) Bw4(-B27, -B51)
aEach group compromises different numbers of alleles, which differ by 1-9 nucleotide
substitutions (22).
bTwo groups of HLA-C alleles are distinguished by dimorphic positions Ser 77–Asn 80
(C1) and Asn 77–Lys 80 (C2) of the a1 helix (23). HLA-B allotypes share the Bw4
sequence motif at positions 77–83 of the a1 helix (22).
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Pan et al. NK Cell Therapy for Gliomas
NK CELL-BASED IMMUNOTHERAPY
CAUSES MINIMAL GvHD AND CRS

GvHD refers to a condition resulting from the systemic attack of
allogenic T cells on recipient tissues after allogeneic
hematopoietic stem cell transplantation or infusion of
allogeneic T cells (41–43). The effects of GvHD are commonly
manifested in the gastrointestinal tract, liver, and skin (44), and
severe GvHD can be fatal. The role of alloreactive NK cells on
GvHD in the setting of HCT varies among studies. Some
investigations found that alloreactive NK cells were related to
decreased GvHD (36, 45, 46), which was partially attributed to
the observations that allogeneic NK cells would be expected
to kill host dendritic cells (DCs) and donor T cells (46, 47). Miller
et al. analyzed 2,062 patients undergoing unrelated donor HCT
(48). They found that one or more KIR ligands were missing
versus the presence of all ligands, which is associated with a low
relapse rate in patients with early myeloid leukemia. This
omission predicted a greater risk of developing grade 3-4
GvHD in the setting of chronic myeloid leukemia (CML)
patients. Miller et al. attributed the higher rate of acute GvHD
in CML to the expanded myeloid pool with more host antigen-
presenting cells (APCs) capable of presenting alloantigen to
donor T cells (48).

HCT after ablation of bone marrow is used to cure
hematological malignancies and results in less cancer relapse
compared to chemoradiotherapy (49). T cells of allogeneic
hematopoietic grafts for treating leukemia mediate the
antileukemia effect as well as lethal GvHD. In many studies, it
was attempted to prevent GvHD by depleting the T cells from the
graft and infusing large numbers of hematopoietic stem cells to
overcome rejection (50), which was at the expense of immunity
reconstitution failure and infection. Later, NK cells from
alloreactive donors were found to protect patients against
rejection and GvHD in the setting of HCT (46). Interestingly,
we found the idea that NK cell-based therapy caused GvHD
mostly happened in the setting of HCT. But we should not
evaluate the effects of alloreactive NK cells on GvHD in the
setting of HCT because the effect of T cells in the grafts is
negligible. It is likely that T cell interference is the most
important controversial element with respect to the alloreactive
NK cell effects on GvHD.

In fact, NK cell-based immunotherapy is safe and causes
minimal GvHD. GvHD most likely occurs when NK cells from
donors with several KIR subfamilies are infused into recipients
possessing one group HLA ligand. Valiante et al. analyzed NK
cell receptor repertoires in the peripheral blood of two human
donors (donor PP only possessed group 1 HLA-C ligand, and
donor NV possessed group 1 and 2 HLA-C ligands and the Bw4
HLA-B ligand, both of which have three KIR subfamilies as
demonstrated in Table 2) (51). They found that more than 98%
of NK clones were inhibited self-HLA class I allotypes, and no
NK cell from either donor was able to lyse the autologous B cell
line (51). Interestingly, NV possessed approximately 15% of the
analyzed NK cell clones, did not express KIR2DL2 or CD94:
NKG2a, and was able to lyse the B cell line from PP, whereas the
Frontiers in Oncology | www.frontiersin.org 4
NK cell clones from PP failed to lyse the B cell line from NV (51).
Ruggeri adopted functional analysis to evaluate the NK cell
alloreactivity in more than 200 NK clones (46). Alloreactivity
was defined as positive when the frequency of lytic clones was no
less than 1 in 50 (46). In addition, the expression of CD94:
NKG2a is inversely related to KIR levels (51). Approximately,
50% of NK cells in an individual express CD94:NKG2a (51, 52).
Cell-surface HLA-E expression depends on many peptides,
including the leader peptides of HLA-A, -B, or -C, and
downregulation of HLA-E expression requires the elimination
of three types of HLA molecules (53, 54). Thus, NK cells
expressing CD94–NKG2A display no alloreactivity because all
individuals express HLA-E molecules. Therefore, NK cell-based
immunotherapy is safe most of the time and will cause minimal
GvHD because alloreactive NK cells only account for a small
proportion. In addition, healthy cells express high levels of MHC
class I molecules, but they express no or minimal level of ligands
for NK cell activating receptors. Conversely, tumorigenic cells
downregulate MHC class I expression but upregulate the
expression of ligands for NK cell activating receptors. For
example, MICA/MICB and ULBP, ligands for NKG2D, are
often induced by stress or transformation (55, 56). The
integration of the activating and inhibitory signals from the
ligand/receptor determines NK cell activity. Some studies
indicated that the positive signal delivered by NKG2D could
override inhibition. Therefore, NK cells become alloreactive
prior to killing tumor cells.

CRS involves elevated levels of circulating cytokines,
especially interferons and immune-cell hyperactivation, which
manifests as an influenza-like syndrome, organ failure, and even
death (57). CAR-NK is less likely to induce CRS and
neurotoxicity partially because of a different spectrum of
secreted cytokines consisting of activated NK cells that produce
IFN-gamma and GM-CSF, and CAR-T cells that predominantly
release tumor necrosis factor (TNF)-a and interleukins, such as
IL-1, IL-2, and IL-6 (57, 58). The mechanism was validated by
clinical trials. Liu et al. launched a clinical trial (NCT03056339)
that administered HLA-mismatched anti-CD19 CAR-NK cells to
11 patients with high-risk lymphoid malignancies (16). The
administration of CAR-NK cells was not associated with the
development of cytokine release syndrome and there was no
increase in the levels of inflammatory cytokines, including
interleukin-6, over baseline (16).
NK EXPANSION TECHNIQUES

Large numbers of cells are essential for successful adoptive
transfer cell therapy. It has been proved that high doses of NK
cells from10^7cells/kg to 4.7×10^10 total NK cells can be well
tolerated (16, 59, 60). NK cells only account for approximately
10% of peripheral blood mononuclear cells. The NK92 cell line is
used in current clinical trials with CAR-NK because of their
unlimited proliferation ability in vitro. However, the NK92 cell
line is tumorigenic and lacks CD16 and NKp44 expression, and
additionally, these cells will lose their proliferation ability due to
October 2021 | Volume 11 | Article 751183
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lethal irradiation infusion (61, 62). Because of these drawbacks, it
is unlikely that they will be an ideal cell source for CAR-NK
cell therapy.

Expansion protocols possess considerable heterogeneity. The
expansion process often takes 2-3 weeks of culture in the
presence of mitogenic cytokines, and engineered feeder cells
can optimize the expansion process. K562 cells engineered to
express membrane-bound IL-15 or IL-21 along with the
adhesion molecule 4-1BBL are adopted as feeder cells in many
clinical trials (63, 64). There have been reports of 300-fold
expansions combined with IL-2 and IL-15. IL-15 is important
to NK cell survival and function (65, 66), and 4-1BBL provides a
cell to cell contact-dependent co-stimulatory signal (67). We
observed that low density less than 10^5cells/mL is not ideal for
NK expansion. We recommend that the ratio of engineered K562
feeder cells and NK cells is 1:1 to 2:1. The K562 cell line possesses
unique properties and lacks HLA expression. As described above,
inhibitory KIRs recognizing corresponding HLA ligands can
inactivate NK cells. This can be proved by our laboratory
findings that other cell lines engineered to express IL-21 and 4-
1BBL failed to achieve high-fold NK expansion. Some studies
used RetroNectin-stimulated T (RN-T) cells as feeder cells (68,
69). Briefly, the procedure for this is to culture T cells from
autologous peripheral blood mononuclear cells (PBMCs) with
RetroNectin and anti-CD3 monoclonal antibody. In
approximately 2 weeks, RN-T cells can serve as feeder cells
after irradiation. RetroNectin plays a role in cell adhesion (70).
The anti-CD3 monoclonal antibody leads to T-cell activation
and cytokine secretion, and activated T cells express ligands of
NKG2D (47, 71). Irradiated PBMCs as feeder cells were utilized
by Parkhurst et al. and share a similar mechanism with RN-T in
NK cell expansion (60, 72). The CD14+ monocyte fraction of
irradiated PBMCs function in cell-cell contact (73). Feeder cells
derived from autologous PBMCs eliminate the need for infusion
of viable malignant feeder cells into the NK cell product. Feeder-
free expansion approaches have also been tested. Li et al. cultured
NK cells in an anti-CD16 (Beckman Coulter)-coated flask (74).
Antibody-coated beads targeting CD2 and NKp46 (CD335) are
commercially available. However, not everyone or each NK cell
expresses these stimulatory receptors, and feeder-free expansion
protocols lose cell-to-cell contact effects. For example, only a part
of NK cells of an individual expresses CD16 on blood NK cells
(75, 76).
ADOPTIVE CELL THERAPY AND
CAR-NK CELLS

There are several developmental stages in ACT. Lymphokine-
activated killer (LAK) cells, which consist of a mixture of NK
cells, NKT cells, and T cells, were adopted to overcome
insufficient quantities of immune cells (77). An unwanted side
effect of a high dose of IL-2 is that it induces capillary leak
syndrome and neuropsychiatric diseases in a manner similar to
that of CRS. To obtain immune cells that can effectively respond
to tumors, Rosenberg introduced the concept of tumor-
Frontiers in Oncology | www.frontiersin.org 5
infiltrating lymphocytes (TILs) (78), which have many
similarities with LAK cells except the origin of lymphocytes.
The former is isolated from the stroma of tumors, while the latter
is acquired from PBMCs. Success with TILs has been achieved in
many solid tumors, including breast cancer tumors (79, 80).
With TCR engineering, tumor-specific TCR a and b chains are
identified and integrated with T cells via viral vectors (81). There
must be specificity with T-cell engineering and CAR-T.
Compared to CAR-T therapy, there are limited choices for
physiological receptors with TCR engineering. Effective CAR-T
cell therapy relies on optimal CAR molecular design. The CAR
construct is becoming increasingly sophisticated with the
understanding of T cell activation and tumor-specific and
-associated antigens (82). Four generations of CAR designs
have been developed that are mainly different in categories and
number of co-stimulation factors (Figure 1). For safety and
effectiveness, many novel designs have been tested, such as
‘inverted CAR,’ ‘off-switch CAR’ and ‘logic-gate CAR’ (83–85).

NK cell-based immunotherapy is a subset of ACT and is
similar to adoptive T therapy, especially with respect to CAR
therapy. CAR-NK-related clinical trials show that the most
adopted CAR design corresponds with first and second
generation T-CAR (86). Most NK-CARs use CD28 and 4-1BB,
which are more specific to T cells, as their transmembrane and
intracellular domain, respectively (87, 88). Later studies began to
design CARs specific to NK cells. For example, intracellular
domains replaced CD28 with 2B4, DAP12, or DAP10 (89, 90).
Li et al. proved that the signaling domains of CAR-NK, such as
NKG2D-2B4, exhibited superior in vitro and in vivo anti-tumor
activities compared to that which contains CD28-4-1BB (91). The
revolution of CAR-NK therapy is described in Figures 2A–D,
and it is clear that the CAR construct is becoming increasingly
sophisticated with the growing understanding of T cell activation
and tumor-specific and -associated antigens that are also suitable
for NK cells.
IMMUNOSUPPRESSIVE MECHANISMS
OF GLIOMA

Glioma, especially GBM, shows an extreme cell heterogeneity,
diffuse growth patterns and high invasiveness. Gliomas were
thought to be “immune cold” tumors with low infiltration of
lymphocytes (95). Furthermore, microenvironment of the
glioma has the ability to suppress immune response
systematically and locally.

Mahaley et al. first reported the presence of lymphopenia in
GBM (96). Studies have found patient-derived peripheral blood
lymphocytes shows immune defects that exhibited varying levels of
proliferative unresponsiveness to the T-cell mitogens concanavalin
A (ConA), phytohemagglutinin (PHA) and anti-CD3 monoclonal
antibody as well as with the T-dependent B-cell mitogen,
pokeweed mitogen (PWM) (97, 98). A selective impairment of
the IL-2 system and T cell receptor-mediated signaling in
lymphocytes of patients with glioblastomas may contribute to
the unresponsiveness (99, 100). Compared to healthy individuals,
October 2021 | Volume 11 | Article 751183
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accumulation of myeloid-derived suppressor cells (MDSCs) in the
peripheral blood of patients with glioma was found (101, 102).
MDSCs impair tumor immunity by interacting with macrophages
to increase IL-10 and decrease IL-12 production, driving a tumor-
promoting type 2 response (103). Inhibitory soluble factors
secreted by glioma can suppress lymphocyte’s function.
Transforming growth factor beta (TGF-b) can impair peripheral
blood NK cell function by downregulating NKG2D (104–107).
Therefore, the immune responses are suppressed systematically in
glioma microenvironment.

Gliomas often overexpress phosphorylated signal transducer
and activator of transcription 3 (p-STAT3) that induces a variety
of immunosuppressive factors including IL-10, prostaglandin E2
(PGE2), vascular endothelial growth factor (VEGF) and TGF-b
(108). These soluble factors can suppress cytotoxic T lymphocytes
activity and proliferation (108). TGF-b and IL-10 can induce Tregs
that inversely modulate immune response (109). Chemokines and
cytokines, such as CX3CL1 and CCL5 can recruit tumor-
associated macrophages to GBM microenvironment and
contribute to abnormal angiogenesis (110, 111). Most GBM cells
express high levels of MHC class I molecules that can inhibit NK
cells by interacting with inhibitory KIRs (112). Absolute survival
advantages of tumor depriving of nutrition and oxygen might
suppress NK cell metabolism and antitumor activity (113). N6-
methyladenosine (m6A) modification is an emerging field in the
study of tumorigenicity and therapy resistance of glioma (114,
115). The relationship between m6A states and immune
Frontiers in Oncology | www.frontiersin.org 6
infiltration and function in glioma is still unclear. Studies found
higher m6Ascore was associated with T cells exhaustion and lower
NK cells in the m6Ascore-high pancreatic ductal adenocarcinoma
(116). So, the immune responses are suppressed locally in
glioma microenvironment.
APPLICATIONS OF NK CELLS FOR
GLIOMA TREATMENT

Except for unique advantages of NK cells, there is still a potential
of NK cells in treating glioma. Cózar et al. analyzed RNA-seq
datasets from the TCGA database and found NK-cell infiltration
in both low grade glioma and GBM and even had higher scores
compared to T-cell infiltration, which paved the way for the use
of treatments targeting NK cells in glioma (117). Similar to
adoptive T therapy, NK cell-based immunotherapy mainly
concentrates on hematological malignancies. Thus far, the
therapeutic utility of NK cell-based immunotherapy for the
treatment of glioma has mainly been investigated in preclinical
studies (Table 3). These trials most utilize either PBNK cells or
NK92 cells, as well as first and second generation CARs designed
for T cells and not optimized for NK cell signaling. Furthermore,
clinical trials pay more attention to evaluate the safety of CAR-
NK therapy. Although preclinical studies began to test the
efficiency of DAP12 specific for NK cell signaling. Most of
A CB D E

FIGURE 2 | NK-CAR designs. Early studies exploring CAR-NK cells used CAR constructs optimized for T cell signaling and function (A, B). Later, many
investigators begin to study costimulatory domains specific for NK cell signaling, such as DAP10, DAP12 or 2B4 (C, D). DAP10 is the adaptor molecule of NKG2D
and acts via a Syk-independent regulatory pathway (92). DAP12 is the adaptor molecules of NKG2C, NKp44 and activating killer immunoglobulin receptors (KIRs)
and contain immunoreceptor tyrosine-based activation motifs (ITAMs) (93). 2B4, an important co-stimulation factor of NK activation, contains immunoreceptor
tyrosine-based switch motifs (ITSMs) that recruit adaptor molecules such as SLAM-associated protein (SAP) to mediate signal transduction (94). We design a new
CARs that replace ITAMs of CD3z with FcϵRIg and DAP12 (E).
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them adopted similar CARs as used in clinical trials. Compared
to hematological malignancies, both in the quantity and CARs
design, the application of NK cell-based therapies in glioma lags
far behind.
FUTURE PERSPECTIVES

Compared to T cell-based therapy, the development of NK cell-
based therapy falls behind to some degree in the treatment of
glioma. Adoptive NK cell therapy is lack of in vivo persistence
without cytokine support, which may limit the efficacy of the NK
cell immunotherapy. System administration of cytokines is
associated with undesirable toxicities as described above.
Trafficking to tumor beds is critical for the efficacy of adoptive
cellular therapy. Müler et al. observed an infiltration increase of
anti-EGFRvIII CAR-NK cells engineered to express CXCR4 to
CXCL12/SDF-1a secreting glioblastoma cells, leading to
improved tumor regression and survival in a mouse model of
glioblastoma (90). The difficulty may be resolved by intratumoral
administration of NK cells products. In general, there is much
room for the development of CAR-NK therapy in the field of
glioma treatment. Much more pressing for NK cell-based
therapy is designing more efficient products in treating glioma.
Therefore, we try to put up several strategies to achieve the goal
on the base of the knowledge of NK cells and glioma.

NK cell therapy is the lack of in vivo persistence in the absence
of cytokine support. IL-15 is essential for NK cell function and
homeostasis and can be added to CAR molecules to mimic the
fourth generation of T-CAR. TGF-b plays an essential role in
impairing NK cell function. Inverted CAR may be applied to
reverse the situation by fusing the ectodomain of the TGF-b
receptor to the endodomain of an activating receptor. CD3z is
found in the intracellular domains of T-CAR and NK-CAR.
Furthermore, CD3z, containing three immunoreceptor tyrosine-
based activation motifs (ITAMs; YxxL/Ix6-8YxxL/I, with 29
amino acids), has a limited impact on the effectiveness of
CAR-NK (123).

Modification targeting CD3z has been tested in CAR-T
therapy. Wu et al. found that CD3ϵ recruits Csk and p85 via
its mono-phosphorylated ITAM and BRS motif, respectively
(124). Incorporation of the ITAM of CD3ϵ into a second-
Frontiers in Oncology | www.frontiersin.org 7
generation CAR increased the antitumor activity of CAR-T
cells by reducing the cytokine production and promoting the
persistence of CAR-T (124). NK cells possess many types of
stimulatory receptors, such as CD16, NKp46, and NKG2D, and
these stimulatory receptors do not act separately. In fact, apart
from CD16, which is sufficient for activation of resting NK cells,
it is necessary for all activating receptors to cooperate and
synergize with one another for NK activation (125).
Interestingly, the ITAM of many stimulatory receptors or their
related adaptors, such as FcϵRIg and DAP12, also consists of 29
amino acids with different sequences. Therefore, an exchange
may produce more effective CAR-NK cells (Figure 2E) with mild
changes in CD3z structure.

CAR-NK cells can kill targets in a CAR-independent manner.
Combination therapy with monoclonal antibodies is promising,
and it was observed that trifunctional antibodies recognized
targets and simultaneously engaged NKP46 and CD16, which
controlled tumor growth in mouse models (126). A team used
antibodies to prevent the loss of cell surface MICA and MICB in
human cancer cells, which stabilizes the bond between NKG2D
and its ligands. These antibodies inhibit tumor growth in mouse
models, and the antitumor effect is mediated mainly by the
activation of NKG2D and CD16 (127). Apart from the activating
receptors, antibodies blocking the inhibitory receptors of NK
cells, such as KIR, NKG2A, TIM3, and TIGIT have been studied
(52, 128–130). NK cells can express FcgRIIIA/CD16a and/or
FcgRIIC, which bind to the Fc port ion of human
immunoglobulins. Once antibodies bind to targets, NK cells
are able to recognize the Fc portion and lyse target cells
through antibody-dependent cell-mediated cytotoxicity
(ADCC) (131). So, the combination of immune checkpoint
inhibitors and NK cell-based therapy may be potential.
Although, Nivolumab failed to improve overall survival of
patients with recurrent glioblastoma. Studies have found that
cancer type 1 or 2 susceptibility gene (BRCA1/2) alteration was
associated with higher tumor mutation burden(TMB) and may
serve as a novel indicator associated with better treatment
outcomes of immune checkpoint inhibitors (132). The function
of BRCA1/2 and other DNA mismatch repair gene alteration are
worth being investigated in glioma. Most GBM cells express high
levels of MHC class I molecules (112). Thus, blockade of such
KIRs with antibodies may enhance NK-cell mediated killing.
TABLE 3 | Applications of NK cells in glioma.

Targets NK Source CAR construct Tumors Phase Reference/NCT

EGFRvIII NK92 cell line scFv-CD28TM+IC-CD3z Glioblastoma / Genßler et al. (118)
EGFRvIII YTS NK cell line scFv-DAP12 TM+IC Glioblastoma / Müller et al. (90)
EGFRvIII KHYG-1 NK cell line scFv-CD28 TM+IC-CD137-CD3z Glioblastoma / Murakami et al. (119)
EGFRvIII NK92 cell line scFv-CD28 TM+IC-CD3z Glioblastoma / Han et al. (120)
HER2 NK92 cell line scFv-CD3 TM+IC Glioblastoma / Alkins et al. (121)
HER2 NK92 cell line scFv-CD28 TM+IC-CD3z Glioblastoma / Zhang et al. (122)
HER2 NK92 cell line scFv-CD28-CD3z Glioblastoma I NCT03383978
HER2 NK92 cell line Unknown Glioblastoma I NCT03383978
MUC1 Unknown Unknown High Grade Glioma I/II NCT02839954
None PBMCs None High Grade Glioma I NCT04254419
None PBMCs None Glioma I NCT00909558
None Placenta None High Grade Glioma I NCT04489420
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NK cells and T cells originate from a common ancestor and
share many similarities. Both interact with MHC class I
molecules, contributing to innate and adaptive immunity. They
have similar cell-surface phenotypes and cellular functions, such
as cytotoxicity, secretion of cytokines, and interaction with DCs
(133). NK cells also play a role in regulating T cell response. For
example, NK cells can produce IFN-gamma, which promotes
CD4+ T cell differentiation into TH1 helper cells (134). The
latter contributes to an enhanced CD8+ T cell response (135).
NK cells produce IFN-gamma, leading to DCmaturation and IL-
12 secretion, which is sufficient for CD8+ T cell activation
independent of CD4+ T cell (136). As an important
constituent of the innate immunity response, NK cells can kill
target cells and release antigen for cross-presentation and
activation of T cells (137). NK cells can also negatively regulate
a T cell response as described above or in the setting of acute viral
infections (138, 139). A combination of NK cells and T cells
comprise an ideal potential therapy for tumor treatment. A study
has reported that CAR-NK cells can eliminate myeloid-derived
suppressor cells and rescue impaired CAR-T cell activity against
solid tumors (140). Moreover, CAR-NK cells can improve the
infiltration and functions of subsequently infused CAR-T cells by
secreting proinflammatory cytokines and chemokines (140).
Cózar et al. found marked NK-cell infiltration in solid tumors
were also infiltrated with T cells (117).Anti-IL13Ra, anti-HER2,
and anti-EGFRvIII CAR-T have been tested in glioma (141–143).
Utilizing the safety of CAR-NK cells and the high efficacy of
CAR-T cells is worth exploring in gliomas.

Oncolytic virus (OV) OVs have a double oncolytic action by
both directly attacking the cancer cells and inspiring a tumor
specific immune response. OVs can be engineered to repress
antibodies targeting tumor antigen and/or secret cytokines
activating immune response. Xilin Chen et al. observed that
the combination of EGFR-CAR NK-92 cells with oHSV-1
Frontiers in Oncology | www.frontiersin.org 8
resulted in more efficient killing of MDA-MB-231 tumor cells
and significantly longer survival of tumor-bearing mice (144).
Rui Ma et al. (145) generated a therapy that combined off-the-
shelf EGFR-CAR NK cells and an Oncolytic virus OV called OV-
IL15C. OV-IL15C-infected GBM cells can secrete soluble IL15/
IL15Ra complex. GBM-bearing mice models exhibited that the
therapy synergistically suppressed tumor growth. These potential
therapies are anticipated to be further investigated in clinical
trials. Combination therapies are based on the knowledge of NK
cell biology. An evolving understanding of gliomas can inspire
treatment strategies targeting the basic elements of these
malignant cells and their microenvironments. We believe NK
cell-based immunotherapy will have a better performance in
treating glioma in the future.
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