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Abstract
Non-invasive right ventricular to pulmonary artery (RV-PA) uncoupling assessment has prognostic value in patients with 
heart failure (HF). Little is known about its application in patients with wild-type transthyretin amyloid cardiomyopathy 
(wtATTR-CM). This single-centre retrospective study included consecutive patients with wtATTR-CM diagnosis undergo-
ing 2D echocardiogram. RV-PA uncoupling was evaluated with the ratios between tricuspid annular plane systolic excur-
sion (TAPSE), RV free wall longitudinal strain (RVFWLS) or RV four-chamber longitudinal strain (RV4CLS) and pulmo-
nary artery systolic pressure (sPAP). Primary endpoint was the composite of all-cause mortality and HF hospitalisation. 
Overall, 100 patients (91% males, median age 81 years, 85% in National Amyloid Centre (NAC) stage ≤ 2, 18% in NAC 
stage Ia and 82% in New York Heart Association class ≤ II) were enrolled. Over a 16-months follow up (Q1-Q3:12–24), 
the primary endpoint occurred in 37 patients (37%). TAPSE/sPAP (HR 0.04, 95% CI 0.01–0.24, p < 0.001), RVFWLS/
sPAP (HR 0.07, 95% CI 0.01–0.41, p = 0.003) and RV4CLS/sPAP (HR 0.06, 95% CI 0.01–0.53, p = 0.011) emerged as 
independent predictors of the primary endpoint and showed incremental risk prediction compared with TAPSE, RVF-
WLS and RV4CLS, considered as separate parameters. No differences in outcome risk prediction were observed among 
TAPSE/sPAP, RVFWLS/sPAP and RV4CLS/sPAP (p > 0.05). RV-PA uncoupling, as assessed by different echocardiography 
modalities, is an early predictor of poor outcome in patients with wtATTR-CM.
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Graphical Abstract

Central illustration. Prognostic value of non-invasive right to pulmonary artery coupling in wild-type transthyretin cardio-
myopathy. Bad outcome is observed in patients with worse RV-PA coupling ratios. Abbreviations: PA = pulmonary artery; 
RV = right ventricle; RVFWLS = right ventricular free-wall longitudinal strain; sPAP = systolic pulmonary artery pressure; 
TAPSE = tricuspid annulus plane systolic excursion; TR = tricuspid regurgitation; wtATTR-CM = wild-type transthyretin 

cardiomyopathy

Keywords Transthyretin cardiac amyloidosis · Echocardiography · Right ventricular strain · Right ventricle to 
pulmonary artery coupling · Prognosis
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Introduction

Wild-type transthyretin amyloid cardiomyopathy (wtATTR-
CM) is a sporadic non-inherited cardiac disease character-
ized by the deposition of misfolded transthyretin in the 
heart, causing a progressive disruption of cardiac structure 
and function [1–3]. This condition is typically character-
ized by increased left ventricular (LV) wall thickness and 
stiffness, predisposing to impaired diastolic function and 
heart failure with preserved ejection fraction (HFpEF) [2]. 
A significant epidemiological increase of this condition 
has been observed in recent times, due to the adoption of 
non-invasive diagnostic algorithms [4], and patients are 
currently more frequently early diagnosed, showing no or 
mild symptoms, lower disease stage, and more favourable 
structural abnormalities at diagnosis [5]. At the same time, 
novel disease-modifying agents have been identified to stop 
or delay the progression of wtATTR-CM [6], so that there 
is an urgent clinical need to identify early predictors of poor 
outcome that could prompt the initiation of ATTR-targeted 
therapy, also in asymptomatic or early stages patients.

The right ventricle (RV) to pulmonary artery (PA) cou-
pling is defined as the ratio of RV function to pulmonary 
vascular afterload and is traditionally assessed by means of 
echocardiography using the ratio between tricuspid annu-
lar plane systolic excursion (TAPSE) and systolic pulmo-
nary artery pressure (sPAP) [7–9]. Recently, other ratios 
using RV strain function indexes have been proposed and 
validated [10–13]. The RV-PA uncoupling has emerged as 
a strong prognostic factor in patients with HF [14–20] and 
also in historical mixed cohorts of light-chain and ATTR 
cardiomyopathy patients [7, 8]. However, little evidence is 
available about its pathophysiological and clinical meaning 
in wtATTR– CM only, particularly in contemporary cohorts, 
including early diagnosed and less sick patients [5].

Methods

Study design and study population

The Cardiac Amyloidosis Outpatient Clinic of University 
Hospital of Padua (Italy) is a tertiary centre for evalua-
tion of all patients with established or suspected amyloid 
cardiomyopathy. At the time of the first visit, all patients 
undergo a routine clinical evaluation, including family and 
personal history, physical examination, biomarkers analy-
sis, resting 12-lead ECG, and 2-dimensional transthoracic 
echocardiography. This is a single-centre observational lon-
gitudinal study, enrolling a consecutive series of patients 
with a definitive diagnosis of wtATTR-CM, established 
according to the Gillmore algorithm [4], between January 

2018 and January 2023. All first echocardiographic exams 
of these patients performed in our Institution were retrieved 
and re-analysed focusing on RV-PA uncoupling assessment. 
Exclusion criteria were inadequate image quality for strain 
analysis (frame rate < 50 frames per seconds or inability to 
accurately visualize the RV from base to apex or to perform 
adequate speckle - tracking analysis on any RV segments), 
insufficient data for a reliable assessment of systolic pulmo-
nary artery pressure, and history of severe chronic obstruc-
tive pulmonary disease, severe obstructive sleep apnoea 
syndrome or pulmonary embolism. All patients underwent 
genetic testing, and those diagnosed with hereditary ATTR-
CM were not included in this study, due to the low preva-
lence in our region [21], the highly variable phenotypes [22] 
and the different clinical and echocardiographic features 
compared with wtATTR-CM [23]. Patients were system-
atically followed up from the date of our first cardiologic 
evaluation (baseline), to avoid any time referral bias. The 
clinical data recorded within ± 1 months from the baseline 
included all the following: (I) medical history and physical 
examination, (II) ECG and (III) laboratory exams. The local 
regional Institutional Review Board approved the study, and 
the investigators obtained local institutional review board 
approvals for the retrospective collection of anonymous 
data. The study was conducted according to the Declaration 
of Helsinki, and informed consent was obtained according 
to the local review board policies.

Clinical history, electrocardiography and 
biomarkers

Careful clinical history, ongoing medical therapy, and data 
regarding New York Heart Association (NYHA) class and 
National Amyloidosis Centre (NAC) stage [24] at baseline, 
including NAC Ia stage [25], were collected. Tafamidis in 
Italy was approved in October 2021, and the Italian Medi-
cines Agency authorized its reimbursement exclusively in 
patients with ATTRwt-CM and NYHA class I or II [26]. 
Disease modifying therapy at baseline or during the follow 
up was noted. Further details are provided in Supplemental 
Materials.

Echocardiography

Echocardiographic images were acquired using a Vivid 9 
ultrasound system (General Electric Medical System, Mil-
waukee, USA), and analysis was independently carried 
out in post– processing by a trained cardiologist blinded to 
patients’ history using the EchoPAC software v.204 (Gen-
eral Electric Medical System, Milwaukee, USA). American 
Society of Echocardiography and the European Association 
of Cardiovascular Imaging recommendations [27, 28] were 
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to draw the primary endpoint cumulative incidence curves 
using the Kaplan Meier method and the log-rank test. For 
estimating the incremental prognostic value of the RV-PA 
uncoupling indexes over the uncoupled RV systolic func-
tion parameters, the time-dependent areas under the curve 
(AUC) of the corresponding ROCs of each were evaluated 
and compared as previously defined [33]. All tests were 
2-tailed, and a p < 0.05 was considered statistically signifi-
cant. Statistical analyses were conducted using the SPSS 
software version 26.0 statistical package and the RStudio 
software version 4.3.1.

Results

Study population

Among 202 patients diagnosed with cardiac amyloidosis 
between January 2018 and January 2023, 135 (68%) had a 
diagnosis of wtATTR-CM. After exclusion of those patients 
with inadequate image quality (n = 35), 100 (74%) consti-
tuted the study population (Supplemental Fig. 1). Baseline 
characteristics are shown in Table 1. Most patients were 
male (n = 91, 91%) with a median age of 81 (75–85) years, 
a NYHA class I or II (n = 82, 82%) and a NAC stage I or II 
(n = 85, 85%). The majority was treated with disease modi-
fying therapy (n = 53, 53%), with a median time from diag-
nosis of 3 (1–8) months, and a median follow up in therapy 
of 15 (10–18) months (Supplemental Table 1). Considering 
echocardiogram data, median values of E/A and E/e’ ratios 
were 2.1 (1.1 to 2.7) and 16.1 (13.4–19.4). Median values of 
RVFWLS and RV4CLS were − 16.5% and − 12.1%. On seg-
mental analysis of the RVFW, LS were − 14% (-19 to -10), 
-18% (-25 to -11) and − 16% (-23 to -12) for basal, mid, 
and apical segments, respectively (Fig. 1, panel A). Regard-
ing RV-PA coupling non-invasive parameters, median val-
ues of TAPSE/sPAP, RVFWLS/sPAP and RV4CLS/sPAP 
were 0.45 mm/mmHg, 0.46%/mmHg and 0.33%/mmHg, 
respectively. Intra- and inter-readers intraclass correlation 
coefficients (ICC) are provided in Supplemental Table 2. A 
moderate correlation (Spearman’s R -0.37, -0.36 and − 0.37) 
was found between E/e’ ratio and TAPSE/sPAP, RVFWLS/
sPAP and RV4CLS/sPAP, respectively (Supplemental 
Fig. 3).

Primary endpoint and follow-up

During a median follow-up time of 16 months (Q1-Q3: 
12–24), the primary endpoint occurred in 37 (37%) patients. 
All-cause death and heart failure hospitalization occurred 
in 22 (22%) and 25 (25%) patients, respectively. Com-
pared with those without, patients with primary endpoint 

careful followed. TAPSE was measured using M-mode 
echocardiography at tricuspid annulus level. Longitudinal 
strain (LS) was quantified using a region of interest includ-
ing both right ventricle free wall (RVFW), with adequate 
width to cover its thickness, and interventricular septum 
(IVS). RVFW longitudinal strain (RVFWLS) was measured 
as the average of the strain values of the three segments of 
the RVFW; RV four-chamber LS (RV4CLS) was measured 
as the average of the strain values of the six segments of 
the RVFW and IVS [29]. Right atrium longitudinal strain 
(RALS) was calculated as established in literature [28], 
limited to reservoir phase due to high prevalence of atrial 
fibrillation in our cohort. Systolic pulmonary artery pres-
sure (sPAP) was calculated using the formula: 4*(peak 
velocity of TR)2 + estimated right atrial pressure. The latter 
was derived on the inferior vena cava diameter and collaps-
ibility [30]. RV-PA uncoupling parameters (i.e., RVFWLS/
sPAP and RV4CLS/sPAP) were positivized for easier com-
prehension. Further details are provided in Supplemental 
Materials.

Outcomes and statistical analysis

Continuous baseline characteristics were expressed as 
median with 25th and 75th percentiles [Q1– Q3] and were 
compared using the Mann– Whitney test. Categorical vari-
ables were expressed as absolute numbers and percentages 
and were compared using the chi-square (χ2) test. The pri-
mary endpoint was the composite of all-cause death and HF 
hospitalisation. The latter was defined as an admission to 
hospital for HF symptoms and need for intravenous diuretic 
therapy. Survival analysis was performed with a Cox pro-
portional hazards regression, with univariable and multi-
variable models. The number of variables entered into the 
multivariable model was limited according to the number of 
events, based on the principle of not having more than one 
variable every 10 events. Thus, multiple models were built 
to test the predictive value of RV systolic function param-
eters and RV-PA uncoupling values, adjusting for covari-
ates that were both statistically significant at univariate 
analysis (p < 0.05) and selected on the basis of their clinical 
relevance coupled with absence of collinearity. Candidate 
predictors included HF presentation, defined as HF hospi-
talization requiring intravenous diuretic therapy before the 
diagnosis, N-terminal pro-brain natriuretic peptide (NT-
proBNP) and furosemide intake > 50 mg [24, 31, 32]. To 
correctly assess the impact of disease modifying therapy, 
a dedicated time– dependent Cox’s regression analysis was 
carried out. Overfitting was eventually tested with a 10-fold 
cross validation of each model, by comparison of original 
and cross-validated C-index with a threshold in difference 
of 0.5. For independent predictors, median values were used 
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Variable Total population
N = 100

No Endpoint
N = 63

Endpoint
N = 37

p

Clinical characteristics
Age (years) 81 (75–85) 80 (75–84) 81 (76–85) 0.4
Male sex (%) 91 (91) 56 (89) 35 (95) 0.5
NYHA class > II (%) 18 (18) 10 (16) 8 (22) 0.6
HF presentation (%) 52 (54) 27 (44) 25 (69) 0.020
COPD (%) 9 (9) 8 (15) 1 (3) 0.3
OSAS (%) 1 (1) 1 (2) 0 (0) 0.9
NAC stage I (%) 63 (63) 44 (70) 19 (51) 0.06
NAC stage II (%) 22 (22) 11 (17) 11 (30) 0.1
NAC stage III (%) 15 (15) 8 (15) 7 (19) 0.8
Medical therapy
Furosemide (%) 69 (69) 38 (60) 31 (84) 0.015
Dose of furosemide (mg) 25 (0–50) 25 (0–50) 50 (25–100) 0.006
β–blockers (%) 53 (53) 36 (57) 17 (46) 0.3
ACE-i/ARBs/ARNI (%) 50 (50) 31 (49) 19 (51) 1
SGLT2i (%) 5 (5) 3 (8) 2 (6) 0.9
MRA (%) 39 (39) 21 (33) 18 (49) 0.1
Disease modifying therapy (%) 53 (53) 41 (65) 12 (32) 0.002
Time of DMT starting from diagnosis (months) 3 (1–8) 3 (1–8) 6 (1–11) 0.4
Electrocardiogram characteristics
AF (%) 49 (49) 30 (48) 19 (51) 0.8
LQRSV (%) 31 (31) 23 (38) 8 (22) 0.1
QRS duration (ms) 118 (101–144) 111 (99–143) 135 (117–147) 0.007
Biochemical characteristics
NTproBNP (ng/L) 1777 (815–4896) 1610 (745–4221) 1921 (928–6010) 0.1
eGFR (ml/min/m2) 60 (50–77) 62 (53–77) 57 (45–75) 0.3
Hs-TnI (ng/L) 78 (41–138) 60 (36–121) 92 (54–234) 0.020
Echocardiogram characteristics
IVS (mm) 18 (16–20) 18 (15–20) 18 (16–20) 0.9
PW (mm) 15 (14–17) 16 (14–18) 15 (14–17) 0.6
RWT 0.72 (0.59–0.83) 0.74 (0.57–0.86) 0.70 (0.59–0.80) 0.3
LV mass (gr) 307 (258–387) 284 (250–387) 314 (269–388) 0.4
LV EDVi (ml/m2) 56 (46–67) 54 (47–64) 60 (43–72) 0.3
LV EF (%) 52 (44–57) 53 (43–58) 51 (44–56) 0.4
LV SVi (ml/m2) 27.2 (22.2–33.1) 29 (23–35) 27 (22–33) 0.9
LV GLS (-%) 11 (8–13) 11 (8–13) 11 (7–12) 0.6
E/A 2.1 (1.1–2.7) 1.5 (0.9–2.7) 2.6 (2.1–2.8) 0.028
E/e’ 16.1 (13.4–19.4) 15.8 (11.9–19.4) 16.7 (14.4–19.2) 0.1
E/e’>14 (%) 68 (69) 37 (60) 31 (86) 0.007
Restrictive filling pattern (%) 28 (28) 13 (21) 15 (41) 0.032
LAVi (ml/m2) 52.5 (42.3–65.4) 49.7 (41.9–60.5) 59.4 (47.0–70.9) 0.031
RAVi (ml/m2) 45.5 (34.4–57.1) 43.4 (33.6–56.1) 50.2 (38.7–63.2) 0.06
RALS (%) 13.1 (8.1–15.9) 15.1 (8.9–16.1) 10.0 (5.3–13.8) 0.034
RV thickness (mm) 7.0 (4.2–9.0) 7 (4–8) 7 (5–9) 0.3
RV EDAi (cm2/m2) 11.6 (9.8–12.9) 11.4 (9.6–12.5) 12.4 (10.6–14.3) 0.008
TAPSE (mm) 16.5 (13.0–20.0) 17.1 (14.0–20.4) 15.1 (12.1–19.2) 0.038
RV FAC (%) 35.5 (30.0–41.8) 36 (30–42) 33 (31–42) 0.8
RVFWLS (-%) 16.5 (12–21.5) 17.9 (13–22) 15.0 (11–20) 0.043
RV4CLS (-%) 12.1 (9.1–16.6) 12.5 (9.2–16.8) 11 (8–15.3) 0.2
sPAP (mmHg) 35 (26–45) 30 (22–42) 39 (33–47) 0.003
TAPSE/sPAP (mm/mmHg) 0.45 (0.33–0.72) 0.50 (0.36–0.83) 0.38 (0.27–0.52) 0.001
RVFWLS/sPAP (%/mmHg) 0.46 (0.31–0.72) 0.49 (0.35–0.87) 0.39 (0.27–0.52) 0.001
RV4CLS/sPAP (%/mmHg) 0.33 (0.23–0.52) 0.39 (0.26–0.62) 0.28 (0.20–0.42) 0.006
Trivial TR (%) 34 (34) 29 (46) 5 (14) 0.001

Table 1 Population characteristics stratified according to composite endpoint occurrence
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echocardiography, they had more frequently a LV restric-
tive filling pattern (41% vs. 21%, p = 0.032), with higher 
E/A ratio (2.6 vs. 1.5, p = 0.028) and left atrium volume 
indexed (59.4 ml/m2 vs. 49.7 ml/m2, p = 0.031). No sig-
nificant differences among groups emerged in LV ejection 
fraction (51% vs. 53%, p = 0.4) or LV global longitudinal 
strain (-11% vs. -11%, p = 0.6). Compared with those with-
out, patients with primary endpoint had significantly lower 
RALS (10.0% vs. 15.1%, p = 0.034), significantly higher RV 
end-diastolic indexed area and sPAP (12.4 cm2/m2 vs. 11.4 
cm2/m2, p = 0.008 and 39 mmHg vs. 30 mmHg, p = 0.003) 

had a significantly higher prevalence of HF presentation 
(69% vs. 44%, p = 0.020), and were more frequently treated 
with furosemide (84% vs. 60%, p = 0.015) at higher dose 
(50 mg vs. 25 mg, p = 0.006), and less frequently with dis-
ease modifying therapy drugs (32% vs. 65%, p = 0.002) 
(Table 1). Considering laboratory test, patients with pri-
mary endpoint had higher high sensitivity troponin I value 
(92 vs. 60 ng/L, p = 0.020), but no significantly differences 
emerged for N terminal pro-brain natriuretic peptide (NT-
proBNP) (1921 vs. 1610 ng/L, p = 0.1) or estimated glomer-
ular filtration rate (eGFR) (57 vs. 62 ml/min/m2, p = 0.3). On 

Fig. 1 Right ventricular (RV) free wall longitudinal strain and amy-
loid infiltration. Panel (A) Longitudinal strain values calculated in the 
basal segments of the RV free wall are significantly lower than mid-
ventricular and apical ones. Panel (B) Histological panoramic view of 

the RV free wall of a 81-year-old female patient with wtATTR-CM, 
showing larger amyloid infiltration (sulphated alcian blue stain) in the 
basal segments, compared with the mid-ventricular and apical ones

 

Variable Total population
N = 100

No Endpoint
N = 63

Endpoint
N = 37

p

Mild TR (%) 45 (45) 22 (35) 23 (62) 0.010
Moderate TR (%) 20 (20) 12 (19) 8 (22) 0.8
Severe TR (%) 1 (1) 0 (0) 1 (3) 0.4
Severe MR (%) 0 (0) 0 (0) 0 (0) 1
Severe AS (%) 1 (1) 0 (0) 1 (3) 0.4
Severe pericardial effusion (%) 1 (1) 1 (2) 0 (0) 1
Pleural effusion (%) 8 (8) 4 (6) 4 (11) 0.5
Quantitative variables expressed as median value (25th − 75th percentile). Qualitative variables expressed as absolute number (%). Abbre-
viations: ACE-i = Angiotensin converter enzyme inhibitor; AF = atrial fibrillation; ARBs = angiotensin receptor blockers; ARNI = angioten-
sin receptor neprilysin receptor inhibitors; AS = aortic stenosis; COPD = chronic obstructive pulmonary disease; DMT = disease modifying 
therapy; EDAi = end diastolic area indexed; EDVi = end diastolic volume indexed; EF = ejection fraction; eGFR = estimated glomerular filtration 
rate; FAC = fractional area change; GLS = global longitudinal strain; HF = heart failure; Hs–TnI = high sensitivity troponin I; IVS = interven-
tricular septum; LAVi = left atrium volume indexed; LQRSV = low QRS voltages; LV = left ventricle; MR = mitral regurgitation; MRA = miner-
alocorticoids receptor antagonist; NAC = National Amyloid Centre; NYHA = New York Heart Association; NTproBNP = N-Terminal pro brain 
natriuretic peptide; OSAS = obstructive sleep apnoea syndrome; PW = posterior wall; RALS = right atrium longitudinal strain; RAVi = right 
atrium volume indexed; RVFWLS = RV free wall longitudinal strain; RV4CLS = RV 4-chamber longitudinal strain; RWT = relative wall thick-
ness; SGLT2i = Sodium glucose transporter 2 inhibitors; sPAP = systolic pulmonary artery pressure; SVi = stroke volume indexed; RV = right 
ventricle; TAPSE = tricuspid annulus plane systolic excursion; TR = tricuspid regurgitation

Table 1 (continued) 
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When considering only NAC Ia patients (n = 18), primary 
endpoint occurred in 6 patients (33%) (Table 2). RV-PA 
uncoupling parameters such TAPSE/sPAP, RVFWLS/sPAP 
and RV4CLS/sPAP were significantly lower in patients 
with primary endpoint, compared with those without (0.41 
vs. 0.78 mm/mmHg, p = 0.013; 0.47 vs. 0.79 -%/mmHg, 
p = 0.042; 0.32 vs. 0.61 -%/mmHg, p = 0.041, respectively).

Prognostic value of RV-PA uncoupling

Univariable analyses and all derived multivariable models 
are presented in Tables 3 and 4 RV-PA uncoupling emerged 
as independent predictor of composite endpoint, evaluated 
with TAPSE/sPAP (HR 0.04, 95% CI 0.01–0.24, p < 0.001), 
RVFWLS/sPAP (HR 0.07, 95% CI 0.01–0.41, p = 0.003) 
or RV4CLS/sPAP (HR 0.06, 95% CI 0.01–0.53, p = 0.011) 
ratios, and were confirmed after proportional hazards 
assumption analysis (Supplemental Table 2). Using median 
values for discriminating the composite endpoint (Fig. 2), 
12-months cumulative incidence was significantly higher in 
patients with TAPSE/sPAP ≤ 0.45 mm/mmHg (24% vs. 16%, 
log–rank p 0.018), RVFWLS/sPAP ≤ 0.46%/mmHg (29% 
vs. 12%, log-rank p = 0.003) or RV4CLS/sPAP ≤ 0.33%/
mmHg (27% vs. 14%, log-rank p = 0.018), respectively. 
To further investigate and compare the predictive value of 
RV-PA uncoupling data with RV function parameters alone, 
a time-dependent ROC curve analysis was performed. At 
36 months, time dependent AUC for TAPSE, RVFWLS 
and RV4CLS were 0.65, 0.64 and 0.66, respectively. On 
the other hand, time dependent AUC for RVFWLS/sPAP, 
RV4CLS/sPAP, TAPSE/sPAP were 0.76, 0.77 and 0.79, 
respectively, without significantly differences between them 
(all p values > 0.05, Fig. 3). Nevertheless, these values were 
significantly higher than that of RV function parameters 
considered alone, resulting in a further incremental prog-
nostic accuracy for the composite endpoint (all adjusted p 
values < 0.05). The same held true when compared with dia-
stolic function parameters and daily high furosemide doses 
(Supplemental Fig. 2).

Discussion

This study was designed to investigate the prognostic value 
of RV-PA uncoupling in a modern cohort of patients with 
wtATTR-CM. The main results were the following: (i) 
RV-PA uncoupling, evaluated with either RVFWLS/sPAP, 
RV4CLS/sPAP, or TAPSE/sPAP, was independently asso-
ciated with the risk of the composite outcome of all-cause 
death or HF hospitalisation in patients with wtATTR-CM; 
(ii) in the earliest stage of disease, RV-PA uncoupling 

and more impaired RV systolic function, either evaluated 
with TAPSE (15.1 mm vs. 17.1 mm, p = 0.038) or RVFWLS 
(-15.0% vs. -17.9%, p = 0.043). RV-PA uncoupling param-
eters such as TAPSE/sPAP, RVFWLS/sPAP and RV4CLS/
sPAP were significantly lower in patients with primary 
endpoint, compared with those without (0.38 vs. 0.50 mm/
mmHg, p = 0.001; 0.39 vs. 0.49%/mmHg, p = 0.001; 0.28 vs. 
0.39%/mmHg, p = 0.006).

Table 2 RV-PA coupling characteristics according to endpoint occur-
rence in patients with wtATTR-CM stage NAC Ia

No endpoint
N = 12

Endpoint
N = 6

p

TAPSE/sPAP (mm/mmHg) 0.78 
(0.60–0.90)

0.41 
(0.37–0.45)

0.013

RVFWLS/sPAP (%/mmHg) 0.79 
(0.61–0.96)

0.47 
(0.32–0.61)

0.042

RV4CLS/sPAP (%/mmHg) 0.61 
(0.43–0.82)

0.32 
(0.20–0.44)

0.041

Abbreviations as in Table 1

Table 3 Univariable analysis for composite endpoint predictors at 
60-months follow up according to Cox’s regression

Univariate analysis
HR (95% CI) p

Age 1 (0.95–1.05) 0.9
Sex 0.64 (0.15–2.66) 0.5
HF presentation 2.73 (1.31–5.69) 0.007
LQRSV 0.59 (0.27–1.29) 0.2
QRS duration 1.02 (1.00–1.03) 0.012
NTproBNP 1.00 (1.00–1.00) 0.004
eGFR 0.99 (0.97–1) 0.2
TnI 1.01 (1.00–1.01) 0.1
Furosemide > 50 mg 2.87 (1.46–5.62) 0.002
Disease modifying therapy* 0.48 (0.22–1.07) 0.07
RWT 0.27 (0.05–1.56) 0.1
LV EF 0.98 (0.95–1.01) 0.3
LV Svi 1.00 (0.96–1.04) 0.8
LV GLS 1.07 (0.98–1.16) 0.1
E/A 1.77 (1.09–2.87) 0.020
E/e’ 1.02 (0.97–1.07) 0.4
E/e’ > 14 3.19 (1.24–8.23) 0.016
Restrictive filling pattern 1.74 (0.90–3.36) 0.1
RALS 0.92 (0.83–1.00) 0.048
RV EDAi 1.16 (1.05–1.29) 0.005
TAPSE 0.92 (0.86–0.99) 0.032
FAC 0.98 (0.94–1.02) 0.3
RVFWLS 0.94 (0.89–0.99) 0.022
RV4CLS 0.93 (0.86–1.00) 0.043
sPAP 1.04 (1.02–1.07) 0.001
TAPSE/sPAP 0.004 (0.01–0.21) < 0.001
RVFWLS/sPAP 0.12 (0.03–0.52) 0.005
RV4CLS/sPAP 0.06 (0.01–0.43) 0.005
Abbreviations as in Table 1 plus CI = confidence interval; HR = haz-
ard ratio. *Time dependent Cox’s regression
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remained associated with poor outcome; (iii) RV-PA uncou-
pling indexes, such as RVFWLS/sPAP, RV4CLS/sPAP, or 
TAPSE/sPAP, showed incremental value in outcome predic-
tion over TAPSE, RV4CLS, RVFWLS and sPAP, consid-
ered as separate parameters.

The recent development of non-invasive algorithms for 
the diagnosis of ATTR-CM, together with the rapidly evolv-
ing therapeutic landscape, has transformed wtATTR-CM 
from a rare and untreatable condition to a more prevalent 
disease, now diagnosed at earlier and milder stages. As 
was observed in the ATTRibute-CM [34] and HELIOS-B 
trial [35], patients are now less likely to have cardiovascu-
lar events than in the ATTR-ACT trial era [36], so that it is 
of great importance to identify early predictors of outcome 
in modern cohorts of wtATTR-CM patients, that can help 
risk stratify them and guide the prompt initiation of disease-
modifying therapy.

The use of non–invasive surrogates of RV-PA uncoupling 
for prognosis prediction is not novel in the literature. Guazzi 
et al. investigated the independent prognostic significance 
of TAPSE/sPAP in 387 patients with different HFpEF aeti-
ologies and found that TAPSE/sPAP < 0.35 mm/mmHg was 
independently associated with the risk of combined end-
point of HF hospitalisation or all-cause death [37]. Same 
results were demonstrated in our cohort, although with a 
higher TAPSE/sPAP cut-off value (0.45 mm/mmHg). Dis-
crepancy could be due to lower sPAP data in our population, 
far less characterized by patients with chronic pulmonary 
diseases.

RV-PA uncoupling can be assessed also by means of RV 
strain function indexes, such as RVFWLS and RV4CLS 
[10–13], which are as known less angle- and volume depen-
dent than TAPSE, and have a higher sensitivity for detecting 
subclinical RV systolic dysfunction. Bosch et al. investi-
gated the contribution of RV dysfunction in 219 patients 
with HFpEF and found that RVFWLS/sPAP was indepen-
dently associated with the risk of composite endpoint of 
all-cause mortality and HF hospitalisation [15]. This was 
confirmed by our study results, although with some differ-
ence in RVFWLS/sPAP cut-off value (lower in our cohort), 
possibly due to different pathophysiology of RV dysfunc-
tion in ATTR-CM compared to other HFpEF aetiologies. 
Indeed, other than pulmonary hypertension secondary to LV 
disease, in ATTR-CM there might be a direct contribution in 
RV systolic impairment also caused by myocardial amyloid 
deposition [38]. This pathophysiological mechanism is also 
suggested by the only moderate correlation between dia-
stolic function and RV-PA parameters in our cohort.

The prognostic role of RV-PA uncoupling has been 
recently studied in patients with CA. In a mixed AL-CA 
and ATTR-CM cohort, Tomasoni et al. showed that the 
TAPSE/PASP ratio (median value 0.45 mm/mmHg) is 
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M-mode or strain-based RV systolic function parameters, 
remained an independent predictor of poor outcome, thus 
suggesting that the maladaptation of RV-PA afterload could 
be a relatively early phaenomenon in the natural history of 
ATTR-CM, possibly driven by initial amyloid deposition 
in the basal segments of RV [39, 40]. The early and major 
involvement of basal regions of RV could also explain the 
non-incremental prognostic accuracy for poor prognosis 
of speckle-tracking based uncoupling indexes compared 
to M-mode one (Fig. 1, panel B). The different regional 
amyloid deposition in RV could also account for the overall 
reduced RALS in our cohort.

According to our study results, the evaluation of RV-PA 
uncoupling may aid in individual risk assessment and 

a strong and independent predictor of all-cause death or 
HF hospitalisation, providing incremental risk prediction 
beyond TAPSE or sPAP considered alone [7]. A subsequent 
study confirmed these findings, although in a smaller mixed 
AL-CA and ATTR-CM cohort [8]. Our study results refined 
and expanded the prognostic role of RV-PA uncoupling in 
a modern cohort of ATTR-CM. To the best of our knowl-
edge, this is the first study to focus on wtATTR-CM only 
and to apply and investigate multiple indexes of RV-PA 
uncoupling in this setting. Compared with the above-men-
tioned studies [7, 8], our wtATTR-CM patients were mostly 
characterised by earlier and milder disease stages (85% in 
NAC stage ≤ 2, 18% in NAC stage Ia and 82% in NYHA 
class ≤ II). Nonetheless, RV-PA uncoupling, either using 

Fig. 2 Cumulative incidence of composite endpoint according to 
the presence of RVFWSL/sPAP ≤ 0.46%/mmHg (A), RV4CLS/
sPAP ≤ 0.33%/mmHg (B) or TAPSE/sPAP ≤ 0.45 mm/mmHg (C), 
showing bad outcome in patients with worse RV-PA coupling ratios. 

Abbreviations: RV4CLS = right ventricular four-chamber strain 
(including the septum); RVFWLS = right ventricular free-wall longi-
tudinal strain; sPAP = systolic pulmonary artery pressure; TAPSE = tri-
cuspid annulus plane systolic excursion
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Conclusions

In a modern cohort of patients with wtATTR-CM, RV-PA 
uncoupling emerged as an early and strong predictor of out-
come, being independently associated with the risk of HF 
hospitalisation or all– cause death. No differences in risk 
prediction were observed among M-mode and strain-based 
RV function parameters. The evaluation of RV-PA uncou-
pling should be considered in the clinical practice for risk 
stratification and prognosis assessment of patients with 
wtATTR-CM, with potential implications treatment strate-
gies definition.
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