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Abstract: In order to create greener polyurethane (PUR) foams, modified used cooking oils (UCO)
were applied as starting resources for the synthesis of bio-polyols. The bio-polyols were produced
using transesterification of UCO with diethylene glycol (UCO_DEG) and triethanolamine (UCO_TEA).
Next, open-cell PUR foams were synthesized by replacing 20, 40, 60, 80 and 100% of the petrochemical
polyol with the bio-polyol UCO_DEG or UCO_TEA. It was observed that an increasing bio-polyol
content (up to 60%) led to an increase of the closed cell content. However, a further increase in the
bio-polyol content up to 100% resulted in foam cell opening. The bio-foams obtained in the experiment
had an apparent density of 13–18 kg/m3. The coefficient of thermal conductivity was determined
at three different average temperatures: 10, 0 and −10 ◦C. The PUR bio-foams modified with
bio-polyol UCO_TEA had lower values of thermal conductivity, regardless of the average temperature
(35.99–39.57 mW/m·K) than the foams modified with bio-polyol UCO_DEG (36.95–43.78 mW/m·K).
The compressive strength of most of the bio-foams was characterized by a higher value than the
compressive strength of the reference material (without bio-polyol). Finally, it was observed that the
bio-materials exhibited dimensional stability at 70 ◦C.

Keywords: green open-cell polyurethane foams; bio-polyols; modified used cooking oil; spray foams

1. Introduction

Spray polyurethane (PUR) foams are most distinguished by a high content of closed cells (>90%).
However, when an appropriate surfactant is used, cells can be opened in the foaming process and it is
possible to obtain foams with a significant open-cell share or even fully open-cell materials. In recent
years, an increase of interest in open-cell spray PUR foams has been observed [1]. The open-cell
structure of a material offers high moisture vapor permeability, which in turn allows for applications
of such foams in the attics of buildings. Open-cell PUR foams are also characterized by a lower
apparent density than closed-cell ones. Conventional commercial open-cell PUR systems are derived
from petrochemical raw materials. With people’s increasing awareness of the necessity to protect the
environment, it has become important to explore renewable raw materials. In the chemical industry,
a milestone in environmental protection was the introduction of the “green chemistry” idea in 1991
and one of its postulates is the implementation of renewable raw materials [2].

Several bio-renewable raw materials, such as natural oil and fillers, have drawn a lot of attention
in the context of PUR production [3–7]. However, when it comes to application potential, vegetable
oils are the most promising materials for the production of spraying PUR systems. Most vegetable oils,
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before being introduced into PUR systems, have to be modified in order to introduce hydroxyl groups.
One of the methods of vegetable oil functionalization is epoxidation of carbon-carbon double bonds and
subsequent oxirane ring-opening with proton donors [8]. The synthesis of bio-polyols using oxirane
ring opening is often associated with oligomerization reactions leading to high viscosity, secondary
hydroxyl groups (relatively low reactivity) and a low hydroxyl number of the final bio-polyols [9].
The synthesis method that offers bio-polyols with primary hydroxyl groups is transesterification of
natural oil using different polyfunctional alcohols or amines [10,11].

Studies concerning closed-cell polyurethane foams modified with bio-polyols have shown that
there are still challenges to produce these materials. When the share of polyol coming from vegetable
oil reaches 100%, the foam properties are worse than those of the materials prepared using a mix of
petroleum–based raw materials [9,12,13]. So far, the effect of the bio-polyol content on the characteristics
of open-cell PUR foams having an apparent density of less than 20 kg/m3 has not been analyzed by
other research groups. In our earlier work we analyzed the influence of bio-polyols originating from
municipal waste with different hydroxyl values (140 and 159 mgKOH/g) and viscosities (3275 and
961 mPa·s) on the properties of open-cell PUR foams with apparent densities in the range of 12–17 kg/m3.
The bio-polyols derived from municipal waste were made by epoxidation and ring-opening reactions
with diethylene glycol. It was concluded that despite a clear difference between the properties of the
synthesis components, the characteristics of the final open-cell polyurethane foams are alike [1].

It has been demonstrated that waste oil can be a valuable feedstock in the synthesis of polymeric
materials, including polyurethanes [14–16]. Zhang and al. reported on the influence of liquefied
products of peanut shell prepared in different conditions on the properties of open-cell PUR foams.
The materials analyzed in their work had an apparent density of ca. 80 kg/m3 and were dedicated to
be applied as floral foams [17].

In the literature, the effect of the chemical structure of bio-polyols obtained using transesterification
of waste oil on the cell structure and properties of low-density (<20 kg/m3) open-cell PUR foams has
not been described. Therefore, this work investigates the effect of the bio-polyol type and content in a
PUR system on the properties of semi-rigid open-cell foams with a very low apparent density.

2. Materials and Methods

2.1. Foam Formulation

Rigid PUR foams were made using polyol Rokopol 551 (oxypropylenated sorbitol, PCC Rokita,
Brzeg Dolny, Poland), which was substituted to some extent by the bio-polyols based on waste oil
(UCO_TEA or UCO_DEG). Characteristics of the bio-polyols, GPC chromatograms and FTIR spectra
are shown in Table 1 and Figure 1.

Table 1. Characteristics of the bio-polyols and petrochemical polyol.

Properties UCO_TEA UCO_DEG Rokopol 551

Hydroxyl value, mgKOH/g 348 277 420
Acid value, mgKOH/g 2.31 1.35 0.10
Water content, % mas. 0.05 0.13 0.10

Average molecular weight, g/mol 522 492 ~600
Viscosity, mPa·s 182 56 3000–5000

Functionality ~2.2 ~1.9 ~4.5
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Figure 1. GPC chromatograms (a) and FTIR spectra (b) of bio-polyols.

The bio-originating polyols were synthesized from used cooking oil following the transesterification
method with diethanolamine (UCO_TEA) and diethylene glycol (UCO_DEG) at Cracow University of
Technology. The reagents were introduced with a molar ratio of 1:3 (waste oil: transesterification agent).
The reaction was carried out at a temperature of 175 ◦C and the catalyst content (zinc acetate) was
0.3 wt.%. The reaction product consists of monoglycerides, diglycerides and triglycerides (Figure 1a).
Used cooking oil was amassed from restaurants. The GPC (, Warsaw, Poland) -based chromatograms
showed characteristic peaks of triglycerides (26 min), diglycerides (27 min) and monoglycerides
(29 min). Additionally, the FTIR (Perkin Elmer, Waltham, MA, USA) analysis attested to the chemical
structure of the bio-polyols. The broad band at 3340–3390 cm−1 corresponded to free hydroxyl groups
in the polyols (Figure 1b). PCC Rokita SA provided petrochemical polyether polyol, and the hydroxyl
value of this material was 440 mgKOH/g.Polymeric methylene diphenyldiisocyanate (Ongronat 2100),
with a free isocyanate groups content of 31.5 wt%, was offered by Borschodchem. Evonik supplied
catalysts for the foaming (dimethylaminoethoxyethanol) and gelling (dibutyltin dilaurate) reactions
and also a surfactant. The reaction of water with isocyanate groups generated carbon dioxide, which
served as a chemical blowing agent. The content and isocyanate index of each component are shown
in Table 2.

Table 2. Formulations of foams.

Raw Materials, g REF OPU_DEG_20
OPU_TEA_20

OPU_DEG_40
OPU_TEA_40

OPU_DEG_60
OPU_TEA_60

OPU_DEG_80
OPU_TEA_80

OPU_DEG_100
OPU_TEA_100

Rokopol 551 100 80 60 40 20 0
Bio-polyol

UCO_DEG or
UCO_TEA

0 20 40 60 80 100

Polycat 218 4 4 4 4 4 4
Tegostab8870 4.5 4.5 4.5 4.5 4.5 4.5
Ortegol 500 0.5 0.5 0.5 0.5 0.5 0.5

Water 15 15 15 15 15 15

Ongronat 2100 332
323.4 314.8 306.4 297.8 289.3
328.1 324.2 320.3 316.4 312.4

2.2. Preparation of Samples

PUR foams containing bio-polyol UCO_TEA or UCO_DEG in various amounts were produced
following a one-step method from components A and B. The mixture of polyols, amine catalyst,
surfactant and water was mechanically stirred for 15 s until their full homogenization was reached. Next,
a certain amount of isocyanate (component B) was introduced into the polyol premix (component A) so
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that the molar ratio of the NCO to OH groups was 1:1. Then, the system was mechanically mixed for
3 s and poured into an open mold. The resultant foams were conditioned for 24 h at room temperature.
The sample names were coded as OPU_TEA_X or OPU_DEG_X, where X means the amount of the
bio-polyol in the polyol premix (per hundred polyol).

2.3. Characterization of Bio-Polyols, Foaming Process and Foam Properties

The contents of hydroxyl and acid groups were found as recommended by the PN-93/C-89052/03
and PN-EN ISO 660:2009 standards, respectively. A GPC analysis was carried out to determine
the number and weight average molecular weight as well as dispersity. A Knauer chromatograph
equipped with a PLgel MIXED-E column and also a refractometric detector were applied in the analysis
of oligomers. A rotational rheometer HAAKE MARS III (Thermo Scientific, Waltham, MA, USA) was
used at a temperature of 25 ◦C to find viscosity. In this case, the plate-plate arrangement in the control
rate mode was selected, with 20 mm-diameter plates and rotation speeds of 100 cycles per minute.
The PN-81/C04959 standard was followed to find the content of water in the bio-polyols.

The foaming process was analyzed using FOAMAT (Format Messtechnik GmbH, Karlsruhe,
Germany)—a foam qualification system. This system can determine the most important parameters:
dielectric polarization, temperature, pressure and foam growth velocities. Temperature was measured
by means of thin thermocouples. A foam pressure measurement device was applied to observe
changes of pressure. Dielectric polarization was investigated using a curing monitor device (CMD,
Format Messtechnik GmbH, Karlsruhe, Germany). The device gives an insight into the electrochemical
processes occurring in foam formation. Dielectric polarization reflects the conversion degree of
functional groups during a PUR formation. A scanning electron microscope (HITACHI TM3000,
Tokyo, Japan) and optical microscope (PZO, Warsaw, Poland) revealed the morphology of cells. Image
analysis was done thanks to a dedicated piece of software AphelionTM (Version 3.1). The content
of closed cells in the foams was determined in accordance with the ISO 4590 standard, whereas the
apparent density was in line with PN-EN ISO 845. The thermal conductivity coefficients were found
using a Fox 200 laser comp heat flow instrument (New Castle, DE, USA). The temperatures of the cold
plate were −10, 0 and 10 ◦C while the temperatures of the warm plate were chosen to be 10, 20 and
30 ◦C to achieve average temperatures of 0, 10 and 20 ◦C, respectively, and a constant temperature
difference of 20 ◦C between the plates. The compressive strength was found in line with PN-EN 826.
The compressive force was applied at a speed of 2 mm/s, axially in a normal direction to a square surface.
The compressive stress was calculated at 10% deformation. The mechanical properties of the foams
were investigated parallel (pa) and perpendicular (pe) to the foam rise direction. Measurements were
carried out on five samples. The dimensional stability was calculated using the formula recommended
in the PN-92/C-89083 standard. The dimensional stability of the PUR foams was tested 24 h after
sample conditioning at +70 ◦C and −25 ◦C.

3. Results and Discussion

Foaming is the most important stage during PUR foam preparation. The reaction mixture
during this process increases its volume several dozen times and the polymer matrix in the foamed
bio-materials described in this paper constitutes ca. 1–1.5 vol.%.

Appropriate timing of the gelling and foaming reactions determines the formation of a regular cell
structure that affects mechanical and thermal insulating properties of foams. Composing new systems
based on renewable raw materials requires a detailed analysis of the influence of bio-components on
foaming. FOAMAT allows one to follow the reaction and how it is affected by bio-polyols. The foaming
parameters are measured in a cylindrical container placed on a foam pressure measurement device
containing a built-in dielectric polarization sensor. Dielectric polarization is a key value in measuring
chain formation and cross-linking of PUR foams. A dielectric polarization sensor is made of two comb
shaped electrodes forming a plane capacitor. This sensor is integrated with a pressure measurement
device located in the base plate on which the polyurethane system is poured. The expanding foam
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provides close contact with the sensor, which ensures direct penetration of the electric fringe field. Changes
in the dielectric polarization are directly connected with the capacity of the sensor. The dielectric
polarization is generated by dipole moments of molecules with bipolar structures (OH groups of
polyols, NCO groups of isocyanates). The chain formation and cross-linking reaction ultimately
suppress dipole mobility. The dielectric polarization tracks the formation of intermediates like amines
and polyurea before they are bonded to the PUR matrix, as well as the final foam curing visible as
a low, stable signal. Figure 2 shows the effect of a different content of bio-polyol UCO_DEG (a) and
UCO_TEA (b) on the dielectric polarization (a,b), temperature (c,d) and pressure (e,f) in the foaming
process of the PUR systems in our experiment.
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Figure 2. Bio-polyols UCO_DEG and UCO_TEA with different contents and their influence on on
dielectric polarization (a,b), temperature (c,d) and pressure (e,f) of reaction mixtures.

Based on the decrease of the dielectric polarization of the reactions, it was concluded that
independently of the bio-polyol UCO_DEG content, the reactivity of the PUR system is comparable.
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In the case of the PUR system modified with bio-polyol UCO_TEA, higher reactivity was observed for
systems OPU_TEA_60 and OPU_TEA_100. In our previous work, we showed that PUR systems derived
from bio-polyol with triethanolamine are characterized by higher reactivity due to the presence of
nitrogen atoms. The PUR foams had a closed-cell structure and apparent density of about 37 kg/m3 [18].
It can be concluded that the reactivity of a PUR system is not affected by the type of foams (open- or
closed cell) or their apparent density. In the system modified with bio-polyol UCO_DEG, the reactivity
was similar to that of the reference system and this may be an effect of primary hydroxyl groups in the
bio-polyol structure. In our earlier work, basd on a measurement of dielectric polarization, we showed
that bio-polyols containing secondary hydroxyl groups caused a decrease of the reactivity of most
PUR systems [1,18,19]. However, an opposite effect was described in one article [20]. The application
of bio-polyol with secondary hydroxyl groups made the foaming and gelation reactions faster than
in the reference material. However, this unexpected effect could be related to higher viscosity of the
bio-polyol used [20].

The PUR formation reactions are highly exothermic. The rate of temperature rise determines the
reactivity of PUR systems [21]. The temperature in the reaction mixture core is measured be placing a
thermocouple in the lower part of a mold (in practice one third of the final height of the foam). All the
modified systems were characterized by a higher maximum temperature than the reference PUR
system during the foaming process and it could also be correlated with higher pressure during their
expansion. The trapped blowing agents are heated which causes the gas pressure to increase, creating
stresses inside the foam. The stress of the expanding foam loads the bottom of the cylinder where
the applied force is measured by a pressure sensor. The course of the foaming process has a strong
influence on the foams cellular structure, especially in the materials with apparent densities lower
than 20 kg/m3. In Figure 3, SEM images of the PUR cellular structure are shown. Figure 4 presents the
influence of the bio-polyol type and content on the average cell diameter (a) and closed cell content (b).
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Figure 4. Equivalent diameter (a) and closed cell content (b) of bio-foams altered with bio-polyols in
different amounts.

The content of closed cells and their size have a noticeable impact on the thermal insulation
and mechanical properties of the foams. The replacement of petrochemical polyols, regardless of
their content, led to a decrease of the cell size of the bio-foams as compared to the reference material.
It was observed that the foams produced with bio-polyol UCO_TEA had a lower value of the cell
diameter. This effect can be related with a more branched structure of bio-polyol UCO_TEA and a
higher reactivity of the PUR system modified with this bio-polyol. Bio-polyols based on natural oil
can also act as plasticizers of a PUR matrix due to the presence of dangling chains in their structure.
Such an effect is described in the literature for closed-cell PUR foams [22,23]. However, in this paper it
was shown that such an effect was also observed for open-cell PUR foams.

Interesting results were obtained as far as the closed cell content of the bio-foams is concerned.
A tendency to create closed cells was noticed for the systems modified with the bio-polyols in an
amount of 20, 40 and 60%. When the bio-polyol content reached 80% in the PUR system, the cells again
exhibited a tendency to open. The OPU_TEA_100 material was characterized by an open-cell structure
(closed cell content <5%). This effect may be connected to the cross-linking time, phase separation
which induced weakness in the polymer membranes between pores and the time of peak pressure
(Figure 5).
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Figure 5. Time of max pressure occurrence and curing time of polyurethane (PUR) systems.

Curing time is evaluated from the dielectric polarization curve. It was found that in the case of
the materials with a 60% content of the bio-polyol in the premix (regardless of its type), the greatest
difference between these times was observed (Figure 5). The time of curing was significantly shorter
compared to the time of maximum pressure, which made it difficult to open the cells in the cross-linked
foam. However, in the case of the reference foam this effect was not observed. This may be due to the
irregular cellular structure (large cells), which caused inaccurate adherence to the measuring device.
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The content of closed cells, alongside other important properties, significantly affects the thermal
conductivity coefficient of PUR foams. In general, the heat transport mechanism in porous materials
is complex. The total thermal conductivity of foams is constituted by contributions from gas cells,
the polymer matrix and the radiative heat transfer within the foam, which are not additive. In the
case of an open-cell foam, the gas present in cells is air. Moreover, the convection of gases in porous
PUR materials with an open-cell structure is high, in contrast to closed-cell foams [24]. The thermal
conductivity of open-cell PUR foams is in the range 0.037–0.039 W/(m·K) [1]. In Table 3, the thermal
conductivities of the reference foams and the foams built on cooking oil-based polyols are shown.

Table 3. Coefficients of thermal conductivity of foams.

Symbol
Coefficient of Thermal Conductivity Measured at Average Temperature, mW/m·K:

0 ◦C 10 ◦C 20 ◦C

REF 41.35 ±0.17 43.90 ±0.16 45.83 ±0.57
OPU_DEG_20 36.95 ±0.16 38.95 ±0.50 40.05 ±0.12
OPU_DEG_40 42.38 ±0.63 43.60 ±4.97 44.28 ±1.52
OPU_DEG_60 37.93 ±0.62 39.76 ±0.23 41.62 ±1.40
OPU_DEG_80 38.47 ±0.32 40.16 ±0.70 42.62 ±0.78
OPU_DEG_100 39.15 ±0.44 41.34 ±0.58 43.17 ±0.44
OPU_TEA_20 35.99 ±1.62 37.63 ±1.90 39.98 ±2.05
OPU_TEA_40 36.00 ±0.46 37.96 ±1.06 39.93 ±0.74
OPU_TEA_60 37.25 ±1.50 39.57 ±0.80 41.68 ±0.72
OPU_TEA_80 37.18 ±0.24 39.02 ±0.43 41.61 ±0.31

OPU_TEA_100 37.15 ±1.41 39.06 ±1.31 40.44 ±1.22

The thermal conductivity depends strongly on the average temperature of the measurement.
The higher the temperature, the higher the conductivity coefficient. Generally, producers of PUR
foams provide the value of the thermal conductivity coefficient at an average temperature of 10 ◦C.
All the foams modified with the UCO_TEA bio-polyol have thermal conductivity values comparable
to those of commercial foams [3]. This is associated with the cellular structure of the foams based
on bio-polyol UCO_TEA, which is characterized by a low equivalent cell diameter. In this work,
it was confirmed that the reduction of the cell diameter reduced the thermal conductivity of open-cell
foams. Until now, such a relationship has been described in the literature for closed-cell foams [25].
Piszczyk et al. concluded that a change in the pore diameter from 0.25 to 0.6 mm increases the value of
thermal conductivity coefficient by almost 50% [24]. It was also observed that material OPU_DEG_40
had the highest coefficient of thermal conductivity. This effect is a result of a disturbance in the foam
structure probably due to the addition of this bio-polyol. A similar disturbance was also observed
in the case of the material modified with 20% of the OPU_DEG bio-polyol. Such effects could be
caused by insufficient miscibility of the polyols used in the polyol premix. The more favorable thermal
conductivity coefficient for the OPU_DEG_20 foam compared to the OPU_DEG_40 foam, despite the
disturbances in the foam structure, resulted from the methodology of measuring the heat conductivity
coefficient. The measurement was performed on the central surface of the material (as marked with
a red square) and resulted from the specificity of the device used (Figure 6). In the case of the
UCO_DEG_20 foam, despite the defects, the thermal conductivity coefficient had a favorable value
due to the regular structure in the middle of the material. However, in UCO_DEG_40, the defect
was within the measurement area in two out of the three foams, hence the much higher value of the
standard deviation.
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Figure 6. Photographs of PUR samples OPU_DEG_20 (a) and OPU_DEG_40 (b).

According to the literature, the compressive strength of closed-cell PUR foams is strictly correlated
with their apparent density. Such a relationship is described in the literature for foams characterized
by an apparent density > 35 kg/m3 [18,26,27]. However, the literature results indicate that the cellular
structure and closed cell content of PUR foams also have a significant influence on their mechanical
strength. Hejna et al. concluded that incorporation of bio-polyol produced by polymerization of crude
glycerol and further condensation with castor oil led to an increase of the foam compressive strength,
despite a decrease of the apparent density. It is caused by a reduction of the average cell size from
372 to 275 um [27].

In PUR foams the value of the compressive strength in a direction perpendicular to the foam rise
direction is lower than in a parallel direction. This difference comes from the cell anisotropy and it
is characteristic for closed and open-cell foams. The elongation of cells in the compression direction
improves the mechanical properties, but causes a deterioration perpendicularly. In Figure 7, the influence
is shown of the bio-polyol content on the apparent density (a) and compressive strength (b).
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Figure 7. Influence of bio-polyols and their content on apparent density (a) and compressive strength
(b) of modified foams.

The compressive strength of commercial open-cell PUR foams is about 10 kPa. The low compressive
strength results from the foam apparent density which is in the range of 7–14 kg/m3 [28]. The cell
structure has a key influence on the mechanical properties. The size of the cells as well as their type
(open or closed) is important. Figure 7b shows the change in compressive strength for the foams
modified with the bio-polyols. It is shown that the tendency of the changes in the compressive strength
was comparable with the changes in the case of the results of the closed cell content. The more closed
cells there were, the higher the compressive strength became. The compressive strength of the porous
materials containing the bio-polyols was higher than that of the reference material for most of the
modified foams despite their lower apparent density.
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The mechanical properties were normalized to an average PUR foam apparent density of
16 kg/m3 (σnorm) according to the equation of Hawkins [29] in order to be able to compare their values.
The equation for normalized compressive strength calculation is presented below:

σnorm = σexp

(
σnorm

σsample

)2.1

where σexp is the experimentally determined compressive strength and σsample is the PUR sample
apparent density. The normalized compressive strength was calculated in directions parallel and
perpendicular to the foaming rise direction (Figure 8).Materials 2020, 13, x FOR PEER REVIEW 10 of 13 
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Figure 8. Normalized compression strength of PUR foams.

On the basis of the normalized values of the compressive strength, it can be stated that when the
petrochemical polyol was replaced with either type of bio-polyol, a beneficial effect was observed.
An increase of the compressive strength was observed especially for the samples modified with 40–60%
of the OPU_TEA bio-polyol. However, if the mechanical properties were measured in a more critical
direction (perpendicular to the foam rise direction) the most favorable properties were obtained
for the materials modified with 100% of the UCO_DEG bio-polyols. The mechanical properties
perpendicular to the foam growth direction are very important due to their close correlation with the
foam’s dimensional stability.

Despite the low values of the apparent density and compressive strength of the foams, the results
obtained for the dimensional stability at elevated (70 ◦C) and low (−25 ◦C) temperatures were
satisfactory (Table 4).

Table 4. Dimensional stability of foams measured at 70 ◦C and −25 ◦C.

Symbol
Dimensional Stability at 70 ◦C after 24 h/48 h, % Dimensional Stability at −25 ◦C after 24 h/48 h, %

Length Width Thickness Length Width Thickness

REF −0.15/0.12 −0.46/0.50 −0.52/0.04 −0.04/−0.34 0.07/−0.15 0.07/−0.97
OPU_DEG_20 0.22/0.24 0.51/0.30 0.49/0.46 0. 40/−0.01 0.07/−0.29 0.05/−0.68
OPU_DEG_40 0.37/0.33 0.33/0.24 0.69/0.43 0.03/−0.18 −0.07/−0.16 −0.20/−0.66
OPU_DEG_60 0.39/0.28 0.38/0.35 −0.30/−0.17 0.15/−0.04 −0.08/−0.24 −0.09/−0.60
OPU_DEG_80 0.61/0.56 0.45/0.22 0.34/0.07 −0.07/−0.26 −0.13/−0.22 −0.76/−1.26
OPU_DEG_100 −0.10/−0.25 0.12/−0.09 0.39/0.29 −0.06/−0.01 −0.11/−0.22 −0.40/−0.15
OPU_TEA_20 −0.48/−0.76 0.30/0.19 0.49/−0.06 0.04/−0.02 0.26/0.10 0.79/0.86
OPU_TEA_40 0.14/−0.06 0.12/−0.15 0.60/0.01 0.09/0.01 0.11/0.00 0.37/0.04
OPU_TEA_60 0.89/0.97 0.30/0.16 0.90/0.86 0.12/−0.01 0.13/0.09 0.28/0.22
OPU_TEA_80 0.16/−0.06 0.12/−0.10 −0.01/−0.42 −0.11/−0.15 0.02/−0.10 −0.12/0.14

OPU_TEA _100 1.46/1.36 1.37/1.29 1.65/1.47 −0.19/−0.42 −0.15/−0.29 −0.41/−0.42
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The size changes were lower than 1.5% regardless of the measurement direction. For the
open-cell foams, the difference between the internal cell gas pressure within the foam and the external
atmospheric pressure was zero and the dimensional stability problem is avoided. That was why,
open-cell polyurethane foams can have a very low apparent density without shrinkage problems.
Such a property makes them suitable for application as thermal insulation materials.

4. Conclusions

The objective of this work was to analyze the effect of bio-polyols made from waste cooking
oil with different chemical structures on the properties of PUR foams. The foams were prepared by
replacement of 20, 40, 60, 80 and 100% of a petrochemical polyol with the bio-polyols. It was found
that the bio-polyol (regardless of its type) had a strong effect on the foam structure. An increase
of the bio-polyol content (up to 60%) led to an increase of the closed cell content, yet, on the other
hand, a further increase in the bio-polyol content (up to 100%) resulted in cell opening in the foams.
The PUR foams had apparent densities from 13 to 18 kg/m3, depending on the weight ratio of the used
cooking oil-based polyol. The thermal conductivity of the PUR materials ranged between 35.99 and
43.78 mW/m·K proportionally to the concentration of the bio-polyol.

The PUR bio-foams altered with bio-polyol UCO_TEA exhibited lower values of thermal
conductivity. The modification with the bio-polyols had no clear effect on the dimensional stability of
the PUR foams. The satisfactory results for the PUR foams with a high content of the bio-polyols show
that waste cooking oil may serve as a valuable raw material in the synthesis of bio-polyols and can be
successfully applied in the preparation of open-cell PUR foams.
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