
RESEARCH ARTICLE

Modeled Impacts of Chronic Wasting Disease
on White-Tailed Deer in a Semi-Arid
Environment
Aaron M. Foley1*, David G. Hewitt1, Charles A. DeYoung1, Randy W. DeYoung1, Matthew

J. Schnupp2

1 Caesar Kleberg Wildlife Research Institute, Texas A&M University—Kingsville, Kingsville, Texas, United

States of America, 2 King Ranch, Inc., Kingsville, Texas, United States of America

* amfoley55@hotmail.com

Abstract
White-tailed deer are a culturally and economically important game species in North Amer-

ica, especially in South Texas. The recent discovery of chronic wasting disease (CWD) in

captive deer facilities in Texas has increased concern about the potential emergence of

CWD in free-ranging deer. The concern is exacerbated because much of the South Texas

region is a semi-arid environment with variable rainfall, where precipitation is strongly corre-

lated with fawn recruitment. Further, the marginally productive rangelands, in combination

with erratic fawn recruitment, results in populations that are frequently density-independent,

and thus sensitive to additive mortality. It is unknown how a deer population in semi-arid

regions would respond to the presence of CWD. We used long-term empirical datasets from

a lightly harvested (2% annual harvest) population in conjunction with 3 prevalence growth

rates from CWD afflicted areas (0.26%, 0.83%, and 2.3% increases per year) via a multi-

stage partially deterministic model to simulate a deer population for 25 years under four sce-

narios: 1) without CWD and without harvest, 2) with CWD and without harvest, 3) with CWD

and male harvest only, and 4) with CWD and harvest of both sexes. The modeled popula-

tions without CWD and without harvest averaged a 1.43% annual increase over 25 years;

incorporation of 2% annual harvest of both sexes resulted in a stable population. The model

with slowest CWD prevalence rate growth (0.26% annually) without harvest resulted in stable

populations but the addition of 1% harvest resulted in population declines. Further, the male

age structure in CWD models became skewed to younger age classes. We incorporated

fawn:doe ratios from three CWD afflicted areas in Wisconsin and Wyoming into the model

with 0.26% annual increase in prevalence and populations did not begin to decline until

~10%, ~16%, and ~26% of deer were harvested annually. Deer populations in variable envi-

ronments rely on high adult survivorship to buffer the low and erratic fawn recruitment rates.

The increase in additive mortality rates for adults via CWD negatively impacted simulated

population trends to the extent that hunter opportunity would be greatly reduced. Our results

improve understanding of the potential influences of CWD on deer populations in semi-arid

environments with implications for deer managers, disease ecologists, and policy makers.
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Introduction

Chronic-wasting disease (CWD), a transmissible spongiform encephalopathy, has had a large
impact on the management of afflicted cervid populations in the United States and Canada [1–
5]. Disease suppression efforts have proved difficult due to unwillingness of hunters to harvest
deer as part of CWD-management strategies [6–8], time elapsed between disease emergence
and detection [9], movements of free-ranging [10,11] and captive cervids [10], and persistence
of prions in the environment [12–15]. Thus, where CWD is present, it is likely to remain
endemic. In areas where CWD is not present, preventive measures will likely maximize efficacy
of diseasemanagement efforts [1].

In June 2015, the first white-tailed deer (Odocoileus virginanus) in Texas tested positive for
CWD [16]. To date, the disease has been found only in captive populations of white-tailed deer
[17], yet the presence of CWD has major ramifications for management of all cervids in the
region. Compared to other states and provinces afflictedwith CWD, South Texas is unique in
both its environment and in the cultural and economic importance of deer hunting. South
Texas is a semi-arid environment with highly variable annual rainfall (CV>30%) [18]. The
region is broadly characterized as having marginally productive vegetation communities [19],
where rainfall greatly influences forage quality and quantity. During dry years, forage quality
limits the physical ability of females to recruit fawns because pregnancy and lactation are ener-
getically expensive [20]. As a result, the highly variable rainfall patterns in South Texas are
strongly correlated with fawn recruitment [21]. These rainfall and fawn recruitment patterns
result in frequent density-independent population dynamics [22–25]. Adult survivalmust be
high to maintain deer populations in this semi-arid region. For instance, up to 40% of adults
are�6 years old in unharvested populations [26]. In deer populations afflictedwith CWD,
prevalence increases with deer age [27,28]. Thus, introduction of CWD into the semi-arid
regions of Texas may reduce the survival rates of adult deer in the population and have long-
lasting effects on population size and structure.

South Texas has a unique association with hunting and management of white-tailed deer
due to their ecological, economic, and cultural importance [19,29,30]. Because 97% of Texas is
privately-owned, deer management in South Texas has become a viable business model (~$650
million US in South Texas annually [31]). Hunters are willing to pay for the privilege to hunt
deer on private land; land-owners are willing to incorporate deer and habitat management
strategies into their land management to increase revenue and hunter satisfaction. Further-
more, land prices reflect the potential of property to support wildlife recreation, especially deer
hunting, because many people purchase land to have a place to hunt [32,33]. The relationship
between landowners and hunters also benefits rural economies [34]. Because semi-arid range-
lands are not consistently productive, deer managers often incorporate one or more intensive
deer management techniques. Supplemental feed is commonly employed to increase fawn pro-
duction, population size, and antler size [35,36]. Privately funded deer translocations are used
to augment areas with low deer populations [37]. In management programs where production
of large-antlered males is a goal [38], there are programs to control breeding of wild deer and
to introduce captive-bred deer in wild deer populations [39].

The population-level effects of CWD are not well understood [40]. Population models have
been used to project the effects of CWD on deer population dynamics [12,41–44]. Forecasting
population trends is important because an additional source of mortality in a variable environ-
ment could alter the dynamics of compensatory and additive mortality [45]. Most models fore-
cast a decline in cervid populations exposed to CWD, but the magnitude and severity of such
declines have varied [43]. Some differences in model projections may be a function of parame-
ters used for disease transmission rates. For instance, probabilities of disease transmission
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between susceptible and infected individuals may be modeled based on animal density (den-
sity-dependent) or not (frequency-dependent), or be based on age- and sex-specific prevalence
rates [41,45]. However, transmission rates based on animal contact rates may be of secondary
importance given that CWD may be transmitted through environmental sources, where prions
may remain viable for years [12,46].

Most models of CWD effects on cervid population trends have been based on data from
temperate climates, which typically facilitate higher and more consistent fawn recruitment
[12,42]. Herein, we use empirical data collected from field studies in South Texas to model
hypothetical outcomes of a deer population exposed to CWD in a semi-arid environment. We
expected deer populations in our models to decline after the addition of CWD.

Materials and Methods

Study Area

We used survey and harvest data collected over a 20-year period on a subset of the King Ranch
in Brooks, Kleberg, and Kenedy counties (27°31.164 N, 97°55.149 W) within the South Texas
region to parametrize our population models. Deer were harvested conservatively; 1–4% of the
total estimated population were harvested annually. Although supplemental nutrition can
increase deer productivity in semi-arid environments [22,47], we did not use data from lands
that used supplemental feed [35] because the practice would probably be banned or discontin-
ued if CWD became established in the region. This is because provision of supplemental nutri-
tion congregates deer, and likely would increase rates of disease transmission [48,49]. Field
data were collected on four privately owned tracts that totaled 55,505 ha (range = 6,106–22,530
ha) in the Rio Grande Plains ecoregion [50,51]. The climate is semi-arid and subtropical with
prolonged and frequent periods of drought. The vegetation community was dominated by
Tamaulipan thornscrub [51]. Major land uses were cattle grazing and fee-lease hunting, with
some dry-land agriculture and mineral exploration.

Data Collection

We used a 20-year dataset of fawn:doe ratios and population counts collected from helicopter
surveys [52] during September 1996–2015. Each year, a 2-seat (1996–1999) or a 4-seat (2000–
2015) helicopter was used to survey each site via fixed-width transects (average annual total
transect length = 928 km, range = 634–1,159 km). We derived an estimate of total population
size by assuming a mean sighting probability of 0.3 to correct for visibility bias [53,54].

Parameter Validation Model

We developed a multi-stage deterministicmatrix model [55] that represented the life-cycle of
white-tailed deer (Fig 1). The matrix incorporated age (fawn to�6.5 years old), sex, and sex-
and age-specific survival rates. We used�6.5 years as our oldest age class because ageing via
tooth-wear and replacement allows for relatively reliable separation between�5.5 and�6.5
years old [56]. Because the area surveyed increased during years 1996 to 1997, our initial popu-
lation size for the first year in our parameter validation model was based on deer counts during
1997. Age of deer, other than fawns, cannot be reliably determined from helicopter surveys;
thus, we constructed the initial population age structure. We assumed 40% of adult deer
observedduring the 1997 helicopter surveywere�6.5 years old. This proportion of adult deer
was based on deer captured as encountered with helicopter and captured with a net gun [57]
on other properties in this region that were under similar deer management (e.g., no supple-
mental feeding and minimal harvest) [26]. For the remainder of deer observed in 1997 that
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were to be allocated towards the 1.5 to 5.5 year old age classes, we assumed a gradual decline in
number of deer for successive age-classes because annual survival rates are<1 (Table 1).

Because variable rainfall and fawn recruitment rates influence population structure, we
input fawn:doe ratios in the order of year observedduring our model validation efforts. Fecun-
dity, defined as the fawn:doe ratio, was equal among all female age classes except for fawns

Fig 1. Schematic representing the white-tailed deer life cycle used in the parameter validation model.

doi:10.1371/journal.pone.0163592.g001

Table 1. Initial population and age structure for the first year of the population model. Population size

and sex ratio were derived from helicopter surveys and age structure was estimated based on field studies in

South Texas.

Sex Age N deer %

Male 1.5 712 15.8

2.5 592 13.1

3.5 522 11.6

4.5 462 10.3

5.5 414 9.2

�6.5 1801 40.0

Female 1.5 1362 14.6

2.5 1237 13.2

3.5 1112 11.9

4.5 992 10.6

5.5 913 9.8

�6.5 3744 40.0

Total 13863

doi:10.1371/journal.pone.0163592.t001
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(none). Although there is evidence that older females are more productive than younger
females [58], we used the empirical fawn:doe ratios in the population as our measure of fawn
recruitment.

Harvest occurred in the reference population and the number of harvested deer was known.
We calculated the proportion of males and females that were harvested based on the annual
deer counts corrected for visibility bias. The proportion of deer harvested, in order of year
observed,was used to remove deer from the population following the birth pulse (Fig 1). The
distribution of harvest was proportional to proportion of deer within each age class except
fawns (none).

Sex- and age-specific survival rates were obtained from field studies in South Texas
(Table 2). Survival rates were randomly drawn for each modeled year from a uniform distribu-
tion containing the range of reported survival rates. After running the parameter validation
model, we slightly decreased survival rate of�6.5 year old deer about 10% relative to the aver-
age 2.5–5.5 year old survival rates until trends in the modeled data approximated the observed
data. We focused on the survival rates of deer�6.5 years old 1) to minimize the accumulation
of deer in the last age class, and 2) because there was some uncertainty about natural survival
rates of deer�6.5 years old relative to younger deer, given the conservative harvest rates and
lack of survival data.

Before conducting simulations, we ensured that our models produced realistic results by
comparing trends between observed and modeled population trajectories.We compared
model output to both annual estimates of population size and a 3-year moving average to
smooth out variation in the year-to-year estimates [53,54].

Results of Parameter Validation Model

During 1996–2015, observed fawn:doe ratios were highly variable (mean = 0.35, var = 0.02,
range = 0.14–0.67, Fig 2). Annual harvest ranged from 1–6% and 1–7% of estimated adult
female and male populations, respectively (Fig 3). The reference population experienced a
decline after 2001, which likely reflected a succession of drought years that roughly aligns with
the period of low fawn:doe ratios during 2005–2014. We produced a 20-year population trend

Table 2. Reported field study values, parameter values, and references used to construct a population model that was compared with observed

trends from deer helicopter surveys in South Texas.

Parameter Field Study Values Modeled Value Reference

Female Survival: 1.5

years old

0.74 and 0.85 Annual random number selected from uniform

distribution ranging between 0.74 and 0.85

[22,24]

Female Survival: 2.5–

5.5 years old

0.85 and 0.93 Annual random number selected from uniform

distribution ranging between 0.85 and 0.93

[22,24]

Female Survival:�6.5

years old

Unknown; assumed lower than average of 2.5–5.5 year

old females

0.83 [22,24]

Male Survival: 1.5

years old

0.74, 0.80, and 0.85 Annual random number selected from uniform

distribution ranging between 0.74 and 0.85

[22,24,59]

Male Survival: 2.5–5.5

years old

0.76, 0.78, 0.82, 0.88, and 0.92 Annual random number selected from uniform

distribution ranging between 0.76 and 0.92

[22,24,60]

Male Survival:�6.5

years old

Unknown; assumed lower than average of 2.5–5.5 year

old males

0.75 [22,24,60]

Recruitment rate 0.32, 0.49, 0.29, 0.57, 0.45, 0.22, 0.32, 0.37, 0.42, 0.14,

0.39, 0.35, 0.21, 0.14, 0.44, 0.36, 0.22, 0.22, 0.43, 0.67

Fawn:doe ratios during 1996–2015, in order of year

observed

Empirical

data

Fawn sex ratio 0.5 0.5 [61]

Harvest rate 1–7% of adult males and 1–6% of adult females Proportion of annual count of adult males and females

that were harvested, in order of year observed

Empirical

data

doi:10.1371/journal.pone.0163592.t002
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that closely resembled trends in both observed annual deer counts and the 3-year moving aver-
age (Fig 4).

Simulations of CWD

The simulation approaches had the same structure as the multi-stage deterministicmatrix
model that we used in the parameter validation model with the exception of an additional
matrix to track the CWD-positive deer (Fig 5, Table 2). We simulated 4 25-year deer popula-
tion scenarios: no CWD with no harvest, CWD with no harvest, CWD with male harvest, and
CWD with harvest of both sexes. For simulations without deer harvest, we simply set harvest
to zero. In simulations with harvests, harvest was entered as a constant in each model but we
incrementally increased harvest (1%, 2%, etc. of adult deer removed from the population) for
each additional model until the population declined at year 25. This approach was used to
determine the maximum constant annual harvest rate a CWD-positive population could sus-
tain without declining.

For the CWD parameters, we used age- and sex-specific prevalence rates from white-tailed
deer in Wisconsin ([27], Table 3). The age- and sex-specific prevalence rates were weighted to
reflect differential risk in terms of becoming infected. For instance, given 1,000 deer in a popu-
lation with a 1% prevalence, 10 deer would be infected. Allocating the 10 infections towards the
weighted sex- and age-specific prevalence rates (Table 3), 1.37 4.5-year old males would be
infected (0.137 � 10 infected deer). Then in year 2, the number of new infections, after account-
ing for the infected deer present in the population, would be allocated again towards the

Fig 2. Fawn:doe ratios observed during helicopter surveys in South Texas, 1996–2015. Horizontal line indicates mean

fawn:doe ratio.

doi:10.1371/journal.pone.0163592.g002
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appropriate sex- and age-classes. Mortalities due to CWD were assumed to be additive to natu-
ral mortality. We have no evidence that mortality events due to CWD in semi-arid environ-
ments would be compensatory [62] because deer population dynamics typically are density-
independent and influencedmore by highly erratic environmental conditions and subsequent
changes in forage resources than by density [22–25]. Many life processes are negatively influ-
enced when a population exhibits density-dependent population dynamics [63]; however,
large-scale, longitudinal experimental studies in South Texas indicate adult body mass was the
only life process influenced in a 4-fold difference in deer density [22,24]. Further, fawn recruit-
ment in the same experimental study was not influenced by deer density [58].

Chronic wasting disease is a slow-spreading disease that increases in prevalence over time
[64]; therefore, we opted to model CWD prevalence growth rates derived from 3 afflicted
areas. West Virginia, Wisconsin, and Wyoming exhibited 0.26%, 0.83%, and 2.3% annual
increases in CWD prevalence, respectively [12,65,66]. We classify these 3 growth rates as slow,
medium, and rapid, respectively. The growth rate of CWD prevalence when first introduced
into a system is unknown because CWD is not typically detected in an area until prevalence is
�1% [42]. Thus, we elected to start at a prevalence at 1% for each of the 3 CWD growth rates
which reflects the scenario where CWD is discovered in a wild deer population in South Texas
and presumably un-eradicable [44]. For each year in our simulations, prevalence started at 1%
of the population then increased annually for 25 years in increments according to of the partic-
ular prevalence growth rate modeled.

Prevalence does not specifymortality rates, so we assumed that deer expired 1 to 3 years
after contracting CWD [1]. A randomly chosen value of 33%, 50%, or 100% mortality rate was

Fig 3. Percent of adult males and females harvested annually. Percent of deer harvested was based on number of adult

males and females observed during September helicopter surveys in South Texas.

doi:10.1371/journal.pone.0163592.g003
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applied towards the subset of deer infected with CWD. Mortality from CWD was modeled to
occur year-round, with no seasonal variation.

The social nature of white-tailed deer results in CWD transmission rates that are not
entirely density-dependent [67–69]; thus, we did not incorporate a density-dependent disease
transmission rate in the model. Further, we did not incorporate spatial components in our
model because relative to the upper Midwest and Intermountain West where there is a high
diversity in land-cover (and deer density), South Texas is relatively homogenous with large
swaths of Tamaulipan thornscrubwhere deer density is unlikely to vary greatly.

For the initial population sizes in the simulations, we opted to use the median values of sex-
and age-specific population sizes generated by year 7 in the simulations without CWD and
without harvest (Table 3). This was done because the number of 1.5 year old males in our origi-
nal initial sex- and age-specific numbers (Table 1) was ~50% lower than the number generated
by our simulations in year 2. The abrupt increase in 1.5 year old deer carried through years 2 to
6 and resulted in distorted proportions which influenced the ability to produce appropriate
annual-based statistics such as changes in population size and prevalence. Sex- and age-specific
survival rates were identical to the parameter validation model (Table 2). Instead of using the
observed time series of fawn:doe ratios, we used random draws from the ratios during 1996–
2015. The inclusion of random draws from observed fawn:doe ratios allows the incorporation
of environmental stochasticity, an important consideration in the semi-arid environment. To
further evaluate the influence of variable environment on population-level effects of CWD, we
also modeled population trajectories based on fawn:doe ratios from 3 areas afflictedwith CWD

Fig 4. Comparison between observed, 3-year moving average, and modeled deer population size trends. White-tailed deer

were counted via helicopter surveys in South Texas during 1996–2015 and compared well with output of parameter validation model

(solid line).

doi:10.1371/journal.pone.0163592.g004
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in Wyoming and Wisconsin (Table 4). The South Converse mule deer herd in Wyoming had
an average of 0.54 fawns per doe (range = 0.43–0.73 [70]) and the Laramie Mountain mule
deer herd had an average of 0.63 (range = 0.51–0.81 [71]). We randomly selected 6 Wisconsin
counties where CWD was present and the average fawn:doe ratio was 0.84 (range = 0.62–1.00
[72]). For each scenario with the 4 CWD growth rates (none, slow, medium, and rapid) in

Fig 5. Schematic representing the white-tailed deer life cycle used in CWD simulations.

doi:10.1371/journal.pone.0163592.g005

Table 3. Initial population and age structure for the first year of the simulations. Sex- and age-specific

numbers were derived from median values generated in year 7 of simulations based on South Texas data

without CWD and without harvest.

Sex Age N deer %

Male 1.5 1263 21.3

2.5 1064 17.9

3.5 877 14.7

4.5 748 12.6

5.5 641 10.8

�6.5 1333 22.4

Female 1.5 1261 15.3

2.5 1122 13.6

3.5 977 11.8

4.5 879 10.6

5.5 794 9.6

�6.5 3208 48.9

Total 14167

doi:10.1371/journal.pone.0163592.t003

Deer in Semi-Arid Environments
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conjunction with male and female harvests (none, 1%, 2%, etc.), we simulated 25-year popula-
tion trajectories with 1,000 iterations. All statistical operations and modeling were done in the
R programming environment [73] (S1 File).

Results of CWD Simulations

Simulations without CWD and without harvest in the model indicated an increasing popula-
tion trajectory that averaged an annual growth of 1.43% resulting in a net 36% increase after 25
years (Fig 6). Inclusion of CWD in the model without harvest resulted in 0.41, -1.72, and
-10.33% annual rates of change in deer populations with slow, medium, and rapid CWD
growth rates, respectively. Harvest of 1% of females resulted in a population decline in the slow
CWD model but when harvest was limited to males, populations did not decline. Relative to
simulations without CWD, the introduction of CWD produced nearly identical female age
structures; however, there was a shift in male age structures (Fig 7). Relative to the model with-
out CWD, the different age-specificCWD prevalence rates resulted in an increase of propor-
tion of young males while proportion of�5.5 year old males declined. Percent of infected deer
in the population at end of modeled years followed expected trends relative to inputted CWD
parameters (Table 4) except the�6.5 year old male age class was lower than expected (Fig 8).

Substituting our empirical South Texas fawn:doe ratios with observed fawn:doe ratios from
temperate areas afflictedwith CWD resulted in large annual population increases in all slow
and medium scenarios. Populations stabilized when ~10%, ~16%, and ~26% of the deer were
harvested annually in slow CWD growth models based on fawn:doe ratios from South Con-
verse, WY, Laramie Mountains, WY, and Wisconsin, respectively (Fig 9).

Discussion

Our simulations suggest that additional adult mortality due to CWD will result in reduced or
negative rates of population growth for populations of white-tailed deer in semi-arid environ-
ments. In regions with variable rainfall, adult survivalmust be high to overcome variable fawn
recruitment [24]. The additive mortality of CWD in conjunction with higher prevalence rates
in adult deer resulted in a reduced population size, even in the absence of hunter harvest of
deer. Whereas CWD-afflicteddeer populations elsewhere have been able to persist for over 30
years [42,74], the higher mean recruitment in conjunction with low prevalence rates in younger

Table 4. Parameter values used to simulate CWD effects on deer population dynamics in South Texas.

Parameter Value Reference

Recruitment rate: Semi-arid Randomly selected from empirical fawn:doe ratios observed during 1996–2015 Empirical

data

Recruitment rate: Temperate 0.44,0.40,0.72,0.49,0.46,0.73 (Converse, WY) [70–72]

0.66,0.62,0.51,0.59,0.61,0.81 (Laramie, WY)

1.00,0.76,0.87,0.90,0.88,0.62 (Wisconsin)

Population prevalence growth Started at 1% and increased 0.26%, 0.83%, or 2.3% annually for 25 years [12,65,66]

Female CWD risk: 1.5—�3.5 year

old

2.3, 3.8, and 6.1%, respectively [27]

Male CWD risk: 1.5—�6.5 year

old

2.3, 7.6, 9.9, 13.7, 16.8, and 19.1%, respectively [27]

CWD mortality rate Randomly selected 33%, 50%, or 100% mortality rate applied towards subset of infected males and

females

[1]

Harvest Constant within each model and increased at 1% increments for each additional model until

population declined

doi:10.1371/journal.pone.0163592.t004
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deer [12,28] likely enables population sustainability. Model projections based on fawn:doe
ratios from temperate environments instead of semi-arid environments support the idea that
high deer productivity increases likelihoodof population sustainability. In our South Texas sce-
nario with no harvest and slow CWD increase, a negative rate of population growth did not
occur; therefore, deer populations in semi-arid regions may be able to persist after CWD intro-
duction in the absence of harvest. For simplicity, we did not consider age-specific fecundity in
our models. However, deer productivity in semi-arid environments is strongly influenced by
age of the dam [58]. Therefore a decline in the age structure of females due to increased CWD
prevalence [27,28] would likely result in a more rapid decline in our population simulations.
The increased rate of population decline would be attributed to the reduced number of older,
more productive, females available to produce offspring. Thus, young females (�2.5 years old)
would be the critical factor driving population sustainability in CWD-afflicted areas. However,
there may not be sufficient healthy, and less productive, young females available to produce off-
spring in semi-arid environments because the lower and more variable fawn:doe ratio (0.35,
SE = 0.03) results in a variable young female age structure [26].

CWD mortality was modeled to be additive because of the density-independent nature of
deer dynamics in South Texas (22,24). It is possible that CWD mortality would be compensa-
tory because of predation [75], deer-vehicle collisions [76], and harvest [77]. Mountain lions
(Puma concolor) and coyotes (Canis latrans) exist in South Texas and may selectively prey on

Fig 6. Plots of simulated white-tailed deer population trajectories. One thousand 25-year simulations

were run to predict future populations without CWD and 2% harvest (top left) and with CWD and without

harvest (top right) with fawn:doe ratios from South Texas, with CWD and 2% harvest (bottom left) and 16%

harvest (bottom right) with fawn:doe ratios from Laramie, Wyoming. Slow CWD was modeled to increase

0.26% annually. White line indicates median of the 1,000 simulated projections.

doi:10.1371/journal.pone.0163592.g006
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infected deer [74,75]; however, mountain lion density in South Texas is low (0.59–0.75 per 100
km2 [78]). Coyotes and bobcats occasionally kill adult deer [79] but primarily prey on fawns
[80,81], which are not considered important to CWD dynamics [82]. Deer-vehicle collisions
are not as frequent in South Texas compared to other states because of the relatively low road
density; thus, it is unlikely deer-vehicle collisions would have an influence on CWD mortality.
Deer mortality events due to harvest could be compensatory because both CWD prevalence
and probability of being harvested increases with age [27]. However, CWD presumably does
not discriminate by antler characteristics whereas hunters generally select for large-antlered
mature males. Overall, it would be expected for CWD mortality to transition from compensa-
tory to additive as prevalence rate increases because survival rates would be reduced [83,84].
The point in time when CWD mortality becomes additive is unknown but in deer populations
that rely on high survivorship of adult deer, the transition from compensatory to additive is
likely earlier relative to areas with higher recruitment typical of temperate environments.

Fig 7. Age structure of male and female population after 25-year simulations with and without CWD. Slow CWD started at 1% prevalence

and increased 0.26% annually.

doi:10.1371/journal.pone.0163592.g007
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If our hypothetical CWD-afflictedpopulation was able to sustain itself, perhaps during a
period of favorable rainfall and increased fawn:doe ratios [18,85,86], the higher prevalence
rates in mature males is of concern. Our CWD simulations forecasted a male age structure
with fewer mature (�5.5 year old) males (Fig 7). Male harvest in south Texas is generally
skewed towards mature males [60] and the change in CWD-modeledmale age structures will
likely be more pronounced because we modeled harvest to be equal among male age classes.
Further, prevalence rates of�6.5 year old males at the end of simulated years were lower than
expected (Fig 8) which suggest that CWD mortality rates would have a disproportionate effect
on old (�6.5 year old) males [27]. Culturally and economically, harvest of mature males is a
critical component of hunting in South Texas [38]. With fewer mature males in CWD-afflicted
populations, deer hunting may not be economically viable for privately owned ranches.
Ranches may transition to alternative sources of income, such as agriculture or development

Fig 8. Sex- and age-specific prevalence at the end of simulated years in the slow CWD increase model. Prevalence is the percent of the

median number of infected sex- and age-specific deer in the population at the end of each simulated year. Slow CWD started at 1% prevalence

and increased annually by 0.26%.

doi:10.1371/journal.pone.0163592.g008
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which may not have the same ecosystem benefits as wildlife-cattlemanagement programs on
native rangelands [87–89].

Declines in our simulated CWD populations with only 1% female harvest suggest that a
slight increase in additive mortality rates would be unsustainable for deer populations in semi-
arid regions. This finding is not unexpectedbecause deer managers have long known that har-
vest rates in native rangelands, where deer population density-independence occurs frequently,
need to be conservative to prevent population declines due to the additive nature of harvest
[24,90]. The additive mortality via harvest suggests that increased harvest in an attempt to sup-
press CWD [3,45,91,92], depending on the prevalence rate [44], may be a viable management
strategy. However, the social nature of white-tailed deer (i.e., bachelor male groups and female
family groups [93,94]) does not result in prevalence rates that are positively correlated with
deer density [67,68]. Additionally, the persistence of prions in the environment complicates
diseasemanagement strategies. This may be more so in semi-arid environments, where the
availability of drinkingwater plays a critical part in habitat use during dry years [95]. One
symptom of CWD is increased thirst [96]; thus, frequent visits to water catchments, troughs,

Fig 9. Maximum annual harvest of adult male and female deer with slow, medium, and rapid CWD prevalence growth rates. CWD

increased annually at rates of 0.26% (slow), 0.83% (medium) or 2.3% (rapid). Absent bars indicate scenarios when harvest of both sexes caused

a population decline.

doi:10.1371/journal.pone.0163592.g009
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stock tanks, and ephemeral pools [97] may increase disease transmission rates and congregate
prion deposition [98]. Some natural water sources may be associated with impermeable clay
soil, which may increase viability of CWD prions [12,13,99].

We acknowledge that our relatively simplistic population model contains both process
variation (temporal, individual, and demographic variation) and sampling variation (varia-
tion in measured parameters) which could lead to bias in population projections [100,101].
However, we believe the impact of both types of variation on our models is relatively low. For
instance, density dependence influences many life processes [25,63]. Because density depen-
dence is rarely observed in south Texas [22,24], our model is unlikely to need density-depen-
dent changes in vital rates as a result of a decrease in deer density. Another important
component of population models is environmental stochasticity. In South Texas, environ-
mental stochasticity is represented by variable rainfall which influences fawn production (i.e.,
fawn:doe ratios) [21], which was an integral part of our model. Further, it is well documented
that fawn recruitment rates are the demographic parameter influencing deer population
growth because adult deer have high natural survival rates [102]. Therefore, by controlling
our models with known and critical region-specific parameters [103] and increasing preva-
lence rates at a rate observed in three CWD-afflicted areas [12,65,66], we feel our model is a
fair demonstration of what could happen if CWD emerged in South Texas. The first CWD
positive white-tailed deer identified in Texas was found in a captive deer breeder facility. The
second CWD case occurred at a different captive facility was a result of an epidemiological
investigation of deer purchased from the index facility. As of July 2016, 25 white-tailed deer
in or originating from captive facilities have been confirmed positive for CWD in Texas
[104]. Within Texas, there are >1,300 breeder facilities that house>110,000 white-tailed
deer [105]. There is a risk of fence-line transmission between captive and free-ranging deer
[106,107] but perhaps the bigger risk lies in the practice of deer translocation. In 2014, 27,684
deer were translocated from captive deer facilities to other captive deer facilities, high-fenced
(surrounded by 2.5-m high woven-wire fence) properties, and low-fenced (1.25-m) proper-
ties [105]. Releasing a deer unknowingly infected with CWD may result in disease transmis-
sion to a native deer population via horizontal transmission or deposition of prions into a
new environment.

Chronic wasting disease is a slow-spreading disease that may take years or decades to result
in detectable prevalence rates [1]. Modeling is frequently used to project CWD consequences
to cervid populations because field experiments are impractical [12,43,67]. Our simulations
suggest that introduction of CWD into deer populations with low fawn production and that
frequently exhibit density independencewould have a significant impact on population size
and age structure. Management efforts to enhance deer populations in this region in the event
of CWD introduction would likely be difficult or infeasible. For instance, using supplemental
nutrition may increase deer productivity to combat deleterious effects of drought years and
CWD mortality; however, presence of feed stations would likely increase disease transmission
rates [35,48,49]. Transplanting deer from CWD-free populations may be a feasible option;
however, the prolonged existence of CWD prions in the environment will likely result in dis-
ease persistence. Therefore, prevention of CWD introduction into variable environments such
as South Texas is a critical strategy to ensure deer continue to exist as a renewable natural
resource.
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