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Abstract Leukemia stem cells (LSCs) are regarded as the origins and key therapeutic targets of

leukemia, but limited knowledge is available on the key determinants of LSC ‘stemness’. Using

single-cell RNA-seq analysis, we identify a master regulator, SPI1, the LSC-specific expression of

which determines the molecular signature and activity of LSCs in the murine Pten-null T-ALL model.

Although initiated by PTEN-controlled b-catenin activation, Spi1 expression and LSC ‘stemness’ are

maintained by a b-catenin-SPI1-HAVCR2 regulatory circuit independent of the leukemogenic driver

mutation. Perturbing any component of this circuit either genetically or pharmacologically can

prevent LSC formation or eliminate existing LSCs. LSCs lose their ‘stemness’ when Spi1 expression

is silenced by DNA methylation, but Spi1 expression can be reactivated by 5-AZ treatment.

Importantly, similar regulatory mechanisms may be also present in human T-ALL.

DOI: https://doi.org/10.7554/eLife.38314.001

Introduction
Acute T cell lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy caused by

the accumulation of genetic mutations and altered signaling pathways that affect normal T cell

development (Belver and Ferrando, 2016; Ferrando and López-Otı́n, 2017; Girardi et al., 2017).

Current treatment for T-ALL includes high-intensity combination chemotherapies. However, such

treatment may cause short- and long-term side effects, and up to 20% of pediatric and 40% of adult

T-ALL patients relapse (Atak et al., 2013; Girardi et al., 2017). Leukemia stem cells (LSCs) are con-

sidered to be one of the main causes of drug resistance and therapeutic relapse (Batlle and Clevers,

2017; Blackburn et al., 2014; Chiu et al., 2010; Visvader, 2011). Like hematopoietic stem cells,

LSCs can self-renew and differentiate into leukemic blast cells (Bonnet and Dick, 1997; Reya et al.,

2001), which makes them ideal candidates for high-efficiency and low-toxicity targeted therapies.

However, many questions related to the control mechanisms of LSCs and cancer stem cells (CSCs) in

general remain unanswered.

One question is how CSCs maintain ‘stemness’. Although many driver mutations and dysregu-

lated pathways have been identified in cancers, these are unlikely to be the only mechanisms that

maintain CSC ‘stemness’, since the same driver mutations or dysregulated pathways are also present

in most cancer cells. One good example is the Pten-null T-ALL model that we have generated by the

conditional deletion of the Pten tumor suppressor gene in fetal liver hematopoietic stem
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cells (Guo et al., 2008). In this model, LSCs are enriched in the Lin-CD3+KITmid cell subpopulation;

these cells are self-renewable and responsible for T-ALL initiation and drug resistance (Guo et al.,

2008; Guo et al., 2011; Schubbert et al., 2014). However, since both LSC-enriched and leukemic

blast subpopulations share similar genetic alterations, including Pten loss and Tcra/d-Myc transloca-

tion (Guo et al., 2008), these driver mutations are unlikely to determine LSC ‘stemness’. Further-

more, treating the Pten-null T-ALL model with PI3K inhibitors is effective only before the onset of

leukemia, not after leukemia is already underway (Guo et al., 2011; Schubbert et al., 2014), sug-

gesting that this driver mutation is not responsible for the maintenance of LSC ‘stemness’ once it

has been generated.

A related question is how CSCs lose ‘stemness’ and whether this process is unidirectional or

reversible. Such plasticity or reversibility may contribute to some of the conflicting results in the liter-

ature regarding the nature and frequency of CSCs (Batlle and Clevers, 2017). As small-molecule

inhibitors of epigenetic modifiers have been developed and applied to cancer treatments

(Topper et al., 2017), understanding the nature of CSC maintenance may bear important clinical

implications.

Using the Pten-null T-ALL model, we identify a master regulator, SPI1, and a b-catenin-SPI1-

HAVCR2 regulatory circuit that are responsible for LSC ‘stemness’ maintenance. This ‘stemness’

maintenance circuit is initiated by the leukemogenic driver mutations, that is, PTEN loss and PI3K-

mediated b-catenin activation, but after it is formed, it becomes independent of the driver mutation

and the associated PI3K pathway. Furthermore, SPI1’s LSC-specific expression is silenced by DNA

methylation, resulting in the loss of LSC ‘stemness’. Our study also provides the fate mapping of leu-

kemia development from LSCs to leukemic blasts at single-cell resolution and identifies potential

novel targets for LSC-mediated therapies.

Results

Redefine heterogeneous LSCs at single-cell resolution
We reported previously that the LSC-enriched Lin-CD3+KITmid subpopulation in the Pten-null T-ALL

model contains heterogeneous cells, of which 30% are MYC low, rapamycin- and JQ1 (a BRD4 inhibi-

tor)-resistant, and relatively quiescent in terms of cell cycle (Guo et al., 2008; Schubbert et al.,

2014) (Figure 1—figure supplement 1A). To further define this heterogeneous subpopulation, we

isolated LSC-enriched and blast subpopulations for RNA-seq analysis (Figure 1—figure supplement

1B, upper panel) and identified one module with a LSChigh-Blast0 expression pattern by Weighted

Gene Co-expression Network Analysis (WGCNA) (Zhang and Horvath, 2005) (Figure 1A, yellow

module). Approximately, 45% of the genes in this module encode membrane proteins such as

Havcr2 (HAVCR2) and Itgax (ITGAX) (Figure 1B–C). Although Havcr2 and Itgax are only expressed in

the LSC-enriched subpopulation, the expression levels of these genes vary among different isolates

(Figure 1C), which may reflect the heterogeneity of the LSC-enriched subpopulation. The cell surface

expression of HAVCR2 and ITGAX, as measured by FACS analysis, are highly correlated and can fur-

ther separate the previously identified Lin-CD3+KITmid LSC-enriched subpopulation into several sub-

groups (Figure 1D, upper panel), among which the HAVCR2high or HAVCR2high ITGAXhigh

subgroups are most abundant in the thymus, the critical organ for T cell development and T-ALL ini-

tiation (Guo et al., 2008;Guo et al., 2011) (Figure 1D, lower panel).

To determine whether these heterogeneous groups are organized hierarchically from LSCs to

blasts during T-ALL development, we conducted single-cell RNA-seq analysis and identified four

subgroups (Figure 1E; Figure 1—figure supplement 1B, lower panel; Figure 1—figure supple-

ment 2). Pseudotime analysis (Trapnell et al., 2014) further indicates that LSCs follow a continuous

developmental path towards blasts, progressing from HAVCR2high through HAVCR2mid and

HAVCR2low to blasts (Figure 1F), which can also be visualized by pseudotime analysis of Havcr2 and

Itgax expression (Figure 1G). Collectively, these results confirm the heterogeneity of the previously

identified LSC-enriched subpopulation and provide fate mapping of LSC differentiation into blasts

at single-cell resolution.
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Figure 1. HAVCR2 redefines a heterogeneous LSC-enriched subpopulation at single-cell resolution (A) WGCNA analysis for the bulk RNA-seq of LSC-

enriched and leukemic blast subpopulations. The yellow module contains 220 genes that are preferentially expressed in the LSC-enriched

subpopulation (LSChigh-Blast0); (B) Gene Ontology (GO) analysis of LSC-enriched genes in the yellow module; (C) Havcr2 and Itgax are specifically

expressed in LSC-enriched (red) but not in leukemic blast (blue) subpopulations isolated from the indicated hematopoietic organs of M1-M4 Pten-null

Figure 1 continued on next page
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The HAVCR2high subgroup contains the vast majority of LSC activity
Single-cell transcriptome analysis indicates that the HAVCR2high subgroup is enriched in the hemato-

poietic stem cell/late progenitor pathways and is relatively quiescent, while the blast subpopulation

is enriched in Myc lymphoma pathways and active in the cell cycle (Figure 2A). Consistent with this

observation, the HAVCR2high subgroup also has the lowest c-MYC level among the four subgroups

(Figure 2B), suggesting that the HAVCR2high subgroup may contain the MYClow cells within the

Figure 1 continued

T-ALL mice; (D) Upper panel: FACS plots are overlaid to show the differential expression of HAVCR2 and ITGAX in the LSC and blast subpopulations.

The previously defined Lin-CD3+KITmid LSC-enriched subpopulation (in the red box in the left panel) can be further separated into several subgroups

based on the expression of the cell-surface markers HAVCR2 and ITGAX. The Lin-CD3+KIT- leukemic blast subpopulation (in the blue box in the left

panel) does not express HAVCR2 or ITGAX. Lower panel: Quantitative measurement of the HAVCR2high, HAVCR2mid and HAVCR2low subgroups in

different hematopoietic organs from Pten-null T-ALL mice (n = 5; *, p<0.05). The HAVCR2high subgroup is enriched in the thymus; (E) PCA analysis of

the single-cell transcriptome shows four subgroups, labeled in different colors. Cells from two independent mice are indicated by different shapes; (F)

Pseudotime analysis shows the expression profiles of T-ALL cells in 2-D component space. The solid black line shows the main differentiation path from

HAVCR2high (purple) to blasts (dark green); (G) Pseudotemporal ordering of single cells based on Havcr2 or Itgax expression.BM: bone marrow.

DOI: https://doi.org/10.7554/eLife.38314.002

The following figure supplements are available for figure 1:

Figure supplement 1. A schematic illustration of procedures used for Bulk and single cell RNAseq analysis.

DOI: https://doi.org/10.7554/eLife.38314.003

Figure supplement 2. Quality control of single cell RNAseq analysis.

DOI: https://doi.org/10.7554/eLife.38314.004

Figure 2. Cells in the HAVCR2high subgroup are in a quiescent cell cycle state. (A) Left panel: GSEA analysis shows signaling pathways enriched in the

HAVCR2high and blast subpopulations. Right panel: Percentage of cells in each phase of the cell cycle based on single-cell RNA-seq; (B) Intracellular

FACS analyses of MYC levels in the HAVCR2high,HAVCR2mid, HAVCR2low and blast subgroups. Gray line: isotype control.

DOI: https://doi.org/10.7554/eLife.38314.005
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previously defined Lin-CD3+KITmid LSC-enriched subpopulation (Guo et al., 2008; Schubbert et al.,

2014).

To determine whether HAVCR2high cells are true LSCs, we performed limiting dilution and bone

marrow transplantation analyses using 10 to 1000 bone marrow cells from the Lin-CD3+KITmid,

Lin-CD3+KITmidHAVCR2high, and Lin-CD3+KITmidHAVCR2low subgroups (Figure 3A). Cells from the

HAVCR2high subgroup have the highest leukemia-initiating capacity—nearly every Lin-CD3+-

KITmidHAVCR2high cell is capable of inducing T-ALL development, compared to 1/14 of the cells in

the Lin-CD3+KITmid subgroup and 1/28 of the cells in the Lin-CD3+KITmidHAVCR2low subgroup

(Figure 3B). Consistent with these findings, cells from the HAVCR2high subgroup can also induce

Figure 3. The HAVCR2high subgroup contains the vast majority of LSC activity. (A) Schematic illustrating the cell isolation, limiting dilution and

transplantation procedures used for testing LSC activity as described in Guo et al. (Guo et al., 2008); (B) LSC frequencies were calculated for each

subgroup according to Hu et al. (Hu and Smyth, 2009);(C) Survival curves showing LSC activity in each of the sorted subgroups upon transplantation

(n = 4). Student’s t-test was used to calculate the p-value.

DOI: https://doi.org/10.7554/eLife.38314.007
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T-ALL lethality much earlier than cells from the other two subgroups (Figure 3C). Thus, HAVCR2 is a

novel surface marker for the isolation of pure LSCs, and the HAVCR2high subgroup represents the

true LSC population in the Pten-null T-ALL model (Table 1).

SPI1 is the master regulator of LSC signature genes
The identification of HAVCR2high cells as the true LSC population allows us to define the key deter-

minant for LSC ‘stemness’. We used network component analysis (Tran et al., 2012), in which the

activity of transcription factors can be deduced based on the expression levels of their target genes.

Among the predicted transcription factors (Liberzon et al., 2011) that may control the expression of

HAVCR2high LSC signature genes, SPI1 scores the highest (data not shown). Importantly, approxi-

mately 70% of the HAVCR2high LSC signature genes overlap with SPI1 target genes identified during

T cell development (Zhang et al., 2012)(Figure 4A). Therefore, we decided to focus our subsequent

analysis on SPI1.

Since the HAVCR2high MYClow phenotype signifies LSCs, we first examined the correlation of

Spi1, Havcr2 and Myc expression in HAVCR2high and blast cells. The pseudotemporal ordering of

the single-cell RNA-seq data and the FACS analyses demonstrate that Spi1 expression is highest in

the HAVCR2high subgroup, which is opposite to the differential expression of Myc (Figure 4B–C).

We further investigated whether SPI1 could transcriptionally regulate Havcr2 and Myc expression

by conducting SPI1 ChIP-qPCR analysis on Spi1-Egfp stably transformed blasts, using Egfp-trans-

fected blasts as a control (Figure 4—figure supplement 1). SPI1 binds strongly to Havcr2 promoter

region 2 (Zhu et al., 2015) (Figure 4D) and the Tcra enhancer (EA) region in the translocated Tcra/

d-Myc allele (Figure 4E), as well as to the E2 region of the WT allele (Shi et al., 2013)(Figure 4F),

suggesting that it may have regulatory effects on both genes. The overexpression of Spi1 in T-ALL

blast cells significantly increases the expression of Havcr2 and other known SPI1 target genes, such

as Itgax and Lmo2 (Champhekar et al., 2015; Turkistany and DeKoter, 2011; Yashiro et al.,

2017), but downregulates Myc mRNA and protein levels (Figure 4G–H). In contrast, SPI1 knock-

down in a human T-ALL cell line downregulates the expression of SPI1 target genes but upregulates

MYC expression (Figure 4I). Importantly, the positive correlation between SPI1 and the expression

of HAVCR2 as well as that of SPI1 target genes such as ITGAX and LMO2 can be found in human

T-ALL datasets (Liu et al., 2017; Van Vlierberghe et al., 2011)(Figure 5), suggesting that the regu-

lation of HAVCR2 expression by SPI1 could play an important role in human T-ALLs.

SPI1 is essential for LSCs ‘stemness’ and T-ALL development
SPI1 is an ETS domain-containing transcription factor critical for early T cell progenitor function

(Zhang et al., 2012), and its overexpression or translocation induces T progenitor cell proliferation

and blocks differentiation (Anderson et al., 2002; Seki et al., 2017), similar to the effects we

Table 1. The biological properties of the newly defined HAVCR2high LSC subgroup in comparison to

other subgroups in the Pten-null T-ALL model.

Cell type HAVCR2High HAVCR2mid and HAVCR2low Blasts

MYC low high high

Rapamycin resistance sensitive sensitive

JQ1 resistance sensitive sensitive

BrdU low high high

Surface marker KIT mid KIT -

HAVCR2high/ITGAXhigh HAVCR2mid/low/ITGAXmid/low HAVCR2-/ITGAX-

b-catenin activity high medium low

LIC activity 1/1 1/28 1/104–105

Pathway Stem/progenitor Myc/lymphoma

DOI: https://doi.org/10.7554/eLife.38314.006

Zhu et al. eLife 2018;7:e38314. DOI: https://doi.org/10.7554/eLife.38314 6 of 28

Research article Cancer Biology Stem Cells and Regenerative Medicine

https://doi.org/10.7554/eLife.38314.006
https://doi.org/10.7554/eLife.38314


Figure 4. SPI1 is the master regulator of LSC signature genes and controls HAVCR2 and c-MYC expression. (A) Nearly 70% of the genes highly

expressed in the HAVCR2high subgroup—the LSC signature genes—are potential SPI1 target genes (purple);(B) Pseudotemporal ordering of single cells

based on Spi1 or Myc expression; (C) FACS analysis shows the correlation of HAVCR2 cell surface expression and intracellular SPI1 and c-MYC levels in

the LSC-enriched (Lin-CD3+KITmid; red) and blast (Lin-CD3+KIT-; blue) subpopulations. Gray, isotype control; (D–E) ChIP-qPCR analysis identifies SPI1

binding regions in the HAVCR2 promoter (left) and Tcra/d enhancer A(EA) region (right), using Blast-SPI1 cells; (F) ChIP analysis identifies a SPI1 binding

site in the endogenous Myc enhancer;(G) q-PCR shows the fold changes in Havcr2, Itgax, Lmo2 and Myc expression between Blast-SPI1 cells (red) and

Blast-EGFP cells (blue); (H) Western blotting shows the SPI1, HAVCR2 and c-Myc protein levels in WT thymus, Blast-EGFP and Blast-SPI1 cells. The fold

changes relative to expression in the WT thymus are shown above each lane; (I) q-PCR analysis shows the fold changes in HAVCR2, ITGAX, LMO2 and

MYC expression in control shRNA (blue) and shSPI1 knockdown human T-ALL KE-37 cells (red); (D–I) All experiments were performed at least three

independent times, and the data in D, E, F, G, and I are the means ± S.Ds; *p�0.05; **p�0.01; ***p�0.001.

DOI: https://doi.org/10.7554/eLife.38314.008

The following figure supplement is available for figure 4:

Figure supplement 1. A schematic illustration of establishing lines expressing EGFP vector or EGFP-PU.1.

DOI: https://doi.org/10.7554/eLife.38314.009
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observed in the Pten-null T-ALL model. To functionally determine the role of SPI1 in LSC ‘stemness’

and T-ALL development, we conditionally deleted Spi1 in the Pten-null T-ALL model. Kaplan-Meier

survival analysis shows that the lethality caused by T-ALL is delayed proportionally to the numbers of

Spi1 allele that are deleted (Figure 6A). The tissue architectures of the thymus and spleen appear

normal, and no infiltrating leukemia cells can be detected in the liver of the mutant mice (dKO)

(Figure 6B). FACS analyses also show the absence of HAVCR2high LSCs and CD3+ blasts in the thy-

mus, spleen and bone marrow (BM) of the dKO mice (Figure 6C–D). Spi1 deletion can also restore

spleen weight and organ morphology (Figure 6B; Figure 6E). Notably, the lethality seen in the com-

pound homozygotes after 3 months is at least partially due to myeloid abnormalities, a known phe-

notype associated with SPI1 loss in the myeloid lineage (Dakic et al., 2007; Rosenbauer et al.,

2004; Steidl et al., 2006)(data not shown).

To confirm that the absence of T-ALL in dKO mice is not due to a block in T cell development in

the Pten; Spi1-null T progenitor cells (Champhekar et al., 2015; Spain et al., 1999), we first quanti-

fied CD3+ T cells in the WT, Pten-null and dKO mice and found relatively normal numbers of CD3+

cells in the dKO thymus (Figure 6F). We then crossed dKO mice with mice of the Rosa26loxp-stop-loxp-

LacZ reporter line so that LacZ expression could be used to trace the behavior of cells with Cre-

mediated deletion of Pten and Spi1 (Guo et al., 2008; Guo et al., 2011). Our FACS-Gal analysis

shows that like LacZ- WT cells (blue), LacZ+ dKO cells (red) in the same animals can undergo

Figure 5. SPI1 expression is positively correlated with HAVCR2, ITGAX and LMO2 expression in human T-ALL. Correlation of SPI1 expression with

HAVCR2, ITGAX and LMO2 expression in two different cohorts of human T-ALL samples, r: Spearman’s rank correlation coefficient, p-value: p-value of

Spearman’s rank correlation test.

DOI: https://doi.org/10.7554/eLife.38314.010
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Figure 6. SPI1 is essential for LSC formation and T-ALL development. (A) Survival curves for Cdh5-Cre+;PtenL/L T-ALL model mice (blue line) with

heterozygous (Cdh5-Cre+;PtenL/L;Spi1L/+; green line) or homozygous (Cdh5-Cre+;PtenL/L;Spi1L/L; red line) Spi1 conditional deletion; (B) HE-stained

images of thymus, spleen and liver tissue from 2-month-old mice with the indicated genotypes;(C–D) Comparison of the absolute number of

HAVCR2high and blast cells in each organ in 2-month-old Cdh5-Cre+;PtenL/L (blue bars) and Cdh5-Cre+;PtenL/L;Spi11L/L (red bars) mice;(E) Comparison

of spleen weights in the mice in B-C; (F) Representative FACS plots show CD3-positive T cells in the thymus of WT, Pten-null T-ALL and Pten/Spi1

double knockout mice. WT and Pten/Spi1 double knockout mice were 3 months old, and Pten-null T-ALL mice were 2 months old. n = 3; (G) FACS-Gal

analysis of T cell development in the thymus of Pten/Spi1 double knockout mice. LacZ+ cells (red dots) and LacZ�cells (blue dots) from the same

sample are overlaid. C-D, the data are presented as the means ± S.Ds; *p�0.05; **p�0.01; ***p�0. 001.The bars in the HE images and inserts represent

1000 mM and 50 mM, respectively.

DOI: https://doi.org/10.7554/eLife.38314.011
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differentiation to become CD4+CD8+ double-positive T cells (Figure 6G). These results suggest that

PI3K activation can rescue the T cell developmental block in Spi1-null T cell progenitors

(Champhekar et al., 2015; Spain et al., 1999), similar to the findings in our previous report on Pten;

Rag-null mice (Guo et al., 2011).Therefore, SPI1 is essential for Pten-null LSC ‘stemness’ and T-ALL

development.

Spi1 is upregulated at the ETP/DN1 stage during T cell development
The essential role of SPI1 in regulating LSC signature genes and ‘stemness’ prompted us to investi-

gate how Spi1 is regulated in the Pten-null T-ALL model. During T cell development, Spi1, with other

T progenitor cell factors and growth factor receptors such as Bcl11a, Lmo2, Flt3 and Kit, is highly

expressed at the early T progenitor (ETP) and double-negative 1 (DN1) stage and is then immedi-

ately downregulated during T cell commitment (Zhang et al., 2012) (Figure 7A, upper panel). Inter-

estingly, our pseudotemporal ordering of the single-cell RNA-seq data indicates that the expression

patterns of Spi1 and these factors and receptors are largely unchanged in the Pten-null T-ALL model

compared to normal T cell development (Figure 7A, lower panels). Furthermore, these factors and

receptors are highly expressed in the HAVCR2high subgroup and downregulated in the HAVCR2mid

and HAVCR2low subgroups, suggesting that HAVCR2highSPI1high LSCs may be generated at the ETP/

DN1 stage (Figure 7A, low panels). Indeed, when we crossed Spi1-GFP reporter mice (Nutt et al.,

2005) to Pten-null T-ALL model mice, we found that Spi1-GFP expression is significantly upregulated

at the ETP/DN1 stage (Figure 7B).

A b-catenin-SPI1-HAVCR2 regulatory circuit is required for Spi1
upregulation and LSC ‘stemness’
b-Catenin is an important transcription factor regulating Spi1 expression in the T cell lineage

(Rosenbauer et al., 2006). Previous works by us and others suggest that b�catenin is critical for

Figure 7. Spi1 is upregulated at the ETP/DN1 stage during T cell development. (A) Upper panel: Diagram of progenitor cell factors and growth factor

receptors involved in early T cell development, modified from (Rothenberg et al., 2016); lower panels: pseudotemporal ordering of single cells based

on Spi1, Bcl11a, Lmo2, Flt3 and Kit expression; (B) Spi1-GFP expression is upregulated in ETP/DN1progenitor cells from Cdh5-Cre+;PtenL/L;

Spi1GFP/+Pten null (red line), compared to that in Cdh5-Cre-;Pten+/L;Spi1+/+ WT (gray line), Cdh5-Cre+;Pten+/L;Spi1GFP/+Pten heterozygous (purple line)

and Cdh5-Cre-;Pten+/L;Spi1GFP/+ WT GFP+ (green line) mice.

DOI: https://doi.org/10.7554/eLife.38314.012
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LSC self-renewal (Guo et al., 2008) and RAG-dependent aberrant TCR rearrangement (Dose et al.,

2014; Guo et al., 2011), a mechanism underlying the reoccurring Tcra/d -Myc translocation caused

by PTEN loss or b�catenin activation observed in T-ALLs (Guo et al., 2008 Kaveri et al., 2013).

Indeed, the overexpression of b-catenin in a human T-ALL cell line leads to the significantly increased

expression of SPI1 from its endogenous promoter and subsequently promotes the expression of its

target gene HAVCR2 but downregulates MYC expression (Figure 8A).

PTEN loss or PI3K/AKT activation is known to activate b�catenin by phosphorylating GSK-3b and

preventing GSK-3b-mediated b�catenin degradation (Dan et al., 2008; Kikushige et al., 2015;

Persad et al., 2001). Although the HAVCR2high, HAVCR2low and blast subgroups have similar levels

of P-GSK-3b due to PTEN loss (Figure 8B, upper and lower panels), the HAVCR2high subgroup has a

much higher level of non-phospho-b�catenin (the active form of b�catenin) and SPI1 than HAVCR2-
low and blast subgroups in vivo (Figure 8C and E, upper and lower panels), suggesting that SPI1-

mediated LSC formation may depend on mechanisms other than the oncogenic driver mutation

PTEN loss.

HAVCR2 signaling can activate NFkB and b�catenin and promote AML LSC formation and self-

renewal (Kikushige et al., 2015). Since we identified HAVCR2 as the SPI1 target gene, we hypothe-

sized that HAVCR2 signaling may in turn activate Spi1 expression and promote T-ALL LSC formation.

Intracellular FACS analyses show that among the four subgroups, the HAVCR2high subgroup, which

has the highest Spi1 expression, also has the highest level of both phospho-p65 and non-phospho-

b�catenin (Figure 8D–E, upper and lower panels), indicating that HAVCR2 signaling must play an

important role in the hyperactivation of NFkB and b�catenin. Consistent with this hypothesis, the

genetic deletion of Spi1 can prevent both HAVCR2high LSC formation at the ETP/DN1 stage and

T-ALL development (Figure 8F). The pharmacological inhibition of b�catenin activation by the novel

tankyrase inhibitor BAY6060, but not the inhibition of PI3K activity by BAY1082439 alone (Hill et al.,

2017), can also significantly reduce the number of HAVCR2high LSCs in vivo in late-stage T-ALL

(Figure 8G). Together, these results suggest that although Spi1 upregulation is initiated by PTEN

loss, SPI1-mediated LSC formation and ‘stemness’ are maintained by the b�catenin–SPI1-HAVCR2

regulatory circuit.

LSCs loses their ‘stemness’ when Spi1 expression is silenced by DNA
methylation
How cancer stem cells lose ‘stemness’ and whether this process is unidirectional or reversible are

currently unknown. Since Spi1 expression is drastically reduced from the HAVCR2high stage to the

HAVCR2low stage (Figure 7A, lower panel), we hypothesized that a Spi1 silencing mechanism may

explain the loss of LSC ‘stemness’ during differentiation. DNA methylation is one of the major epige-

netic mechanisms in regulating gene expression during normal development. Although the global

methylation patterns across the LSC signature and blast signature genes are similar (Figure 9A–B),

the Spi1 promoter is significantly hypomethylated in LSCs compared to blasts and normal T cell con-

trols (Figure 9C). Consistently, the 4 CpG islands on the Spi1 promoter (Fernández-Nestosa et al.,

2013) are not methylated in the HAVCR2high subgroup but gradually become methylated in the

HAVCR2mid and HAVCR2low subgroups and are completely methylated in blasts (Figure 9D), which

may explain the trend in Spi1 expression and Spi1-controlled Havcr2 and Itgax expression

(Figure 4B, upper panel; Figure 1G). Conversely, treating leukemic blasts with the DNMT inhibitor

5-AZ can increase the expression of Spi1 and its regulated LSC signature genes in vitro (Figure 9E)

and induces the SPI1+ and MYClow subgroups in vivo (Figure 9F), demonstrating that Spi1 expres-

sion is reversibly regulated by DNA methylation, which in turn regulates LSC signature gene

expression.

To test the relevance of our findings to human T-ALL, we used two human T-ALL cell lines, KE-37

and CEM (Burger et al., 1999; Tatetsu et al., 2007). KE-37 expresses SPI1 and HAVCR2, while

CEM does not (Figure 10A), consistent with the methylation status of the SPI1 promoter

(Figure 10B). 5-AZ treatment can upregulate the expression of SPI1 and its target HAVCR2 but

downregulate c-MYC expression in CEM cells, similar to the effects of our blast treatment, while no

change can be detected in KE-37 cells (Figure 10C), demonstrating that SPI1 expression is also reg-

ulated by DNA methylation in human T-ALL. To test whether the leukemogenic activity could be

modulated by SPI1 expression in human T-ALL cell lines, we injected placebo- or 5-AZ-treated CEM

cells and monitored the T-ALL development induced by these cells in vivo. 5-AZ treatment
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Figure 8. Spi1 expression is maintained by b-catenin-SPI1-HAVCR2 regulatory circuit. (A) q-PCR analysis of SPI1 and SPI1-regulated HAVCR2 and

c-MYC expressions after the overexpression of active b-catenin in the Jurkat T-ALL cell line (red bars). The data are normalized to that of empty plasmid

controls (blue bars); (B–E) Upper panels: quantitative intracellular FACS analyses of P-GSK-3b, non-phospho-b-catenin, P-p65 and SPI1 levels in the

HAVCR2high, HAVCR2low and blast subgroups; lower panels: representative intracellular FACS analysis of P-GSK-3b, non-phospho-b-catenin, P-p65 and

Figure 8 continued on next page

Zhu et al. eLife 2018;7:e38314. DOI: https://doi.org/10.7554/eLife.38314 12 of 28

Research article Cancer Biology Stem Cells and Regenerative Medicine

https://doi.org/10.7554/eLife.38314


significantly accelerated T-ALL development (Figure 10D). However, cell lines are not the best

model system for studying LSC activity, and the essential role of SPI1 in regulating LSC activity in

human T-ALL needs to be determined using patient samples and PDX models.

Cotargeting oncogenic driver mutations and LSC ‘stemness’
maintenance circuit
We previously reported that treating Pten-null T-ALL model mice with a PI3K inhibitor is effective

only at the preleukemia stage, not after leukemia has developed (Guo et al., 2011;

Blackburn et al., 2014), suggesting the importance of cotargeting the LSC ‘stemness’ maintenance

pathway once LSCs have been generated. Since SPI1 is essential for LSC formation and SPI1 expres-

sion is regulated and maintained by the b-catenin-SPI1-HAVCR2 regulatory circuit, we hypothesized

that cotargeting any component of this circuit with an anti-PI3K inhibitor may effectively eliminate

existing T-ALL cells.

To test this hypothesis, we first treated age-matched leukemia-stage Pten-null T-ALL mice with

DB1976 (Figure 11—figure supplement 1A–B), a compound known to specifically disrupt the inter-

actions between SPI1 and its targets (Antony-Debré et al., 2017; Munde et al., 2014;

Stephens et al., 2016). DB1976 can significantly inhibit the expression of Havcr2 and other SPI1 tar-

get genes in vitro (Figure 11A) and reduce the number of HAVCR2high LSCs in vivo (Figure 11B, left

panel), confirming that SPI1 is not only important for LSC formation but also for LSC maintenance.

However, only when combined with a debulking anti-PI3K agent such as rapamycin (Guo et al.,

2008) could DB1976 significantly reduce the leukemia burden, as demonstrated by the nearly com-

plete absence of leukemic blasts in the hematopoietic organs (Figure 11B, right panel). Conse-

quently, combination treatment can markedly prolong the animal lifespan (Figure 11C), restore the

spleen weight and morphology, and eliminate infiltrating leukemic cells in the lung, kidney and liver

without a significant change in animal body weight (Figure 11D–E; Figure 11—figure supplement

1C). Similar results were obtained when we replaced DB1976 and rapamycin with BAY6060 and

BAY1082439, respectively (Figure 11D–E; Figure 11—figure supplement 1D). BAY1082439 can

inhibit PI3Kd, which is essential for Pten-null leukemia (Subramaniam et al., 2012), at nanomolar

concentrations (Antony-Debré et al., 2017). The inhibition of tankyrase by BAY6060 can significantly

reduce b-catenin activity and consequently decrease Spi1 expression and the number of HAVCR2high

LSCs in vivo (Figure 12A). In combination, BAY6060 and BAY1082439 could significantly prolong

the animal lifespan and almost completely eliminate LSCs and blasts (Figure 12B, Figure 11E and

Figure 8G).

Compared with b-catenin and SPI1, HAVCR2 may be a better therapeutic target as it is normally

not expressed in hematopoietic stem and progenitor cells (Kikushige et al., 2010), and inhibition of

HAVCR2 would therefore be less toxic. An anti-HAVCR2 antibody has been used clinically in immu-

notherapy and in targeting AML LSCs (Kikushige et al., 2010; Koyama et al., 2016). When com-

bined with rapamycin, the anti-HAVCR2 antibody showed a therapeutic effect similar to that seen

for DB1976/rapamycin and BAY6060/BAY1082439 combinations (Figure 11D–E and Figure 12C;

Figure 11—figure supplement 1E). Together, these results suggest that inhibiting any component

in the b-catenin-SPI1-HAVCR2 regulatory circuit will inhibit LSC ‘stemness’ maintenance and lead to

the effective elimination of HAVCR2-positive T-ALL cells in the presence of an effective debulking

agent targeting the PI3K pathway, such as rapamycin or BAY1082439.

Discussion
Our study suggests that two layers of control mechanisms may play essential roles in leukemogene-

sis (Figure 13). The first layer is driven by the loss of the PTEN tumor suppressor or the activation of

the PI3K pathway, which leads to b-catenin activation, Tcra/d-Myc translocation and T-ALL

Figure 8 continued

SPI1 levels in the HAVCR2high, HAVCR2low and blast subgroups. Gray line, isotype control;(F) FACS analysis shows cells in the HAVCR2high subgroup at

the ETP/DN1 stage, which are absent in WT and dKO mice; (G) Representative FACS plots show the number of cells in the HAVCR2high subgroup in the

different drug treatment groups. The data in A, B, C, D and E are the means ± S.Ds of 3 independent tests; *p�0.05; **p�0.01; ***p�0.001.
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Figure 9. Spi1 expression is controlled by DNA methylation (A) Schematic illustrating the procedures involved in cell isolation and RRBS analysis; (B)

DNA methylation status of genes specifically expressed in the leukemic blast (left) and LSC-enriched (right) subpopulations; (C) Spi1 promoter

methylation status in normal T cells, LSC-enriched cells and blast-enriched cells.

DOI: https://doi.org/10.7554/eLife.38314.014

Zhu et al. eLife 2018;7:e38314. DOI: https://doi.org/10.7554/eLife.38314 14 of 28

Research article Cancer Biology Stem Cells and Regenerative Medicine

https://doi.org/10.7554/eLife.38314.014
https://doi.org/10.7554/eLife.38314


development. The second layer is controlled by the master regulator SPI1, which determines LSC

signature gene expression and maintains LSC ‘stemness’ (Figures 4–6). SPI1 upregulation is initiated

by PI3K-controlled b-catenin activation,while the LSC-specific expression of SPI1 is reinforced by the

b-catenin-SPI1-HAVCR2 regulatory circuit (Figure 8). Once formed, LSCs are very sensitive to any

perturbation of this regulatory circuit but are less dependent on the PI3K pathway, as inhibiting the

PI3K pathway at the leukemia stage has little effect on the LSC number (Figures 11–12)(Guo et al.,

2008; Blackburn et al., 2014). SPI1 is silenced by DNA methylation, which leads to the downregu-

lated expression of LSC signature genes, the loss of LSC ‘stemness’ and leukemic differentiation

(Figures 9–10). Although the PTEN loss and Tcra/d-Myc translocation in the first layer of the leuke-

mogenesis mechanism are hardwired and present in both LSCs and leukemia blasts, the SPI1 expres-

sion and maintenance in the second layer of the LSC ‘stemness’ mechanism is reversible and present

Figure 10. Human SPI1 expression is silenced by DNA methylation (A) FACS analysis shows the surface expression of HAVCR2 and the intracellular

level of SPI1 in the human T-ALL cell lines KE-37 and CEM.(B) Methylation status of CpG islands in the SPI1 promoter in the human T-ALL cell lines KE-

37 and CEM; (C) q-PCR analysis of SPI1, HAVCR2 and Myc expression in KE-37 and CEM cells without (blue) and with(pink and red) 5-AZ treatment in

vitro; (D) Survival curves show T-ALL development by CEM cells without (blue) and with (red) 5-AZ treatment upon transplantation (n = 4; t-test). The

data in Care the means ± S.Ds of 3 independent tests; *p�0.05; **p�0.01; ***p�0.001.

DOI: https://doi.org/10.7554/eLife.38314.015
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Figure 11. Cotargeting oncogenic driver mutations and the LSC ‘stemness’ maintenance circuit eliminated LSC and T-ALL cells (A) q-PCR analysis of

Spi1 and Spi1-regulated Havcr2, Itgax and Lmo2 expression after 24 hr of DB1976 treatment (blue bars). The data are normalized to that of the

untreated controls (red bars); (B) A comparison of the absolute number of HAVCR2high and blast cells in the untreated (gray bars) and differently treated

groups; (C) Survival curve of Cdh5-Cre+;PtenL/L model mice treated with DB1976 and rapamycin alone and in combination; (D) A comparison of the

Figure 11 continued on next page
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only in LSCs (Figure 13). Similar two-layer control mechanisms may also be present in other types of

cancer in which CSCs are known to play essential roles.

This two-layer model may have important implications for LSC-targeted therapies. First, targeting

driver mutations or dysregulated pathways in the first layer may be sufficient for debulking the leuke-

mia mass but not for eliminating LSCs unless the mechanism for maintaining LSC ‘stemness’ is simul-

taneously inhibited (Figures 11–12). Second, since the expression of the LSC master regulator SPI1

can be reversibly regulated by epigenetic mechanisms (Figures 9–10), this model would predict

poorer outcomes if leukemia controlled by such a mechanism was treated with 5-AZ or similar

agents and would suggest that the reactivation of SPI1 expression could be a potential mechanism

for LSC-mediated therapeutic resistance.

A broad spectrum of epigenetic and genetic alterations has been found in virtually all cancer

types. In certain cases, mutations within the epigenetic control machinery can influence global gene

expression and cause subsequent cancer heterogeneity and clonal diversity; in other cases, epige-

netic mechanisms may act on a specific transcription factor. Although we did not detect significant

global methylation differences between LSC signature genes and blast signature genes, SPI1, the

master regulator found in this study, is specifically methylated during differentiation from the

HAVCR2high to the HAVCR2low phenotype (Figure 9), resulting in down regulating the expression of

LSC signature genes. The mechanism that controls the specific methylation of SPI1 is currently

unknown, but we predict that a similar mechanism may also regulate SPI1 silencing during T cell

commitment (Zhang et al., 2012). The alteration of this silencing mechanism may lead to a block of

T cell development and contribute to early progenitor type of T-ALL, such as ETP-T-ALL.

The identification of specific markers expressed only in LSCs is essential for isolating pure LSCs

and studying their control mechanisms. Using an advanced single-cell sequencing technique, we

identified HAVCR2 as an LSC-specific biomarker that can be used to isolate ‘pure’ LSCs, as deter-

mined by our limiting dilution and transplantation experiments (Figures 1–3). Most of the cell sur-

face markers currently used to isolate LSCs or CSCs are irrelevant to the function of LSCs or CSCs.

HAVCR2 is not just another biomarker but is an important regulator of the function of LSCs in Pten-

null T-ALL. HAVCR2 is directly regulated by SPI1 and serves as an important component of the b-cat-

enin-SPI1-HAVCR2 regulatory circuit, which is essential for maintaining the LSC-specific expression

of SPI1 and LSC ‘stemness’ (Figures 4–5 and 7–8). HAVCR2 can also serve as an LSC-specific target

(Figures 11–12); this finding is similar to that in a recent AML publication (Kikushige and Akashi,

2012; Kikushige et al., 2015).

PTEN and the PI3K/AKT/mTOR pathway controlled by PTEN are critical for the etiology of human

T-ALL (Gutierrez et al., 2009; Larson Gedman et al., 2009; Liu et al., 2017; Maser et al., 2007;

Palomero et al., 2007), and our study may illuminate the understanding and treatment of T-ALLs

associated with PTEN loss or PI3K activation. We demonstrate that SPI1 expression is upregulated

by b-catenin and silenced by DNA methylation in human T-ALL cell lines, similar to the findings in

the Pten-null T-ALL model (Figures 9–10). SPI1 also controls the expression of HAVCR2 and other

LSC signature genes in human T-ALL cell lines and clinical samples (Figure 5). However, whether the

b-catenin-SPI1-HAVCR2 regulatory circuit also presents in human T-ALLs, especially the ETP T-ALL

subtype, and determines LSC activity needs follow-up study using human T-ALL samples and PDX

models. Such information may be used for the molecular classification of human T-ALLs, identifying

human T-ALL LSCs and designing targeted treatment, as we showed in the mouse model. As

HAVCR2high LSCs can be detected in the peripheral blood of leukemic mice (our unpublished data),

further investigation is worthwhile to explore the potential use of this approach as a noninvasive

strategy for stratifying T-ALL and monitoring the treatment response.

Figure 11 continued

spleen weights of 2-month-old WT mice, untreated Cdh5-Cre+;PtenL/L mice, and combination-treated mice upon euthanasia; (E) HE-stained images of

spleen, lung, kidney and liver tissue from2-month-old WT, untreated and combination-treated mice. A, B and D: the data are presented as the

means ± S.Ds; ***p�0.001; the bars in the HE images and inserts represent 1000 mM and 50 mM, respectively.

DOI: https://doi.org/10.7554/eLife.38314.016

The following figure supplement is available for figure 11:

Figure supplement 1. A schematic illustration of dosing schedules and treatment cohorts.

DOI: https://doi.org/10.7554/eLife.38314.017
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Figure 12. Cotargeting oncogenic driver mutations and LSC ‘stemness’ maintenance circuit. (A) Comparison of the HAVCR2high subgroup population

(left panel) and of the levels of non-phosphorylated b-catenin (middle panel) and SPI1 (right panel) within the HAVCR2high subgroup without (upper

panels) and with BAY6060 treatment (low panels); (B) Survival curve for Cdh5-Cre+;PtenL/L mice treated with BAY6060 and BAY1082439 alone and in

combination; (C) Survival curve for Cdh5-Cre+;PtenL/L mice treated with rapamycin in combination with either an IgG control antibody or an anti-

HAVCR2 antibody.

DOI: https://doi.org/10.7554/eLife.38314.018
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Materials and methods

Key resources table

Reagent type
(species)
or resource Designation

Source or
reference Identifiers

Additional
information

Strain,
strain
background
(Mus musculus)

Cdh5-Cre+;
PtenloxP/loxP;
Rosa26floxedSTOP-LacZ+

(Guo et al., 2008)

Strain, strain
background
(Mus musculus)

Spi1loxP/loxP (Dakic et al., 2005)

Strain, strain
background
(Mus musculus)

Spi1-GFP (Nutt et al., 2005)

Strain, strain
background
(Mus musculus)

Pten/Spi1
double KO

This Paper

Cell line
(Homo sapiens)

KE-37 Deutsche
Sammlung von
Mikroorganismen
und Zellkulturen
(DSMZ)

ACC-46,
RRID:CVCL_1327

Cell line
(Homo sapiens)

Jurkat (Schubbert et al., 2014) Received
Drs. G. Cheng at
UCLA

Cell line
(Homo sapiens)

CEM (Schubbert et al., 2014) Received
C. Radu at UCLA

Cell line
(Homo sapiens)

HEK 293T American Type
Culture Collection
(ATCC)

CRL-3216, RRID:CVCL_0063

Cell line
(Mus musculus)

HE001 (Schubbert et al., 2014).

Continued on next page

Figure 13. Two-layer control mechanisms for leukemogenesis and LSC maintenance.
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Continued

Reagent type
(species)
or resource Designation

Source or
reference Identifiers

Additional
information

Antibody TER119-
APC-Cy7

Biolegend 116223

Antibody B220-APC-Cy7 Biolegend 103224

Antibody CD45-PE Biolegend 103108

Antibody CD3-PE-Cy7 Biolegend 100320

Antibody c-Kit-APC Biolegend 105812

Antibody HAVCR2-PE Biolegend 134004

Antibody ITGAX-FITC Biolegend 117306

Antibody Mac-1-PB Biolegend 101224

Antibody Gr-1-APC Biolegend 108412

Antibody SPI1-PE Biolegend 681308

Antibody MYC Cell Signaling
Technology

5605S

Antibody Nonphospho
(active)-b-
catenin

Cell Signaling
Technology

70034 s

Antibody rabbit IgG Cell Signaling
Technology

3900 s

Antibody Phospho-
NF-kB p65

Cell Signaling
Technology

3033 s

Antibody SPI1 Cell Signaling
Technology

2258 s

Antibody Phospho-
GSK-3b

Cell Signaling
Technology

5558 s

Antibody HAVCR2 Abcam ab185703

Antibody HAVCR2 BioxCell RMT3-23

Antibody IgG BioxCell 2A3

Antibody Fluorescein (FITC)
AffiniPure
Fab Fragment
Donkey Anti-Rabbit
IgG (H + L)

Jackson
Immuno
Research

711-097-003

Chemical
compound,
drug

Rapamycin LC
laboratories

R-5000

Chemical
compound,
drug

DB1976 (Belver and
Ferrando, 2016)

Chemical
compound,
drug

5-AZ Selleck S1782

Chemical
compound,
drug

BAY10
82439

(Hill et al., 2017) Provided by
Bayer
Pharma
ceuticals

Chemical
compound,
drug

BAY 6060 This paper Provided
by Bayer
Pharma
ceuticals
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Mice
The Cdh5-Cre+;PtenloxP/loxP;Rosa26floxedSTOP-LacZ+ floxedSTOP-LacZ line was described previously

(Guo et al., 2008; Guo et al., 2011; Schubbert et al., 2014). The Spi1loxP/loxP and Spi1-GFP mouse

lines were kindly provided by Dr. Stephen L. Nutt. Mouse genotypes were determined by genomic

PCR analyses with the primer sets listed in Supplementary File 1. Animal housing, breeding, and

surgical procedures were approved by the Ethics Committee under ID LSC-WuH-1 and conducted in

accordance with the regulations of the Division of Laboratory Animal Medicine at Peking University.

Cell lines
The KE-37 human T-ALL cell line was purchased from DMSZ, CEM and Jurkat cell lines were gener-

ously provided by C. Radu and Drs. G. Cheng at UCLA, respectively. All of the human T-ALL cell

lines were maintained in 1640 (Life Technologies) supplemented with 10% FBS, penicillin, and strep-

tomycin. The Pten-null T-ALL cell line (HE001) was generated previously reported, and cultured in

DMEM (Life Technologies) added with 20% FBS(Omega Scientific), 10 ng/mL IL-2, and 10 ng/mL IL-7

(both Invitrogen), 10 mmol/L HEPES, nonessential amino acids, sodium pyruvate, glutamine, penicil-

lin, and streptomycin (Life Technologies), and 2-mercaptoethanol (b-ME; Sigma)(Schubbert et al.,

2014). All cell lines were maintained according to the manufacturer recommendations or previous

publications. CEM, Jurkat, HEK293, and KE-37 cells were authenticated by the providers and inde-

pendently authenticated (via Hi-C, WES and RNAseq analyses for genome-wide alteration, mutation

signatures and gene expression profiles) in the lab. All lines tested negative for mycoplasma.

Fluorescence-activated cell sorting (FACS) analyses
FACS analyses were performed on BD LSR Fortessa or Influx system from BD Biosciences. The num-

bers of leukemia blasts, LSC-enriched subpopulations, and HAVCR2/ITGAX subgroups, as well as

intracellular protein levels, were analyzed as described previously (Guo et al., 2008; Guo et al.,

2011; Schubbert et al., 2014).

Bulk RNA-seq analysis
For bulk RNA-seq analysis, total RNA was extracted from FACS-sorted cells using a RNeasy Micro

Kit (Qiagen, 74004). Strand-specific libraries were generated using an NEBNext Ultra RNA Library

Prep Kit (NEB, E7530) following the manufacturer’s protocol. Libraries of 350±20 bp were obtained,

and the quality was determined using a Fragment Analyzer system (Advanced Analytical).

Barcoded libraries were subjected to 150 bp paired-end sequencing on an Illumina HiSeq 2500,

and the paired-end reads were aligned to the mouse reference genome (Version mm9 from UCSC)

using Tophat (v2.0.13)(Trapnell et al., 2009). The expression value was generated as the number of

fragments per kilobase of transcript per million mapped reads (FPKM) using Cufflinks (v2.2.1)

(Trapnell et al., 2012).

Single-cell RNA-seq analysis
For single-cell RNA-seq analysis, we essentially followed a published protocol (Li et al., 2017). Raw

reads were processed as previously reported (Li et al., 2017; Trapnell et al., 2009) to generate

expression values. Low-quality cells with less than 10,000 reads or less than 3000 covered genes

were filtered out. Genes with a mean expression (TPM) value of less than one were discarded, leav-

ing 276 cells and 12972 genes for further analysis. The unique gene set was then used for PCA,

t-SNE, and pseudotime analyses (Qiu et al., 2017a; Qiu et al., 2017b; Trapnell et al., 2014). Differ-

entially expressed genes were identified by SCDE (Fan et al., 2016; Kharchenko et al., 2014), and

genes with Z > 4 were selected. Gene Ontology analysis was performed by Cluster Profiler

(Yu et al., 2012), followed by Gene Set Enrichment Analysis (GSEA)(Subramanian et al., 2005) to

identify gene sets that show significant differences between the blast and HAVCR2highsubgroups.

Transplantation assay
Pten-null T-ALL cells harvested from primary Pten-null T-ALL mice were FACS-sorted and diluted

before transplantation, as described previously (Guo et al., 2008). Leukemia development was mon-

itored daily by physical appearance, and weekly by peripheral blood smear and FACS analysis..
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T-ALL was confirmed if the bone marrow or peripheral blood contained 20% leukemic blasts

(Guo et al., 2008).

For human T-ALL cell transplantation, CEM cells were treated with 5 mM 5-AZ or PBS for 6 days in

vitro, and an equal number of untreated and treated cells were then transplanted by tail vein injec-

tion into NSG recipients.

Real-time PCR
Total RNA was isolated using the RNeasy Micro Kit (Qiagen, 74004) and was reverse transcribed

into cDNA using a HiScript II Q RT SuperMix for qPCR Kit (Vazyme, R223-01). Gene expression levels

were measured with quantitative real-time PCR using a HiScript II One Step RT-PCR Kit (Vazyme,

P611-01) and a CFX Real-Time PCR detection system (Bio-Rad). All expression data were normalized

tob-actin expression, and the relative expression levels were derived from the delta-delta Ct values

using CFX software (Bio-Rad). For the primer sequences used, please see Supplementary File 2.

Plasmid construction
The full-length Spi1 sequence was PCR-amplified from cDNAs generated from HAVCR2high cells (pri-

mers: EcoRI-SPI1-Forward 5’-GAATTCATGTTACAGGCGTGCAAAATGGAAG-3’ and XhoI-SPI1-

Reverse 5’-CTCGAGTCAGTGGGGCGGGAGGCG-3’). The PCR products were purified and cloned

into the MSCV-IRES-EGFP vector, generously provided by Dr. Owen Witt of UCLA, and the

sequence was confirmed. The pll3.7-shSPI1 and control constructs were kindly provided by Dr.

Junwu Zhang of the Chinese Academy of Medical Sciences and Peking Union Medical College,

PLVX-IRES-RFP plasmid and PLVX-active-b-catenin (S33A, S37A, S45A) plasmid were kindly provided

by Dr. Wei Guo of Tsinghua University.

Western blot analysis
To quantify the protein levels of MYC and SPI1, Western blotting was performed as described previ-

ously (Schubbert et al., 2014) and the membranes were probed with antibodies against MYC

(5605s),and SPI1(2258s) from Cell Signaling Technology, using HAVCR2 (ab185703) antibody from

abcam, b-actin (7210,Santa Cruz) as a loading control.

Inhibitor and antibody treatments
Two-month-old Pten-null T-ALL leukemic mice were treated with 1) a daily dose of rapamycin (4 mg/

kg, i.p; LC laboratories), DB1976 (2.5 mg/kg, oral; synthesized by Dr. Lei’s laboratory), or a combina-

tion of the two drugs; 2) a daily dose of BAY1082439 (75 mg/kg, oral; provided by Bayer Company),

BAY6060(10 mg/kg, oral; provided by Bayer Company), or a combination of the two drugs; and 3) a

daily dose of rapamycin (4 mg/kg, i.p; LC Laboratories) with twice weekly IgG (200 mg, i.p; 2A3,Bio-

xCell) control or monoclonal anti-HAVCR2 (200 mg, i.p; RMT3-23,BioxCell) antibody. The durations

of the treatments are indicated in Figure 11—figure supplement 1. HE and immunohistochemical

(IHC) analyses were performed as described (Guo et al., 2008).

For 5-AZ (S1782, Selleck) treatment, 6-week-old Pten-null T-ALL mice were treated with either

vehicle or 5-AZ (1.25 mg/kg, i.p.; 3 days per week) for 2 weeks before intracellular FACS analysis.

RRBS library preparation
Blast- and LSC-enriched subpopulations were collected by FACS sorting, and genomic DNA was

extracted using a DNA micro kit or a DNA mini kit (Qiagen). The RRBS library was prepared accord-

ing to a previous publication (Smallwood and Kelsey, 2012). Genomic DNA was digested with

MspI (Fermentas), followed by end repair, adapter ligation and bisulfite modification (Qiagen,

#59104). The converted DNA library was sequenced on a HiSeq 4000 (Illumina) after two-round PCR

amplification and size selection.

DNA methylation analysis
BS-seq reads were aligned to the reference genome (mm9) by BS-Seeker2 (Guo et al., 2013). The

lollipop plot and region-specific distribution profiles were generated by CGmap Tools (Guo et al.,

2018). The methylation status of murine and human SPI1 promoter CpG islands was determined

according to (Fernández-Nestosa et al., 2013).
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Conventional bisulfite sequencing
For bisulfite conversion, genomic DNA was treated with an EZ-DNA Methylation-Direct Kit (D5021,

Zymo Research) according to the manufacturer’s protocol. The converted DNA was subjected to

PCR amplification and cloned into a pEASY-T1 Simple cloning vector (Transgene Biotech). The bisul-

fite primers for the mouse and human promoters were described previously (Fernández-

Nestosa et al., 2013; Tatetsu et al., 2007)(Table S2). Individual clones were sequenced by Sanger

sequencing, and the data were analyzed by the online software Quma (http://quma.cdb.riken.jp).

Chromatin immunoprecipitation (ChIP)
Approximately 5 � 106 Blast-EGFP and Blast-SPI1 cells were used, and ChIP analysis was performed

using a Zymo-Spin ChIP Kit (D5210, Zymo Research). The antibodies used for the ChIP assays were

anti-SPI1 (sc-352, Santa Cruz) and normal rabbit IgG (2729, Cell Signaling Technology). The enriched

regions were quantified by qPCR using the primers described in Supplementary File 2.

Data access
All the Bulk RNA-seq, Single cell RNA-seq and BiSulfite-seq data for this study are deposited in

NCBI Gene Expression Omnibus (GEO; accession # GSE115356; https://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc=GSE115356).

Statistical analysis
GraphPad Prism software was used to calculate the means and standard deviations (SDs). The t-test

or two-way ANOVA was used to determine statistical significance, and p<0.05 was considered statis-

tically significant. The data are presented as the means ± SDs.
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