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ABSTRACT: Drug failure during experimental procedures due to low
bioactivity presents a significant challenge. To mitigate this risk and
enhance compound bioactivities, predicting bioactivity classes during
lead optimization is essential. The existing studies on structure−activity
relationships have highlighted the connection between the chemical
structures of compounds and their bioactivity. However, these studies
often overlook the intricate relationship between drugs and bioactivity,
which encompasses multiple factors beyond the chemical structure alone.
To address this issue, we propose the BioAct-Het model, employing a
heterogeneous siamese neural network to model the complex relation-
ship between drugs and bioactivity classes, bringing them into a unified
latent space. In particular, we introduce a novel representation for the
bioactivity classes, called Bio-Prof, and enhance the original bioactivity
data sets to tackle data scarcity. These innovative approaches resulted in our model outperforming the previous ones. The evaluation
of BioAct-Het is conducted through three distinct strategies: association-based, bioactivity class-based, and compound-based. The
association-based strategy utilizes supervised learning classification, while the bioactivity class-based strategy adopts a retrospective
study evaluation approach. On the other hand, the compound-based strategy demonstrates similarities to the concept of meta-
learning. Furthermore, the model’s effectiveness in addressing real-world problems is analyzed through a case study on the
application of vancomycin and oseltamivir for COVID-19 treatment as well as molnupiravir’s potential efficacy in treating COVID-
19 patients. The data and code underlying this article are available on https://github.com/CBRC-lab/BioAct-Het. However, data
sets were derived from sources in the public domain.

1. INTRODUCTION
Identifying and optimizing the druglikeness of a compound is an
arduous and time-consuming process. In fact, bringing a new
chemical compound to the market as a drug can typically take
more than a decade and cost billions of dollars.1,2 Therefore,
predicting the bioactivities of a compound is a critical
component of the drug discovery process. Bioactivity refers to
the effects of chemical compounds, or leads, on living organisms,
including both favorable and unfavorable outcomes such as drug
side effects, toxicity, solubility, and permeability.3 During the
process of lead optimization, the goal is to enhance the structure
of leads while maintaining their therapeutic properties, in order
to improve their bioactivity.4 However, experimentally
determining the bioactivity of a new compound can be
challenging due to the vast number of possible analogues and
the high cost of screening procedures. It has been estimated that
there are approximately 1060 ensembles with the same atoms but
different bioactivities.5 As a result, computational methods have
gained much attention as a promising alternative to high-
throughput screening methods.6

Computational studies have been extensively used to
investigate the structure−activity relationship (SAR) and have
demonstrated the potential of the compound structural
properties to predict their bioactivity.7 These studies suggest
that compounds with similar chemical structures often exhibit
similar bioactivities.8,9 This hypothesis was first proposed by
Brown and Fraser in 1868 when they examined the relationship
between the molecular structure of a compound and its
biological activity. They found that compounds with certain
substructures or radicals possess a common biological action.10

This idea forms the foundation of modern SAR studies, which
leverage computational methods to predict the bioactivity of
new compounds based on their structural properties.
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Predicting the bioactivity of new compounds via computa-
tional methods faces two main challenges: compound
representation and data scarcity. The former, i.e., compound
representation, refers to the selection of an appropriate chemical
structure representation for the compounds. Traditionally,
existing algorithms employ SMILES,11 fingerprints,12 and
graphs to represent a compound in the bioactivity class
prediction problem. However, selecting the optimal representa-
tion of a material can be challenging. The latter, i.e., the data
scarcity challenge, arises due to the lack of sufficient data for
training an accurate model. Therefore, preparing a proper data
set to improve the performance of these algorithms is of crucial
importance. The optimal data set should contain a diverse set of
compounds with varying bioactivities to ensure that the model
can accurately predict the bioactivity of new compounds. It is
worth noting that the ratio of compounds exhibiting a specific
bioactivity class (positive data) to those that do not (negative
data) is often imbalanced, with severity affecting the perform-
ance of prediction. This can cause predictive models to focus on
the majority class and make inaccurate predictions for the
minority class, as highlighted by previous studies.13

Retrospective studies in drug discovery and bioinformatics
have proposed useful approaches for bioactivity discovery,
which are reviewed in the following. Altae-Tran et al.14

introduced a one-shot learning approach called IterRefLSTM
to address the challenge of limited data in bioactivity prediction.
The one-shot learning approach is designed to learn the
similarity between pairs of samples and has demonstrated high
accuracy in various applications. In drug discovery, they adapted
the one-shot learning approach to estimate the behavior of a
molecule in a new experimental assay, which is critical for
predicting the bioactivity of a compound. This innovative
approach provides a promising solution for overcoming the data
scarcity challenge in drug discovery.14 To generate an accurate
chemical structure representation of a compound, IterRefLSTM
utilizes an iterative approach that refines the compound’s
embedding by a long short-term memory (LSTM) model. The
refinement process involves using a matching network and a
residual graph convolutional network (GCN) architecture to
learn meaningful distance metrics for a few small molecules by
feeding their graph structures as input. This model is applied on
SIDER,15 Tox21,16 and MUV17 databases to consider side
effects, toxicity, and maximum unbiased validation classes as
bioactivities.
Torres et al.18 proposed another one-shot classification

approach to tackle the limited data challenge based on a siamese
neural network (SNN) architecture using a convolutional neural
network (CNN) in the middle layers. The advantage of this
strategy in drug discovery is to identify novel compound features
whose classes are less-represented.18 The model selects drug
toxicity as a bioactivity property utilizing Tox2116 as the
database. To represent a compound, a matrix is constructed in
which each row contains the one-hot encoding of the SMILES
letters. Later, the model groups the chemical compound based
on their chemical structures to pair the compounds based on
their corresponding groups for feeding to model. Therefore, it
considers half of the pairs in the same class as positive data and
half of the pairs from different classes as negative data for
training the model.
Fernańdez-Llaneza et al.19 proposed an N-shot classification

approach based on a deep SNN named SiameseCHEM using a
bidirectional LSTM (BiLSTM) with a self-attention mechanism
to tackle the biological data scarcity problem. The Siamese-

CHEM presumes the pXC50 as a bioactivity property, and it is
applied to five data sets collected from ChEMBL20 and
ExCAPE-DB.21 First, the model classifies the drugs as active
or inactive by a threshold in pXC50. Next, SiameseCHEM
presents the drugs by learning a task-specific fingerprint
representation. Moreover, it performs a data augmentation
process similar to oversampling to tackle the imbalanced data
problem.
Lately, Vella and Ebejer22 extended the IterRefLSTM model

with two newmetric-based techniques, namely, prototypical and
relation networks. To do so, the model assesses two different
embeddings for the compounds: extended-connectivity finger-
prints (ECFP) and GCNs. It then examines the effectiveness of
different few-shot learning models such as SNNs, matching
networks, prototypical networks, and relation networks. The
study is evaluated based on three public databases: Tox21,16

MUV,17 and a subset of DUD-E, namely, GPCR.23 The
evaluation scores of the model attest to the effectiveness of the
learned embedding using GCNs compared to ECFP. Addition-
ally, the introduced prototypical network, which is similar to
matching network and considers themean vector of embeddings
for each class instead of using individual support set
embeddings, outperforms IterRefLSTM results and has better
capability for generalizing. The summary of the reviewed
methods is shown in Table 1.

While several research efforts have been devoted to the
bioactivity class prediction (BCP) problem, existing methods
are based on the main hypothesis of SAR studies. These
methods attempt to distinguish patterns in the chemical
structures of drugs that are related to a particular bioactivity
class. They are trained using pairs of compounds with the same
bioactivity class to learn their similarities and pairs of
compounds with different bioactivities to learn their differences
and then used to predict whether new compounds belong to the
same bioactivity class.
However, these studies refer to few-shot learning for

predicting the behavior of a molecule in a new experimental
assay that is different from themodel on which it is trained on. In
other words, the model has seen the chemical structure of a
compound during training but not for the test experiment, which
is excluded for model evaluation. Therefore, these models may
not fully meet the criterion of normal few-shot learning, which
requires generalizing for recognition of new classes using unseen
data.22

Furthermore, detecting the bioactivity classes of a chemical
compound is a nontrivial problem, as there can be conflicts in
defining positive and negative data. For instance, if two
compounds belong to multiple bioactivity classes, sharing
some but differing in others, then it can be challenging to

Table 1. Summary of Reviewed Methods

model name representation database main idea

IterRefLSTM14 graph SIDER,
Tox21,
MUV

refined LSTM
iteratively/one-shot
learning

Torres’s model18 SMILES with
one-hot

Tox21 SNN/one-shot
learning

SiameseCHEM19 task-specific
fingerprint

ChEMBL,
ExCAPE-DB

SNN/N-shot
learning

Vella’s model22 graph, ECFP Tox21, MUV,
GPCR

prototypical
network/few-shot
learning
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determine whether they should be considered positive or
negative samples. This complexity in defining positive and
negative data can make the construction of data sets challenging.
The evaluation of previous studies demonstrates that the

relationship between chemical compounds and bioactivities is
complex and intricate, posing a significant relationship challenge
in the BCP problem.
To address these challenges, this paper proposes a new

method called BioAct-Het, which aims to determine the
likelihood of association between a compound and a bioactivity
class, rather than learning the similarity between two
compounds, which can be complicated due to a relationship
challenge. BioAct-Het exploits a heterogeneous SNN to map
chemical compounds and bioactivity classes into a unified latent
space that is capable of representing bioactivity classes based on
related compounds. The performance of BioAct-Het is
evaluated using both supervised learning and meta-learning
approaches on three databases: SIDER,15 Tox21,16 andMUV.17

The main contributions of BioAct-Het are listed as follows:
• To construct the data set, the proposed model considers a
compound−bioactivity class pair (⟨d, b⟩) as a positive pair
if d activates b and a negative pair otherwise (see the
Section 2.2).

• To define the problem, we introduce a novel bioactivity
representationmodel, which takes into account the role of
bioactivities (see the Section 2.3).

• To model the complex relationship between compounds
and bioactivity classes, we aim at learning a unified latent
space via a heterogeneous SNN (see the Section 2.4).

• To infer the association between a chemical compound
and a bioactivity class, the paper computes the likelihood
of association between the compound and the given
bioactivity in the unified latent space instead of relying
solely on the similarity between two chemical com-
pounds, as is done in previous studies (see the Section
2.4).

2. MATERIALS AND METHODS
The task at hand is to predict whether a newly introduced
compound causes some bioactivity classes before entering any
development or marketing activity. Intuitively, we aim to build a

computational model that permits forecasting the potential
bioactivity of small molecules during virtual screening to reduce
drug development time.
2 .1 . Defini t ion of the BCP Problem. Let
= { ··· }d d d, , , p1 2 denote a set of p different compounds

and = { ··· }b b b, , , t1 2 show the set of t different bioactivity
classes. The BCP problem is the task of predicting whether the
compound d may cause the bioactivity class b . More
specifically, we model the problem as a binary classification
where a pair of compound and bioactivity class such as ⟨d, b⟩ is
given to the model as input, and the model predicts 1 if
compound d exhibits bioactivity class b, otherwise 0.
2.2. Data Preparation. As aforementioned, there is limited

data about the activated or inactivated chemical compounds
relating to the bioactivity classes. Learning from the limited
available data is a challenging issue that may impact the
efficiency of the machine learning approaches. To overcome this
issue, the retrospective works14,18,19 apply few-shot learning and
metric-based approaches to compute the distance between
compounds d and d′ and predict bioactivity classes, where
d d, . These models often make a similarity function that
satisfies the following condition

=
l
moo
noo

Y
1

0d d
d d

d d d d
,

(1)

where = { | }b d bcompound causes bioactivity classd . In
other words, the model attempts to bring the structural
information of the compounds in a latent space close together
as they share a common bioactivity class, while increasing their
distance as they cause different bioactivity classes. Sometimes
this function (see eq 1) can produce positive and negative pairs
simultaneously when both conditions are satisfied, as a
compound may belong to different bioactivity classes. There-
fore, defining positive and negative pairs is a key challenge of
these methods. To address this issue, some studies14,22 define
the problem as a task-specific one. This involves considering
each bioactivity class separately during the training, which can
result in a loss of generality.
To address the aforementioned challenge, our study proposes

a different approach to data set preparation. Unlike retrospective

Figure 1. Illustration of chemical compounds. The SMILES representation of chemical compounds is collected, their 2D structure then is retrieved,
and a numerical representation using GCN-Canonical or GCN-AttentiveFP model is generated.
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studies that only feed the model with ⟨d, d′⟩, we include the
bioactivity as an input by feeding ⟨d, b⟩ to the model. The
advantage of this approach over priormethods is that it trains the
model on all experiments, rather than being limited to task-
specific bioactivity classes. So, the data set Δis prepared as
follows

= { | }x Y x X( , )x (2)

where

= { | }X d b d b, , (3)

and

=

=
l
moo
noo

x d b X Y

d b

,

1 compound causes bioactivity class

0 otherwise

x

(4)

Here, X is the set of compound−bioactivity class pairs and Yx is
defined for every x ∈ X as a label to show the association of
compound and bioactivity class.
2.3. Data Representation. This section explains the

representation of the data set Δ to feed the model. As Δ
consists of pairs of ⟨d, b⟩ ∈ X, it is necessary to have a
representation for both chemical compound d and bioactivity
class b. These representations are explained in detail below

• To represent the chemical structure of compounds, we
use the pretrained GCN models. To do so, two different
models are extracted from the DGL-Life24 library named
GCN-Canonical and GCN-AttentiveFP, which have been
pretrained on the intended bioactivity using either
Canonical featurization25 or AttentiveFP26 featurization
of atoms, respectively. These pretrained models are used
as feature extractors to present the chemical compounds.
The output of GCN-Canonical andGCN-AttentiveFP for
compound d is a continuous vector shown by Fd

m of

length lm, where m ∈ {GCN−Canonical, GCN−
AttentiveFP}. Figure 1 demonstrates the chemical
compound representation steps.

• To show the bioactivity class representation, we introduce
a novel method named Bio-Prof based on the profile of
the chemical structure of related compounds (see Figure
2). Assume that:

= { |

}

d d

b

compound

causes the bioactivity class
b

(5)

is a set of compounds that are known for causing the
bioactivity class b and

= { |
}

d d

b

compound

does not cause the bioactivity class
b

(6)
is a set of compounds without any association with
bioactivity class b . Since there is a relationship
between having the specific chemical substructures and
causing the bioactivities,7 first, the fingerprints of
compounds in b and b are collected. For this aim,
the Morgan fingerprint,27 which is a binary string
representation encoding functional groups and substruc-
ture of the compounds, is extracted and shown by rd = [rd1,
···, rd512], where rdi ∈ {0,1}, d , and the length is
considered as 512 with a radius of 2. Therefore, the
bioactivity class b is represented by Gb = [Gb

1,···,Gb
512] and

defined as follows

{ ··· } =
i
k
jjjjj

y
{
zzzzzk G

P

N
1, , 512 , logb

k b
k

b
k

(7)

where

Figure 2. Illustration of bioactivity representation (Bio-Prof). Two sets of drug fingerprints, one for active and one for nonactive class b drugs, are
extracted as Pb andNb, respectively. For each fingerprint, two probabilities of occurrence of substructure k in the active and nonactive class b drugs are
computed as Pb

k and Nb
k, respectively. The importance of substructure k of drugs in class b is then calculated as the logarithm of Pb

k to Nb
k.
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=
| |

· =
| |

P r N r1
,

1
.b

k

b
d d

k
b
k

b
d d

k

b b

(8)

Figure 2 illustrates the proposed approach for
representing the bioactivity classes, Bio-Prof, based on
the related drugs.

2.4. BioAct-Het Model. Recall that we aim to propose a
model that brings the similar concept of bioactivity classes and
chemical compounds close together in the latent space and then
infers the likelihood of association through their distances. To
achieve this end, we introduce BioAct-Het, a heterogeneous
SNN that consists of two branches for embedding compounds
and bioactivity classes, respectively. The reason for applying a
heterogeneous SNN is the complexity and diversity of chemical
compounds and bioactivity classes, which requires them to be
transformed into a unified latent space for accurate predictions.
Then, BioAct-Het subtracts the corresponding vectors and
passes them through layers to obtain the final prediction (Figure
3). The details of the BioAct-Het model are explained in the
following sections.
Figure 3 provides an illustration of the BioAct-Het model and

its components, which include the embedding layers for
compounds and bioactivity classes, the subtraction layer, and
the fully connected layers.
The main idea applied by the previous studies is based on

homogeneous SNNs28 where they consider the model input as
tuple ⟨d, d′⟩ and d d, . Homogeneous SNNs are dual-
branch networks with tied weights. They consist of the same
network replicated in two various branches and a similarity
learning component. Since BioAct-Het regards inputs as ⟨d, b⟩,
where d and b are different components, it employs
heterogeneous SNNs. The heterogeneous SNN applies two
different network branches to get two types of inputs (i.e., the
compound chemical structure and the bioactivity class). Each
branch transforms the initial representation of the chemical
compounds and bioactivity classes into a unified latent space,

which enables them to share properties and become comparable.
In the training process, each branch simultaneously learns the
embedding of its input, and then, a similarity function is
exploited to impose the embeddings of similar concepts close
together.
We hypothesize that a chemical structure of a compound can

implicitly indicate the bioactivities of the corresponding
compound. Moreover, retrospective studies demonstrate that
neural networks are effective for extracting discriminative
features. Inspired by these studies, we define the BioAct−
Het(Fd

m, Gb) model to predict the association between
compound d represented by Fd

m and bioactivity class
b shown by Gb, where m shows applying GCN−Canonical
or GCN−AttentiveFP for representing chemical compounds.
The BioAct-Het model consists of two distinct branches:
chemical compound embedding and bioactivity class embed-
ding. These branches learn two nonlinear functions: f(Fd

m): Rlm

→ Rn for the chemical compound embedding and g(Gb): R512 →
Rn for the bioactivity class embedding. Here, lm denotes the
length of the representation generated by GCN m, while 512
represents the length of the drug fingerprint. These functions,
f(Fd

m) and g(Gb), produce Ed
m and Eb as the representation vectors

of chemical compounds and bioactivity classes in the unified
latent space, where the chemical compounds with a shared
bioactivity class have similar distribution (see Figure 3).
Moreover, if compound d causes bioactivity class b, their
embedded vectors would be near each other in the latent space
and vice versa.
In the second step of the model, BioAct-Het predicts the

association between compound d and bioactivity class b based
on their distance in the latent space. For this aim, the vector E is
built using Ed

m and Eb as follows

{ ··· } [ ] = | [ ] [ ]|i n E i E i E i1, , , d
m

b (9)

Then, a nonlinear function h(E): Rn → [0,1] predicts the
likelihood of association between a pair of ⟨d, b⟩, i.e., models
BCP as a classification problem. As the output of the h(E) is the

Figure 3. Architecture of the BioAct-Het model. The upper and lower branches of the network are responsible for transforming the representation of
chemical compounds and bioactivity classes into a unified latent space. The representation of drug d is shown as Fd

m by using the GCN model m ∈
{GCN−Canonical, GCN−AttentiveFP}. The bioactivity class b is described by the Bio-Prof approach as Gb. Two functions f and g are two neural
networks which transform Fd

m andGb in the unified latent space named Ed
m and Eb, respectively. Themodel then subtracts the corresponding vectors and

passes them through several dense layers to predict the activation of bioactivity by the given chemical compound.
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association probability of ⟨d, b⟩ in the range of [0,1], we consider
probability greater than 0.5 to be 1 and otherwise 0. Thus, if the
output is greater than 0.5, bioactivity class b is more likely to be
caused by chemical compound d and vice versa. The details of
the model architecture are provided in the Section 3.2.

3. RESULTS
In this section, the performance of the BioAct-Het model is
evaluated and compared to the state-of-the-art algorithms.
Moreover, we assess the power of the model in facing real-world
problems and conducting a case study on vancomycin,
oseltamivir, and molnupiravir.
3.1. Databases. We assess the BioAct-Het performance in

three publicly available databases: SIDER4.1,15 Tox21,16 and
MUV,17 which are commonly utilized in computational drug
discovery to assess the performance of models.14,22 SIDER
database evaluates the ability of models to predict known side
effects of drugs, whereas the Tox21 database is used to assess the
capacity of approaches to predict the toxicological properties of
chemicals. On the other hand, the MUV database evaluates the
predictive capabilities of models in determining the biological
activity of small molecules across multiple targets. The details of
each database are explained in the following.

• SIDER: The SIDER4.1 database is a comprehensive
collection of observed side effects associated with
marketed drugs.15 Side effects of SIDER are grouped
into 27 primary classes using the MedDRA classification
system based on system organ classes.

• Tox21: The Tox21 database is designed to assess the
toxicity of chemical compounds. It contains the results of
12 toxicological assays based on nuclear receptors, which
are used to evaluate the potential risks associated with
exposure to these compounds.16

• MUV: TheMUV database is a widely used benchmark for
evaluating the performance of virtual screening methods,
comprising 17 challenging tasks. One of the key strengths
of this data set is its ability to mitigate analogue bias, as the
positive samples in MUV are structurally diverse, thus
minimizing the risk of overfitting to similar compounds.17

Table 2 demonstrates the statistics of the applied databases in
this paper, such as the number of chemical compounds,

bioactivity classes, and positive and negative samples. The
term “number of positive and negative samples” refers to the
number of positive and negative chemical compound−
bioactivity class pairs, as defined in eq 4. Table 2 indicates a
significant imbalance in the negative-to-positive sample ratio for
Tox21 andMUVdata sets. To address this issue, a random down
sampling of negative data is performed, followed by upsampling
of positive samples in order to achieve a more balanced training
set.29

3.2. BioAct-Het Model Architecture. Since we apply the
BioAct-Het model to three different databases, each with
distinct characteristics and exhibiting different types of bio-
logical activity, the model parameters vary depending on the

specific database and biological activity under consideration. In
this section, we specify the model parameters based on the
intended database.
The Section 2.4 introduces the model BioAct−Het(Fd

m, Gb),
where compound d is represented by Fd

m and bioactivity
class b is shown by Gb. This model includes three main
components: f(Fd

m), g(Gb), and h(E). The architecture of f(Fd
m)

consists of ef dense hidden layers activated by using the ReLU
function. In addition, a dropout probability of of is used after
every dense layer to prevent overfitting. The architecture of
g(Gb) also consists of eg dense hidden layers with a ReLU
activation function and a dropout probability of og.
Since the main aim of f(Fd

m) and g(Gb) is to make a unified
latent space for chemical compounds and bioactivities, we apply
the kl-divergence function as the loss function for producing a
distribution.
Additionally, the architecture of h(E), E = |Ed

m − Eb|, includes
eh dense layers with a ReLU activation function and a dropout
probability of oh. The last layer of h(E)makes the final prediction
with one unit and a sigmoid activation function. While the BCP
is a classification task, the loss function of h(E) is the binary
cross-entropy function. Table 3 includes the information on
hidden layer numbers and dropout probabilities.
3.3. Evaluation Metrics. We select the area under the

receiver operating characteristic curve (AUC-ROC) to assess
how accurately BioAct-Het performs on the detection of
bioactivities for a compound. The AUC-ROC criterion
measures the true-positive rate (TPR) against the false-positive
rate (FPR) based on different ranking cutoffs,30 where

=
+

=
+

TPR
TP

TP FN
, FPR

FP
FP TN (10)

The definition of true positive (TP), true negative (TN), false
positive (FP), and false negative (FN) is given in Table 4. It is
worth noting that the AUC-ROC is a better evaluation measure
when the data set is imbalanced.
3.4. Model Training, Evaluation, and Comparison.This

section introduces our training strategies and explains the
evaluation approach. We perform three strategies to split
training and test sets and evaluate the model as follows

• The association-based strategy examines the supervised
classification form of the model by splitting the
compound−bioactivity class pairs to the training and
test set. It is applicable when the aim is to find the
association between a bioactivity class and a chemical
compound in the data set.

• The bioactivity class-based strategy is a similar approach
to other previously mentioned methods that keeps out
some bioactivity classes during the training and evaluates
the performance of BioAct-Het based on unseen
bioactivity classes. The approach aims to uncover
chemical compounds that demonstrate a new and
uncommon bioactivity.

• The compound-based strategy utilizes the meta-learning
approach by excluding some chemical compounds
completely during the training and even making the
bioactivity class presentations. Accurately predicting the
bioactivity classes of a newly found chemical compound is
a crucial step before its market release. The strategy is
employed to evaluate the BioAct-Het model’s ability to
forecast the bioactivity classes of a new compound.

Table 2. Statistics of Applied Data Sets

database
# compounds

( )
# bioactivity
classes ( )

# positive
samples

# negative
samples

SIDER 1427 27 21,868 16,661
Tox21 7831 12 5862 72,084
MUV 93,087 17 489 1,332,593
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Furthermore, to assess the effectiveness of the chemical
compound representation using two pretrained GCN models
named GCN-Canonical and GCN-AttentiveFp, BioAct-Het is
examined based on each separately. The details of each strategy
and the comparison of the model with the state-of-the-art
algorithms are available in the following subsections.
3.4.1. Association-Based Strategy. The association-based

strategy is helpful when the aim is to predict the unknown
association between a chemical compound and a bioactivity
class. This strategy splits the primary data setΔ into the training
and test sets as follows

• Excluding 10% of compound−bioactivity class associa-
tions as a test set.

• XtestdA
= randomly selects 10% of X which is

constructed in eq 3.
• ΔtestdA

= {(x, Yx)|x ∈ XtestdA
}, where Yx is generated by

eq 4.
• Considering remained compound−bioactivity class asso-
ciations as the training set.

• XtraindA
= X − XtestdA

.

• ΔtraindA
= {(x, Yx)|x ∈ XtraindA

}, where Yx is generated
by eq 4.

To evaluate the BioAct-Het model based on the association
strategy, we perform 10-fold cross-validation. The correspond-
ing results for average of folds using GCN-Canonical and GCN-
AttentiveFP chemical structure representation on SIDER,
Tox21, and MUV databases are available in Table 5.
The BioAct-Het method uses the association-based strategy

to analyze the supervised classification form of the model.
During the training process, certain compound−bioactivity class
pairs such as ⟨d, b⟩ are excluded, and the performance of BioAct-

Het is evaluated based on these exclusions. In other words, this
strategy involves evaluating BioAct-Het using ⟨d, b⟩ pairs, while
the chemical compound d may be associated with classes other
than b, or the class b may be activated by chemical compounds
other than d during model training.
According to Table 5, the performance of the model using

GCN-AttentiveFP is better than that of the GCN-Canonical
model for representing chemical compounds. Additionally, the
model effectively performs on SIDER and Tox21. Since the
MUV is an unbiased database with diverse chemical compounds,
the AUC-ROC score of the model is lower than two other data
sources. However, the model should be compared with other
studies to assess how it performs accurately.
The results of BioAct-Het using GCN-AttentiveFP model is

compared with four descriptor-based and four graph-based
algorithms of the Jiang et al. study31 (see Table 6). The
descriptor-based algorithms include random forest (RF),
extreme gradient boosting (XGBoost), deep neural network
(DNN), and support vector machine (SVM), and graph-based
algorithms consider the message passing neural network
(MPNN), GCN, graph attention neural network (GAT), and
AttentiveFP to classify bioactivity classes.
According to Table 6, the results of BioAct-Het significantly

outperform the results in the study of Jiang32 based on each data
set. While it may be due to the definition of data sets, it
underscores predictive power of the proposed heterogeneous
SNN model, BioAct-Het. Moreover, since the MUV consists of
unbiased chemical compounds, BioAct-Het gets better level of
confidence versus Jiang’s study.32

3.4.2. Bioactivity Class-Based Strategy. The bioactivity
class-based strategy is designed to identify chemical compounds
that exhibit a novel type of bioactivity. This approach is similar
to previous studies that aim to predict how a compound will

Table 3. Hyperparameters of BioAct-Het Based on Each Databasea

data set components input layer dimension number of hidden layers {dimensions} the dropout probability

SIDER f(Fd
m) m = GCN-Canonical 512 ef = 2 {256, 128} of = 0.2, 0.2

m = GCN-AttentiveFP 1024 ef = 3 {512, 256, 128} of = 0.2, 0.2, 0.2
g(Gb) 512 eg = 2 {256, 128} og = 0.2, 0.2
h(E) 128 eh = 4 {64, 32, 16, 8, 1} oh = 0.2, 0.2, 0.2, 0.2

Tox21 f(Fd
m) m = GCN-Canonical 128 ef = 1 {64} of = 0.3

m = GCN-AttentiveFP 512 ef = 3 {256, 128, 64} of = 0.3, 0.3
g(Gb) 512 eg = 3 {256, 128, 64} og = 0.3, 0.3
h(E) 64 eh = 3 {32, 16, 8, 1} oh = 0.3, 0.3, 0.3

MUV f(Fd
m) m = GCN-Canonical 128 ef = 1 {64} of = 0.3

m = GCN-AttentiveFP 128 ef = 1 {64} of = 0.3
g(Gb) 512 eg = 3 {256, 128, 64} og = 0.3, 0.3
h(E) 64 eh = 3 {32, 16, 8, 1} oh = 0.3, 0.3, 0.3

aFor three components of the model, f( Fdm), g(Gb), and h(E), the input layer dimension, number of hidden layers and the number of their neurons
in brackets, and dropout probability are defined based on each applied data set. For each drug d, Fdm shows a vector for representing the drug using
the pretrained GCN model m. For each bioactivity class b, a vector named Gb is constructed using Bio-Prof with a length of 512. The fourth column
labeled “{dimension}” indicates the dimension of each layer in a sequential order.

Table 4. Definition of TP, TN, FP, and FN

prediction definition

TP the number of activated bioactivity classes for a drug predicted
correctly by the BioAct-Het

TN the number of nonactivated bioactivity classes for a drug predicted
correctly by the BioAct-Het

FP the number of activated bioactivity classes for a drug predicted
wrongly by the BioAct-Het

FN the number of nonactivated bioactivity classes for a drug predicted
wrongly by the BioAct-Het

Table 5. Average AUC-ROC Scores on 10-Fold Cross-
Validation for the Association-Based Strategy Generated by
BioAct-Het on Three Databases and Two Different GCN
Models for Compound Representation

database
GCN-Canonical model

AUC-ROC
GCN-AttentiveFP model

AUC-ROC

SIDER 90.34% ± 0.0053 91.11% ± 0.0056
Tox21 86.20% ± 0.0187 89.80% ± 0.0043
MUV 68.34% ± 0.0331 69.47% ± 0.0447
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perform in an experimental assay that differs from the one it was
originally trained on and considered as a type of meta-
learning.14,22 In this strategy, certain bioactivity classes are

excluded from the training set and used as a test set to evaluate
the performance of BioAct-Het in predicting the behavior of
compounds in those bioactivity classes. For making the training
and test sets of the main data set Δ, we perform the following
method

• Excluding 20% of bioactivity classes as the test set test .
• = { | }X d b d b, and testtest .

• = { | }x Y x X( , )xtest test , where Yx is gener-
ated by eq 4.

• Considering remained bioactivity classes as the training
set =train test .

• = { | }X d b d b, and traintrain .

• = { | }x Y x X( , )xtrain train , where Yx is gen-
erated by eq 4.

After training the model using train , we examine the
accuracy of BioAct-Het based on each bioactivity classb test
. Table 7 provides the performance of the model based on each
excluded bioactivity class of the SIDER, Tox21, and MUV using
GCN-Canonical and GCN-AttentiveFP chemical structure
representations. To compare our model with state-of-the-art
methods, we select IterRefLSTM14 and Vella’s model,22 both of
which also exclude certain bioactivity classes for evaluating their
model. Since the IterRefLSTM utilizes our applied databases
and Vella’s also uses Tox21 and MUV, BioAct-Het is compared
with these models based on their best average performance on
the applied data sets (5+/10−) strategy. Moreover, since Vella’s
model using the prototypical network gets better results, we use
the results of this approach to compare the models. According to
Table 7, BioAct-Het outperforms IterRefLSTM and Vella’s
models using GCN-AttentiveFP representation for each data
set.
The strategy is particularly useful when a new bioactivity class

is identified while training the data. For instance, SIDER is

Table 6. Comparison of BioAct-Het While Compounds Are
Represented by the GCN-AttentiveFP Model and Jiang et al.
Model Based on the Association Strategy

data set model name algorithm AUC-ROC (%)

SIDER Jiang et al. model RF 64.6
XGBoost 64.2
DNN 63.1
SVM 63
MPNN 59.8
GCN 63.4
GAT 62.7
AttentiveFP 62.3

BioAct-Het association-based 91.11
Tox21 Jiang et al. model RF 83.8

XGBoost 83.6
DNN 84
SVM 81.7
MPNN 80.9
GCN 83.6
GAT 83.5
AttentiveFP 85.2

BioAct-Het association-based 89.80
MUV Jiang et al. model RF 6.1

XGBoost 6.8
DNN 2.1
SVM 11.2
MPNN 1.6
GCN 6.1
GAT 5.7
AttentiveFP 3.8

BioAct-Het association-based 69.47

Table 7. AUC-ROC Scores for the Bioactivity Class Strategy on BioAct-Het While Compounds Are Represented by the GCN-
AttentiveFP Model and Comparison with State-of-the-Art Algorithms

data set bioactivity class
BioAct-Het GCN-Canonical

model
BioAct-Het GCN-attentiveFP

model
IterRefLSTM

(%)
Vella’s model

(%)

SIDER renal and urinary disorders 83.86% 84.06% 71.0
pregnancy, puerperium and perinatal
conditions

76.94% 80.12% 71.4

ear and labyrinth disorders 83.05% 82.66% 68.0
cardiac disorders 87.88% 87.89% 70.4
nervous system disorders 89.73% 90.79% 80.3
injury, poisoning and procedural
complications

81.71% 81.60% 68.8

mean 83.86% 84.52% 71.65
variance 0.0455 0.04055

Tox21 SR-HSE 80.20% 80.65% 77.1 77.2
SR-MMP 84.66% 86.42% 84.7 84.6
SR-p53 84.12% 84.98% 83.0 85.2
mean 82.99% 84.02% 81.6 82.3
variance 0.01987 0.02452

MUV MUV-832 62.20% 70.56% 72.6 65.6
MUV-846 71.06% 77.09% 66.3 54.9
MUV-852 61.96% 73.91% 75.5 45.3
MUV-858 64.50% 60.79% 62.9 46.9
MUV-859 49.93% 45.27% 38.6 48.1
mean 61.93% 65.55% 63.18 52.16
variance 0.068415 0.11507
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classified into 27 classes using MedDRA, but MedDRA Version
16.0 only contained 26 classes32 of system organs, while Version
19.1 included 27 classes.33 Therefore, it is possible to encounter
a new bioactivity class that is not presented in the training data,
and this strategy can help address this issue.
3.4.3. Compound-Based Strategy. It is essential to predict

the bioactivity classes of a newly found chemical compound
before it is released to markets. The compound-based strategy
aims to assess how accurately BioAct-Het can forecast the
bioactivity classes of a new compound. Thus, we excluded some
chemical compounds as a test set. For making the training and
test sets of the main data set Δ, we perform the following
method

• Excluding 10% of the chemical compound set as the test
set test .

• = { | }X d b d b, test andtest .

• = { | }}x Y x X( , )xtest test , where Yx is gen-
erated by eq 4.

• Considering remained drugs as the training set
=train test .

• = { | }X d b d b, train andtrain .

• = { | }}x Y x X( , )xtrain train , where Yx is gen-
erated by eq 4.

It is important to note that BioAct-Het relies on the Bio-Prof
approach, which considers the related chemical compounds to
create the bioactivity class representation. To ensure a fair
evaluation of the BioAct-Het model, it is necessary to exclude
any compounds that are kept out for the test set when applying
Bio-Prof. This ensures that the evaluation is conducted solely on
the training set.
We believe that this approach of evaluation, which involves

testing the model’s performance without any knowledge of
certain compounds, is more similar to the concept of meta-
learning. By excluding the test set compounds from the
bioactivity representation vector, we can evaluate the general-
ization ability of the model for new compounds on which it has
not been trained on. This approach enhances the reliability and
robustness of the evaluation process for BioAct-Het. Moreover,
we perform 10-fold cross-validation based on the drug set .
Table 8 shows the average of the corresponding results of

applying the compound-based strategy using GCN-Canonical
and GCN-AttentiveFP models for bioactivity prediction. Since
we cannot find any methods evaluated similar to our approach,
BioAct-Het is not compared to other models based on this
strategy.
3.5. Assessment of Chemical Representation on the

BioAct-Het Performance. In this section, we aim to
investigate the impact of chemical representation on the
performance of the BioAct-Het model. To begin, we assess

which pretrained GCN-Canonical or GCN-AttentiveFP repre-
sentations are more effective in addressing the BCP problem.
We then analyze the distribution of the extracted vectors from
the pretrained GCN model in the latent space, both before and
after training the BioAct-Het model. This will indicate whether
the BioAct-Het model is able to improve the representation of
chemical compounds and enable their separation based on their
associated bioactivity classes. To accomplish this, we use the T-
distributed stochastic neighbor embedding35 (t-SNE) technique
for visualizing the representations of chemical compounds.
Finally, we conduct an experiment to determine whether the
good separation of data is solely due to the pretrained GCN
models or the BioAct-Het model itself.
3.5.1. Comparison of Chemical Compound Representa-

tion. BioAct-Het utilizes pretrained models based on the
SIDER, Tox21, and MUV databases to represent chemical
compounds by employing both GCN-AttentiveFP and GCN-
Canonical models. Moreover, to evaluate the performance of the
model, three different strategies were conducted as mentioned
above. To select which representation is more appropriate in
facing the BCP problem, we compare the evaluation score of
applying GCN-Canonical and GCN-AttentiveFP representa-
tions on each strategy for every database. Figure 4 shows that the
evaluation strategies achieve higher scores using GCN-
AttentiveFP than using GCN-Canonical, indicating that the
former more accurately extracts functional and structural
information from chemical compounds in addressing the BCP
problem. These findings suggest that GCN-AttentiveFP
generates more effective representation for chemical com-
pounds in the context of BCP and improve the accuracy of
predictive models for drug discovery and development.
3.5.2. Distribution Analysis of Chemical Compound

Representation. To assess the effectiveness of the proposed
model in bringing compounds with similar bioactivity classes
closer together in the latent space, we conduct an experiment to
visualize the distribution of chemical compounds before and
after applying BioAct-Het, using the t-SNE technique. t-SNE is a
dimensionality reduction and data visualization technique that
uses an association-based strategy.
Recall that BioAct-Het comprises two networks for

embedding of chemical compounds and bioactivity classes,
respectively, that make the representation of compounds and
bioactivities comparable in the unified latent space.
Figure 5 preserves the effectiveness of our model in capturing

the similarities of chemical compounds with shared bioactivity
classes in the latent space using t-SNE. Specifically, Figure 5A
illustrates the distribution of chemical compound representa-
tions extracted from pretrained GCN-AttentiveFP on the
SIDER before training the BioAct-Het model, while Figure 5B
shows their distribution after training with the SIDER database.
Furthermore, after fitting the BioAct-Het model on the

training data, we assess its performance on the distribution of
test set compounds. We find that the compounds in the test set
lack in exhibiting anymeaningful relationship in the space before
training (see Figure 6A). However, after fitting the model,
compounds with similar bioactivity classes are brought closer
together (Figure 6B). Figure 6 illustrates this improvement.
3.5.3. Dependency Assessment of the Model to the

Pretrained GCN Models. The previous subsection showcased
the effectiveness of ourmodel in improving the representation of
the chemical compounds. In this section, we aim to demonstrate
the extent to which the model’s performance is due to the
extracted features from the pretrained model on the intended

Table 8. Average AUC-ROC Scores for the Compound-Based
Strategy Using 10-Fold Cross-Validation Generated by
BioAct-Het on Three Databases and Two Different GCN
Models for Compound Representation

Data set
GCN-Canonical model

AUC-ROC (%)
GCN-AttentiveFP model

AUC-ROC (%)

SIDER 81.91 84.83
Tox21 78.87 79.10
MUV 64.12 66.30
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bioactivities. In other words, while the previous section
highlighted the ability of BioAct-Het to create an accurate
representation of chemical compounds, we want to conduct
further analysis to ensure that the good separation of
information achieved after training BioAct-Het is not solely
due to the use of pretrained GCN models for compound
representation under the bioactivity of consideration.
To do so, we employ a transfer learning approach that

involves using a model trained on a specific task and transferring
its benefits to a different but related task.
For this aim, we use the GCN-AttentiveFP model pretrained

on the SIDER database to represent the chemical compounds in
the Tox21 database. We also remove the common chemical
structures between SIDER and Tox21. BioAct-Het is then
trained on Tox21 using the chemical representations obtained
from GCN-AttentiveFP pretrained on SIDER.
Based on the results presented in Figure 7, we conclude that

using GCN-AttentiveFP pretrained on SIDER to represent
compounds of Tox21, as opposed to using GCN-AttentiveFP
pretrained on Tox21, did not result in a significant difference in
performance across all evaluation strategies. However, it is still

recommended to use a pretrained model that is tailored to the
specific features of interest to achieve optimal performance.

4. DISCUSSION
In this section, we aim to evaluate the effectiveness of the
proposed model in determining its potential usefulness in real-
world applications, particularly in discovering the bioactivities of
newly developed chemical compounds. To the best of our
knowledge, this case study is the first of its kind. Obtaining high-
quality bioactivity data, such as toxicological experiment data or
MUV experiments, can be challenging, but we use side effects as
a reasonable approach due to the availability of these data in
various resources.
Furthermore, we focus on COVID-19, a newly emerging

disease that has caused a significant global health crisis,
prompting researchers to investigate effective treatments and
vaccines. As physicians prescribe different medications or newly
introduced drugs, it is crucial to evaluate their potential
bioactivities, including side effects, accurately before administer-
ing them to patients to ensure patient safety and improve
treatment outcomes. The proposed model can assist in

Figure 4. Assessment of chemical compound representation based on each evaluation strategy.

Figure 5. Illustration of bringing similar concepts close together using a heterogeneous SNN. (A) Distribution of chemical compound representations
extracted from pretrained GCN-AttentiveFP on the SIDER data set prior to training the BioAct-Het model. (B) Distribution after training the model
with the SIDER database.
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identifying the bioactivities of such drugs and aid in the decision-
making process for their use in clinical practice.
In the early stages of the pandemic, many drugs were

repurposed for treating COVID-19, including hydroxychlor-
oquine, an antimalarial and immunosuppressive drug.34

However, further studies have shown that hydroxychloroquine
can cause severe side effects, including cardiac toxicity, such as
arrhythmias and sudden cardiac arrest.35,36 As a result, the use of
hydroxychloroquine in COVID-19 patients has been discon-
tinued in most countries. Except this, some researchers
suggested that using antibiotic or other antiviral37,38 drugs
such as vancomycin (DB00512) and oseltamivir (DB00198),
which were originally prescribed for treating MRSA39,40 and
influenza type A and B,41,42 may treat COVID-19 patients. More
recently, molnupiravir (DB15661) has emerged as a promising

treatment for COVID-19.43,44 It is an FDA-approved drug that
has been shown to be effective in preventing severe outcomes
and hospitalization in COVID-19 patients.44

In this study, we focus on these three drugs, namely,
vancomycin (DB00512), oseltamivir (DB00198), and molnu-
piravir (DB15661), which are not included in the SIDER
database. This approach, which is compatible with our
compound-based strategy, will help us determine whether the
model can accurately predict bioactivities in real-world scenarios
and assist in the discovery of new drug candidate’s bioactivities,
specifically side effects.
To do so, we employ the pretrained GCN-AttentiveFP model

on SIDER to get the chemical compounds representations.
These representations are then fed to the BioAct-Het model,
paired each side effect class representation which was obtained

Figure 6. Test set distribution before (A) and after embedding (B) with BioAct-Het.

Figure 7. Assessment of the pretrained GCN model role on the performance of the model for Tox21. The blue bars are results obtained by using the
pretrained model on SIDER for representing compounds of Tox21, and the green bars are the results of using the pretrained model on the Tox21.
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based on eq 7. The model predicts the probability of each drug
exhibiting side effect classes in the range of 0 to 1. The side effect
classes are obtained from the medical dictionary for regulatory
activities (MedDRA), a standardized medical terminology that
classifies and codes medical history, clinical trial data, and

adverse events in drug development and postmarket surveil-

lance. MedDRA comprises more than 20,000 preferred terms

(PT), which are the low-level basic classes, organized into 27

system organ classifications.45

Figure 8. Bubble charts show the performance of the proposed model in predicting side effect classes of vancomycin, oseltamivir, and molnupiravir,
which are not included in the SIDER database. TheX-axis represents the real state of drug and side effect class association based on reported side effects
in FAERSwithmore than 1% frequency, while the Y-axis represents the predicted probability of these associations. The ideal outcome is for most of the
bubbles to be located in the right-up and left-down corners, indicating true positives (TPs) and true negatives (TNs), respectively. However, due to
limited case reports for molnupiravir, a new drug, the number of false positives (FPs) is higher than those of the other two drugs. Nonetheless, a recent
study has shown that molnupiravir causes all of these side effects, which our model correctly predicts as positive.60
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In the next step, we investigate an analysis of 27,699 side effect
case reports associated with vancomycin, 13,374 reports
associated with oseltamivir, and 2933 reports for molnupiravir
recorded in the FDA adverse event reporting system (FAERS)46

database since 1978, 1999, and 2022, respectively.46 It indicates
that while the first two drugs have long-standing uses and their
most side effects are known, as molnupiravir is recently released
to markets, its side effects need to be completed during the time
and using postmarketing analysis. In this analysis, we consider
only side effects that are reported in >1% of cases. Tables S1−S3
in the appendix file shows these side effects and their belonging
to each side effect classes based on MedDRA organ system
classification.
We then compare the model’s predicted probabilities with the

reported side effect with a frequency of more than 1% for these
drugs. To evaluate the accuracy of the model for these drugs, we
define TP, TN, FP, and FN according to Table 4. It should be
noted about FP that it may report some PTs for any drug which
is less than 1% frequent.
Table S4 in the appendix file demonstrates the performance of

the model for each drug separately and indicates the accuracy of
85.18, 70.37, and 70.37% for vancomycin, oseltamivir, and
molnupiravir, respectively.
Since the selected drugs are not included in the SIDER

database, we can be certain that our model does not see them
during training such as the compound-based strategy, where the
goal is to predict bioactivity classes for a new chemical
compound. Notably, the BioAct-Het model successfully predicts
the bioactivity classes of all reported side effects, confirming the
efficacy of the compound-based evaluation strategy. Moreover,
the study suggests possible associations between vancomycin
and side effects on metabolism and nutrition disorders,
musculoskeletal and connective tissue disorders, psychiatric
disorders, and nervous system disorders, although their
prevalence in FAERS is below 1%. It is worth considering that
other studies have reported side effects on these organ
systems,47−50 indicating potential variations in reporting across
diverse data sources. In addition, the model estimates possible
exhibition of side effect classes metabolism and nutrition
disorders, eye disorder, musculoskeletal and connective tissue
disorders, immune system disorders, reproductive system and
breast disorders, vascular disorders, and blood and lymphatic
system disorders for oseltamivir, which are also reported in other
research studies.51−59 Among the selected drugs, molnupiravir
has recently been developed and released to the markets. So, it is
highly possible to report any side effect classes later. Moreover,
BioAct-Het suggests to investigate the potential association
between molnupiravir and investigations, musculoskeletal and
connective tissue disorders, immune system disorders, vascular
disorders, blood and lymphatic system disorders, and cardiac
disorders, which are all reported in a new survey that was
recently published.60 However, due to limited studies on this
drug, further research is needed to fully understand its potential
side effects and evaluate its safety and efficacy for treating
COVID-19 and other diseases.
Figure 8 presents a bubble chart that elucidates the

performance of our model in predicting the side effect classes
for the selected drugs. The X-axis represents the observed side
effect classes associated with the drug, while the Y-axis
corresponds to the model’s predictive values. The bubble size
in this chart is indicative of the model’s confidence in its
predictions, with larger bubbles corresponding to higher
probabilities. Thus, larger bubbles denote the side effect classes

that the model most frequently predicts, while smaller bubbles
signify those with lower probabilities. Interpreting the chart, we
anticipate seeing the observed side effects predominantly in the
upper right quadrant, representing higher probabilities and
positive class prediction. In contrast, the lower left quadrant is
likely to feature side effect classes that are not commonly
observed, highlighting the model’s ability to discern between
frequently and infrequently occurring side effects.

5. CONCLUSIONS
This paper introduces the BioAct-Het model for addressing the
BCP problem. The main contributions of this model can be
attributed to two key factors: first, our approach of introducing
Bio-Prof to represent bioactivity classes as input and second, our
use of a heterogeneous SNN named BioAct-Het instead of a
homogeneous one, as retrospective studies employed that. The
use of a heterogeneous SNN in our approach is motivated by the
complex and diverse nature of the relationships between
chemical compounds and bioactivity classes. Since their vectors
cannot be directly compared, we develop a representation that
shares common properties between the two through the use of a
heterogeneous SNN known as BioAct-Het. The model consists
of two branches for embedding compounds and bioactivity
classes with the aim of capturing similar concepts in a unified
latent space.
While BioAct-Het relied on Bio-Prof for representing

bioactivity classes, it benefited from the pretrained GCN
model on the intended bioactivity to represent the chemical
structure of compounds. According to the experimental results,
the GCN-AttentiveFPmodel represented the chemical structure
of the chemical compounds more accurately than GCN-
Canonical. Moreover, based on conducted experiments such
as visualizing the distribution of chemical compounds before
and after fitting the model using the t-SNE technique, while
using the pretrained GCN model as the compound
representation is suggested, the good performance of the
model is not solely based on them, which highlight the role of
preparing the data set and the applied heterogeneous SNN
model.
Furthermore, we evaluated the performance of the BioAct-

Het model in three strategies: association-based as a supervised
classification, bioactivity class-based as a similar approach to
previous studies, and finally, the compound-based as a meta-
learning approach. The association-based strategy kept some
compound−bioactivity class associations out during training
and estimated their association while evaluation. The bioactivity
class-based strategy excluded some bioactivity classes during the
training completely. It showed the ability of the model when
there is limited information about a bioactivity class. The
compound-based strategy kept out some compounds during
training and made the bioactivity class representation and
demonstrated the power of the method for predicting the
potential bioactivity of a new chemical compound. To
benchmark the model, it utilized the SIDER, Tox21, and
MUV databases.
In addition, BioAct-Het was compared with IterRefLSTM

and Vella’s and Jiang’s study. The results showed that the
BioAct-Het was significantly more accurate than other methods
that addressed the BCP problem. Finally, we assessed the ability
of our model to address a real-world problem by predicting side
effect classes for vancomycin, oseltamivir, and molnupiravir.
This analysis demonstrated its potential practical applications.
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A significant limitation of this study is its focus on small
molecules, which may not encompass larger and more complex
molecules, in particular, macrocycles and their stereoisomers,
such as calix[4]arene-pyrazole.61 Stereoisomers, molecules
sharing identical molecular formulas but differing in spatial
arrangements, can present significant challenges, especially
when they display varying bioactivity. This factor should be
carefully considered in future research endeavors.
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vector regarding model m
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regarding m approach

rd = [r1d,···, rkd] Morgan fingerprint representation
k length of fingerprint
Gb = [Gb[1],···,Gb[k]] representation of bioactivity class b
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branch h(E)

of dropout probability of f(Fd
m)layers
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oh dropout probability of h(E) layers
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