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A B S T R A C T   

As a key regulator of innate immunity, mitochondrial function is essential to maintain antiviral activities. 
Common mitochondrial DNA variants (haplogroups) have been associated with different physiological capacities 
and the nrisk of developing several diseases. Haplogroup H was associated with increased survival among sepsis 
patients, and lower risk of progression toward AIDS in HIV infected and lower manifestation of severe mani-
festation of herpex virus disease. We studied 316 Spanish with critical COVID-19, and found that the 7028C 
(haplogroup H) was protective among patients with early-onset disease (≤65 vs > 65 years, p = 0.01), while the 
ancestral 16223T was a risk factor for early-onset critical COVID-19 (OR ¼ 3.36, 95 %CI ¼ 1.49–7.54). Our 
work suggested that common mitochondrial variants may serve as predictors of COVID-19 severity. Additional 
studies to confirm this effect from other populations are of special interest.   

1. Introduction 

In addition to their primary function as energy producers and regu-
lators of cellular processes such as apoptosis and ageing, mitochondria 
play an important role in the vertebrates innate immunity (Koshiba, 
2013). The presence of virus inside the cell is detected by a group of 
cytosolic proteins that bind to and activate the mitochondrial 
antiviral-signaling protein (MAVS) located in the inner membrane of 
the mitochondria (Moore and Ting, 2008). Activated MAVS trigger the 
secretion of immunomodulators such as type I interferons and proin-
flammatory cytokine sthat would clear the viruses and limit the infec-
tion damage (Belgnaoui et al., 2011). The mitochondrion membrane 
potential is also essential to activate these immunological pathways 
(Schneider et al., 2019; Hu et al., 2019). Many viruses can interfere with 
mitochondrial function to impair the antiviral activity. For instance, the 
PB1-F2 influenza A protein targets the mitochondria and induces 
apoptosis and impaired cellular innate immunity (Yoshizumi et al., 
2014; Zamarin et al., 2005). 

Cytomegalovirus impairs MAVS through the viral apoptosis proteins 
that localizes in the mitochondria and reduces the pro-inflammatory 
response (Choi et al., 2018). Several SARS-CoV-1 proteins such as 
ORF3b and ORF-9b localizes into host mitochondria and suppresses 
innate immunity by manipulating the MAVS, while other mitochondrial 
localized viral proteins enhance infection by promoting viral replication 
(Shi et al., 2014; Chen et al., 2007). 

Cells infected by SARS-CoV-2 exhibit a mitochondrial dysfunction 
with mitochondrial membrane depolarization, mitochondrial perme-
ability transition pore opening and increased release of reactive oxygen 
species (ROS) (Shang et al., 2022). Interestingly, the SARS-CoV-2 
membrane (M) protein would induce lung epithelial cells apoptosis by 
promoting the translocation of pro-apoptotic proteins into mitochondria 
(Yang et al., 2022). This would exacerbate the lung and other organs 
damage that characterizes the severe manifestation of COVID-19 (Mo 
et al., 2022; Costa et al., 2022). 

The clinical features of COVID-19 caused by SARS-CoV-2 range from 
an asymptomatic state to severe pneumonia and multiorgan dysfunction 
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with hospital admission (Zeng et al., 2021). The most severe cases would 
require respiratory support in the ICU and are at high risk of death. This 
heterogeneous symptoms might be partly explained by the individual’s 
hereditary susceptibility, and several nuclear-encoded genes have been 
associated with COVID-19 severity and death (COVID-19 Host Genetics 
Initiative, 2021; Wang et al., 2020). The mitochondria innate antioxi-
dant and immune capacities could also play a role in the susceptibility, 
and in this regard the mitochondrial DNA variants might serve as sus-
ceptibilty markers for severe COVID-19. Common mtDNA variants 
define the mtDNA haplogroups and have been related with different 
mitochondrial-mediated capacities, such as ROS and ATP production 
(Kenney et al., 2014; Kenney et al., 2014; Krzywanski et al., 2016). 
These mtDNA variants have been associated with the risk of developing 
common diseases and might also contribute to define the lifespan 
(Yonova-Doing et al., 2021). 

The effect of mtDNA variants on viral-mediated disease has been 
previously addressed. Among others, manifestations of AIDS, herpex, 
and COVID-19 could be regulated by the mtDNA variation (Hendrickson 
et al., 2008; Medrano et al., 2018; Hart et al., 2013; Levinson et al., 
20162016; Wu et al., 2021; Dirican et al., 2022). 

Here, we determined the association of the common European hap-
logroups with severe COVID-19 and death among SARS-CoV-2 infected. 

2. Patients and methods 

We obtained the demographic and clinical data of 316 patients who 
required admission in the intensive care unit (ICU) due to COVID-19 
(mean age 64, range 24–95). These patients were hospitalised be-
tween March-2020 and April-2021, period in which three pandemic 
waves took place in our community. They were followed till disease 
remission with hospital discharge or death. Following previously re-
ported criteria we considered early-onset COVID-19 as an age < 65 years 
(Gentilotti et al., 2021). 

All the participants were of European ancestry and from the region of 

Asturias (Northern Spain, total population 1 million). The study was 
approved by the Ethics Committee of Principado de Asturias (Oviedo, 
Spain). All the patients (or their next of kin) and controls gave their 
consent to participate in the study. The controls were recruited from the 
general population with the only purpose of defining the mtDNA variant 
frequencies, and no data about common traits or clinical manifestations 
were considered. Although we did not determine the existence of SARS- 
CoV-2 infection, none of the controls required hospitalization due to 
COVID-19. In order to avoid the posibility of age-bias we compared 
patients and controls within the same age-range. 

2.1. Haplogroups classification 

Five mtDNA single nucleotide polymorphisms (SNPs G4580A, 
C7028T, A12308G, G13368A, and G13708A) were used to determine 
the most common European mitochondrial haplogroups (see supple-
mentary file methods and the mitomap database for haplogroups defi-
nition; www.mitomap.org). Individuals who were 7028C were 
considered as haplogroup H, and 7028T were further classified as J, KU, 
T, V, IWX, or other based on the variants combinations (supplementary 
table). These were also genotyped for the T16223C that differentiates 
the macro-haplogroup R (16223C) from the ancestral macro-haplogroup 
N (16223T) (Fig. 1). 

2.2. Statistical analysis 

The statistical analysis was performed with the R free software 
(www.r-project.org). The logistic regression (linear generalized model, 
LGM) was used to compare mean values and frequencies between the 
groups. 

3. Results 

The main characteristics of the patients are summarised in Table 1. 

Fig. 1. Evolution of the common European hap-
logroups from the ancestral African L. N originated 
about 65,000 years ago and is the ancestral for the 
out-of-Africa haplogroups. The R lineage originated 
about 60,000 years ago in the Middle East and is 
characterised by several nucleotide changes, such as 
16223C. Most of the common European hap-
logroups derived from R, icluding the H lineage 
(7028C) that surged about 20,000 years ago in 
Southwest Asia and is currently present in 40–50 % 
of Europeans.   
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All the participants were first genotyped fro the C7028T that defines the 
most common European haplogroup H (7028C) (Table 2). 7028T pa-
tients had a significantly lower mean age than 7028C (63 vs 67 years; p 
= 0.002). We found a non-significantly higher frequency of the 7028T 
among the early-onset patients (≤65 years) compared to matched con-
trols (p = 0.11), and a significantly higher frequency compared to the 
elderly patients p = 0.01). This difference was not attributable to an age- 
effect in the general population because we did not find differences 
between controls younger or older than 65 years (47 % and 45 %, 
respectively). The mtDNA 7028C (haplogroup H) was thus protective for 
developing severe COVID-19 at an age ≤ 65. 

The 7028T were further genotyped for the mtDNA variants to 
determine the non-H haplogroups (J, KU, T, V, and WXI). We found a 
higher frequency of the IWX haplogroups in the patients compared to 
their age matched controls (p < 0.002, OR = 3.36, 95 %CI = 1.49–7.54). 
There was a significantly higher IWX frequency in the younger vs elderly 
patients (15 % vs 9 %, p = 0.03). Haplogroups frequencies were non 
significantly different between elderly patients and controls (Table 2). 
The IWX haplogroups are characterised by 16223T, that is the ancestral 
allele compared to the 16223C that characterises the macro-haplogroup 
R that rooted the main European haplogroups (Fig. 1). In our popula-
tion, 16223T was a marker for early-onset severe COVID-19 with fre-
quencies 15 % and 9 % in patients younger and older than 65 years, and 
mean ages of 57 years (16223T) and 66 years (16223C) (p = 0.006) 
(Fig. 2). 

We determined the association between the main cardiovascular 
traits and antropometric values and the mtDNA haplogroups. The mul-
tiple logistic regression including age as a covariate showed that none of 
the variables was associated with the mtDA variants in the whole cohort 
(supplementary table). The mtDNA variants were not associated with 
an increased risk of death, although the number of deceased patients in 
the younger group (n = 13) was too low to conclude statistical 
associations. 

4. Discussion 

The main finding of our study was the significant protective effect of 
the 7028C variant (haplogroup H) for early onset critical COVID-19. The 
risk effect of non-H haplogroups was further sttributed to an increased 
frequency of 16223T (haplogroups IWX) among the younger patients. 
The age-dependent association of nuclear gene variants with severe 
COVID-19 has been reported, including the main genetic risk factor in 
chromosome 3 (Nakanishi et al., 2021). 

The 16223T differentiates the ancestral R and non-R haplogroups, 
represented by the WXI that is rare among the Europeans. Interestingly 
these mtDNA variants were associated with risk of herpex virus disease 
(Levinson et al., 20162016). In a large cohort (n = 9,691) of Caucasian 
Herpex patients haplogroup H was protective (OR = 0.82;95 % CI =
0.71–0.94) whereas the IWX clade was a risk factor for herpes zoster 
status (OR = 1.38; 95 % CI = 1.07–1.77).In HIV infected patients hap-
logroup H was associated with alower chance of developing AIDS and 
higher odds of having a better CD4 + recovery than patients without this 
haplogroup (Medrano et al., 2018; Guzmán-Fulgencio et al., 2013). 
Haplogroup R (16223C) and H (7028C) were associated with a signifi-
cant protection against severe sepsis among Han Chinese an Europeans 
(Baudouin et al., 2005; Yang et al., 2008; Jiménez-Sousa et al., 2015). 
This sepsis-protective might confer a survival advantage for H-carriers, 
that could explain in part why H is the most common European hap-
logroup despite being the most recent. 

In reference to COVID-19, to our knowledge only one study afforded 
the association with common mtDNA variants (Wu et al., 2021). In this 
Chinese based case–control study the authors concluded that mtDNA 
variants defining common haplogroups might contribute to individual’s 
risk of developing severe COVID-19. This finding was in agreement with 
our results, but the data are difficult to compare because the different 
haplogroup profile between Chinese and European populations. Addi-
tional studies to characterise the whole mtDNA variation in individuals 
with the risk haplogroups should be necessary to determine whether 
these populations share particular functional variants that might explain 
the association with severe COVID-19. 

5. Study limitations 

Our study was based on a limited number of patients and from a 
single population, and requires validation in larger cohorts and from 
different regions. Also, the variants that defined the haplogroups were 
not functional and an explanation of the putative mechanism linking the 
mtDNA variants with severe COVID-19 is not provided, beyond the re-
ported difeerence in mitochondrial function between the different 
haplogroups (Kenney et al., 2014; Kenney et al., 2014; Krzywanski et al., 
2016). This would require a complete sequencing of the mtDNA in pa-
tients, as well as functional studies to determine the putative effect on 
the control of viral infection. 

6. Data availability statement 

The data that support the findings of this study are available from the 
corresponding author upon reasonable request. An Excel file with the 
raw data would be available for meta-analysis research. 

Table 1 
Main values in the 316 COVID-19 patients. PO2/FiO2 = ratio of arterial oxygen 
partial pressure (PaO2, mmHg) to fractional inspired oxygen (FiO2). Moderate/ 
severe hypoxemia, <300.   

≤65 years 
N ¼ 148 

>65 years 
N ¼ 168 

p-value 

Male 
Female 

104 (70 %)  
(30 %) 44 

125 (74 %)  
(26 %) 43  

0.41 

Age Median years 
(range) 

57 
(25–65) 

73 
(66–91)  

BMI median 
(range) 

29 (19–55) 31(19–53)  0.01 

BMI > 30 81 (41 %) 68 (55 %)  0.012 
Diabetes 20 (13 %) 44 (26 %)  0.005 
Hypercholesterolemia 51 (34 %) 91 (54 %)  0.0004 
Hypertension 57 (39 %) 115 (69 %)  <0.0001 
Death 13 (9 %) 54 (32 %)  <0.0001 
PO2/FiO2 < 300 26 (17 %) 34 (20 %)  0.43  

Table 2 
Frequency of the mtDNA variants in the ICU patients and population controls. 
All them were genotyped for the 7028 variant (C = haplogroup H). The 7028T 
were genotyped for the G4580A, A12308G, G13368A, G13708A, and C16223T 
variants to determine the common non-H haplogroups (see suppl. file methods).   

≤65 years >65 years  

Covid-19 
N = 148 

Controls 
N = 182 

Covid-19 
N = 168 

Controls 
N = 181 

7028C 57 (39 %) 86 (47 %) 88 (52 %) 82 (45 %) 
7028T 91 (61 %) 96 (53 %) 80 (48 %) 99 (55 %) 
p-value (T)OR  

(95 %CI) 
p = 0.11 
OR = 1.43 (0.92–2.22) 

p = 0.19 
OR = 0.75 (0.49–1-15) 

16223T 22 (15 %) 9 (5 %) 12 (8 %) 9 (5 %) 
16,223C 126 (85 %) 173 (95 %) 156 (92 %) 172 (95 %) 
p-value (T) OR (95 %CI) p = 0.002 OR = 3.36 

(1.49–7.54) 
p = 0.39 OR = 1.47 
(0.60–3.59) 

J 18 (12 %) 28(15 %) 12 (7 %) 17 (9 %) 
K þ U 32 (22 %) 47(26 %) 30 (18 %) 46 (25 %) 
T 6 (4 %) 7 (4 %) 17 (10 %) 19 (10 %) 
V 3 (2 %) 2 (1 %) 4(2 %) 6 (3 %) 
IWX 22 (15 %) 9(5 %) 12 (9 %) 9 (6 %) 
OTHER 10 (6 %) 3(2 %) 5 (2 %) 2 (2 %) 

patients ≤ 65 vs. > 65 years: C7028T, p = 0.01; C16223T, p = 0.03. 
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Jiménez-Sousa, M.A., Tamayo, E., Guzmán-Fulgencio, M., Heredia, M., Fernández- 
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