
PHYSICAL REVIEW E 97, 052302 (2018)

Epidemic spreading in localized environments with recurrent mobility patterns
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The spreading of epidemics is very much determined by the structure of the contact network, which may be
impacted by the mobility dynamics of the individuals themselves. In confined scenarios where a small, closed
population spends most of its time in localized environments and has easily identifiable mobility patterns—such as
workplaces, university campuses, or schools—it is of critical importance to identify the factors controlling the rate
of disease spread. Here, we present a discrete-time, metapopulation-based model to describe the transmission
of susceptible-infected-susceptible-like diseases that take place in confined scenarios where the mobilities of
the individuals are not random but, rather, follow clear recurrent travel patterns. This model allows analytical
determination of the onset of epidemics, as well as the ability to discern which contact structures are most suited
to prevent the infection to spread. It thereby determines whether common prevention mechanisms, as isolation,
are worth implementing in such a scenario and their expected impact.
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I. INTRODUCTION

The spreading of infectious diseases is strongly dependent
on the networked structure of interactions in the population
[1,2] and on the mobility of individuals [3–7]. A particularly
interesting scenario is that where the structure of the social
contacts of the individuals is not completely well mixed
nor completely structured, but offers an intermediate level
of description. These kinds of models are usually referred
to as metapopulation models [8–11] and were first used in
the field of population ecology [12–15]. In such settings, the
nodes of the network represent a population, which is occupied
by individuals, and the links of the network represent the
migration of individuals from one population to another. This
scenario is particularly useful in the study of the spreading
of epidemics, given that many real-life patterns of interactions
happen in structured, localized populations connected by some
degree of migration. The populations usually describe small,
local environments (e.g., a city, a college dormitory, or an
office, depending on the application) where it is plausible
to assume that every individual in the population is able to
contact any other individual inside the same location with
some probability. The underlying network structure (i.e., the
links between subpopulations) describes the mobility patterns
of individuals among locations, and can be weighted and/or
directed.

The problem of modeling such scenarios relies on find-
ing the appropriate level of abstraction to grasp the main
macroscopic features of the epidemic spreading process for
individuals across the particular environment. The analysis
of these oversimplified model abstractions is of utmost im-
portance to separate the effect of single parameters on the
incidence of the spreading process, yet allowing an analytical
approach that could be used for prediction purposes and to
test prevention actions. Traditionally, models for epidemic

spreading in metapopulations [8] rely on reaction-diffusion
equations to account for the epidemic and mobility dynamics,
and assume that (I) individuals diffuse like random walkers
through the network and (II) subpopulations with the same
number of connections are treated as statistically equivalent
[16], thus smoothing over the actual contact network between
individuals. While this approach has been usefully applied in
many scenarios [17], its simplified assumptions do not capture
some important real-world features. For instance, analysis
of human mobility data reveals that human dynamics are
often dominated by recurrent patterns where individuals have
memory of the location they come from [18] and are highly
likely to return to their original location after a short explo-
ration of the network [3,19]. The typical exploration of the
network mostly consists in visiting frequently a limited number
of locations, predominantly performing commutes between
home and work locations [20]. Additionally, the traditional
assumption of statistical equivalence of subpopulations of
the same degree, while allowing for an analytic solution of
the invasion threshold, makes it impossible to quantify the
outreach of an epidemic in a particular subpopulation of the
network.

In this work we present a discrete-time Markov-chain model
[21,22] for epidemic spreading in structured populations with
a recurrent pattern of migrations between the locations in a
bipartite network. The aim of this model is to quantify the
extent of a susceptible-infected-susceptible (SIS) epidemic
in the scenario where each individual spends most of their
time between two locations: their residence (e.g., home or
college dormitories) and common destinations where mixing
with individuals coming from other residence subpopulations
happen (e.g., work places, classes, or other common event
spaces). Our goal is to discern which parameters modeling
such scenarios control the phase transition of the spreading
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of a disease. In so doing, we can determine whether typical
mechanisms of isolation—such as reducing the mobility of
infected individuals—are able to contain the spreading of
diseases. That is, whether or not such interventions change
the critical properties of the spreading process.

The paper is organized as follows. In the next section
we introduce the formulation for our model for epidemic
spreading in localized environments with recurrent, bipartite
travel connections. In Sec. III we show the derivation of
the epidemic threshold. In Sec. IV we introduce an isolation
mechanism for the infected individuals, and present the con-
sequent formulation. Section V is devoted to the results of our
analysis, and Sec. VI offers a discussion that concludes our
work.

II. MODEL FOR EPIDEMIC SPREADING IN
METAPOPULATIONS WITH RECURRENT

MOBILITY PATTERNS

Our metapopulation network model considers two types of
locations: residences and common sites. Each residence i has
an associated population of ni agents. Individuals associated
to a given residence are assumed to interact with one other in
a well-mixed fashion. A common location, on the other hand,
does not have a fixed population associated to it, thus providing
a meeting site for mixing individuals from different residences.
The distribution of individuals in common areas is determined
by the weighted flows W , with elements wij defining the
probability of an individual associated to residence i to travel
to common location j . The flows W define a bipartite network
structure: no direct connections between different residences
nor between different common areas are considered.

The dynamics of the model follow a discrete-time reaction-
diffusion process. Every day (for each time step), individuals
diffuse through the flows determined by W according to the
mobility probability p, causing nip agents to travel to a
common location and ni(1 − p) individuals to remain in their
residence sites, for each residence i. Once the individuals are
in their new location, they react with the other individuals
in the subpopulation (what we call the daytime infection
step), meaning a susceptible individual gets infected upon
contact with another infected individual with probability β.
Then, agents return to their residences and another reaction is
performed (nighttime infection step). After, individuals who
were infected at the beginning of the time step may recover
spontaneously with probability μ. It is important to stress two
particularities of this model. First, the daytime infection step
takes place both in the common locations and in the residence
sites, therefore affecting individuals who did not migrate as
well as those who did. Second, what we consider a full time
step comprises two infection steps (day and night) and one
recovery step.

We are interested in calculating the fraction of infected
individuals assigned to any residence i for each time step
t , ρi(t), whose time evolution is described by the following
equation:

ρi(t + 1) = ρi(t)(1 − μ) + (1 − ρi(t))�i(t), (1)

The interpretation of Eq. (1) is that the fraction of infected in-
dividuals assigned to residence site i at time t + 1 is calculated

as the fraction of individuals that were already infected in the
previous time step and did not recover, plus those individuals
who were susceptible and got infected at the end of the time
step according to probability �i(t), which is defined as

�i(t) = (1 − p)D☼
i (t) + p

C∑
j=1

Wij

Wi

Cj (t)

+p

⎛
⎝ C∑

j=1

Wij

Wi

(1 − Cj (t))

⎞
⎠D

�
i (t)

+ (1 − p)(1 − D☼
i (t))D�

i (t), (2)

where p is the mobility probability and C is the number of
subpopulations defined as common areas. The four terms in
Eq. (2) refer, in order, to the fraction of individuals that did not
travel and got infected in their residence site in the daytime
step; the fraction of people that did travel and got infected in the
common site of destination; the fraction of individuals that did
travel, did not get infected in the common area of destination
but got infected in their residence at the nighttime step; and
finally, the fraction of people that did not travel, did not get
infected in their residence during the daytime step but got
infected in the residence in the nighttime step. The expressions
for the probabilities of getting infected in residence site i during
daytime, in residence site i during nighttime and in common
area j are, respectively,

D☼
i (t) = 1 − (1 − βρi(t))

ni→i , (3)

D
�
i (t) = 1 − (1 − βρi(t))

ni , (4)

Cj (t) = 1 −
D∏

k=1

(1 − βρk(t))nk→j , (5)

where ni is the size of residence i, W is the bipartite con-
nectivity matrix and Wk = ∑C

j Wkj . D refers to the number
of residential sites. The number of individuals that remain in
subpopulation i is

ni→i = ni(1 − p), (6)

and the number of individuals moving from residence k to
common location j is

nk→j = nkp
Wkj

Wk

. (7)

III. CALCULATION OF THE EPIDEMIC THRESHOLD

From Eq. (1) we can calculate the solution of the system
in the steady state, by assuming that ρi(t + 1) = ρi(t) = ρi .
Under the assumption that near the critical onset of the
epidemics the fraction of infected individuals is negligible,
we can substitute ρi = εi � 1. Eq. (1) then reads

εi = εi(1 − μ) + (1 − εi)�i. (8)
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Substituting �i by its expression in Eq. (2), we obtain

εi = εi(1 − μ) + (1 − εi)

⎡
⎣(1 − p)D☼

i + p

C∑
j=1

Wij

Wi

Cj + p

⎛
⎝ C∑

j=1

Wij

Wi

(1 − Cj )

⎞
⎠D

�
i + (1 − p)(1 − D☼

i )D�
i

⎤
⎦. (9)

Substituting D☼
i , D

�
i , and Cj by their respective expressions in Eqs. (3), (4), (5), we have

εi = εi(1 − μ) + (1 − εi)

⎡
⎣(1 − p)

(
1 − (1 − βεi)

ni (1−p)
) + p

C∑
j=1

Wij

Wi

(
1 −

D∏
k=1

(1 − βεk)nkp
Wkj
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⎛
⎝ C∑

j=1

Wij
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1 −

D∏
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(1 − βεk)nkp
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)⎞
⎠(1 − (1 − βρi(t))

ni )

+ (1 − p)(1 − (1 − (1 − βρi(t))
ni (1−p)))(1 − (1 − βρi(t))

ni )

⎤
⎦.

(10)

Applying the approximations (1 − εi)n ≈ 1 − nεi and∏D
i=1(1 − εi)n ≈ 1 − ∑D

i=1 nεi and removing theO(ε2
i ) terms,

the previous expression reduces to

εi = εi(1 − μ) + (1 − p)2βniεi + p

C∑
j=1

Wij

Wi

βεini

+p2β

C∑
j=1

D∑
k=1

Wij

Wi

Wkj

Wk

nkεk + (1 − p)βεini . (11)

We can express the previous equation in the form of an
eigenvector problem, where our new expression is

μ

β
�ε = M�ε, (12)

and thus we obtain the classical expression in epidemic
spreading [23]:

βc = μ

λmax(M)
, (13)

where the entries of the matrix M are

Mik = ((1 − p)2ni + ni)δik + p2
C∑

j=1

Wij

Wi

Wkj

Wk

nk. (14)

Each entry Mik accounts for the average number of contacts
between one individual of residence i and all the individuals
associated to any residence k during a full day. Indeed, the first
term of the right-hand side (r.h.s.) of Eq. (14), accounts for
the total average number of contacts among individuals of the
same residence, while the second term accounts for the number
of interactions that take place at the common locations.

IV. RESTRICTING THE MOBILITY OF INFECTED
INDIVIDUALS: THE ISOLATION FACTOR

Additionally, to investigate the effects of realistic isolation
in our setup, we prescribe the mobility probability of infected
individuals to be p′ � p, thus effectively reducing their

mobility through the network. The parameter that controls the
relation between the two mobility rates is what we call the isola-
tion factor γ , being p′ = γp with 0 � γ � 1. This prescription
changes the formulation introduced in Sec. II as follows. First,
the calculation of the number of individuals remaining in their
residence (ni→i) and the number of individuals going from
residence k to common location j (nk→j ) need to be adjusted
to take into account the two mobility probabilities. Now the
probability that an individual remains in its original residential
patch is (1 − ρi)(1 − p) if the individual is susceptible and
ρi(1 − p′) if the individual is infectious. Consequently, the
new expressions for equations Eqs. (6), (7) are

ni→i = ni[ρi(t)(1 − p′) + (1 − ρi(t))(1 − p)], (15)

nk→j = nk

[
ρk(t)p′ Wkj

Wk

+ (1 − ρk(t))p
Wkj

Wk

]
. (16)

Second, the terms D☼
i (t) and Cj (t) use, in the original

formulation, ρi as a proxy of the probability of infection
in subpopulation i. This is no longer appropriate when the
isolation factor is active, given that the individuals that remain
in residence i will no longer be an arbitrary mixing of infected
and susceptible individuals. Instead, residence i in the daytime
step will mostly be populated by infected individuals as
p′ grows smaller. The correct approach is to calculate the
conditional probability for an individual from population i to
be in the infected state (I ) given that the individual remains in
the population during the daytime (R), which is

P (I |R) = P (R|I )P (I )

P (R|I )P (I ) + P (R|S)P (S)

= (1 − p′)ρ
(1 − p′)ρ + (1 − p)(1 − ρ)

. (17)

Using the new prescription, Eq. (3) reads now

D☼
i (t) = 1−

(
1−β

(1 − p′)ρ(t)

(1 − p′)ρ(t) + (1 − p)(1 − ρ(t))

)ni→i

.

(18)
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Following the same rationale, we rewrite the expression for
Eq. (5):

Cj (t) = 1 −
D∏

k=1

(
1 − β

ρk(t)p′

ρk(t)p′ + (1 − ρk(t))p

)nk→j

. (19)

Once these changes are introduced, we can calculate the
epidemic threshold of the model with isolation following the
same procedure we explained in Sec. III. After linearizing our
equation and solving the eigenvector problem, we obtain the
same expected expression of Eq. (13), but now the entries of
matrix M are

Mik = ((1 − p)(1 − p′)ni + ni)δik + pp′
C∑

j=1

Wij

Wi

Wkj

Wk

nk.

(20)

Note that when the isolation mechanism is not active (γ = 1),
p = p′ and the previous expression reduces to Eq. (14). From
the previous expression we see that the parameters that are able
to shift the onset of the epidemics are the connectivity matrix
W , the vector of sizes of the residential subpopulations n, the
mobility probability p and the isolation factor γ . In the next
section we explore the effects of those parameters in the final
output of the epidemic process.

V. RESULTS

To validate our model, we crosscheck the results obtained
in the numerical solutions of our analytic model with extensive
Monte Carlo simulations. A comparison is depicted in Fig. 1,
where we plot the fraction of infected individuals in the whole
system in the steady state ρ as a function of the infectivity
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FIG. 1. Total fraction of infected individuals ρ in the steady state
as a function of the infectivity probability β, for four values of the
mobility probability. Solid lines are the results of our model, while
symbols are the Monte Carlo simulations. The dashed vertical lines
indicate the epidemic threshold as calculated by Eq. (13). For this
plot, the number of subpopulations of type residential is D = 25 and
there are C = 5 common sites, with equal-sized residential sites of
100 individuals each. The isolation mechanism is inactive (γ = 1,
p = p′), the recovery probability μ = 0.1, and the connectivity
matrix is an unweighted, fully connected bipartite network.
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FIG. 2. Epidemic threshold βc as a function of the mobility
probability p, for different configurations of the number of residential
and common sites. We observe in all of them a non-monotonic
behavior of βc which increases up to an optimum value of the mobility
parameter (p∗) that makes the epidemic threshold maximum (see
dashed lines). Here the recovery probability μ = 0.2, all residential
subpopulations are of the same size n = 25, the isolation mechanism
is disabled (γ = 1) and the underlying topology is an unweighted
fully connected bipartite network.

parameter β, for four values of the mobility probability p and
with isolation inactive. The correspondence of our analytical
results with the Monte Carlo simulations is remarkable for
values of the infectivity parameter even beyond the epidemic
threshold.

To analyze the effect that the mobility probability p has
on the epidemic threshold, we plot in Fig. 2 the curves of the
critical onset of the epidemic, for different configurations on
the number of residential and common sites. Here, we want to
highlight an interesting feature: the curve of βc does not have a
monotonic behavior, instead there is an optimum value of the
mobility probability (p∗), which makes the epidemic threshold
maximum. Indeed, we observe that p∗ will be smaller than 0.5
if the number of residential subpopulations exceeds the number
of common sites (D > C); greater than 0.5 in the opposite
case (D < C), and exactly 0.5 if the number of residential
and common sites are equal (D = C), for the case of a fully
connected unweighted topology and for residential sites being
of the same size. This happens because p∗ is the value of
the mobility probability that causes all subpopulations in the
network to be of the same (or most similar) effective size
during the daytime infection step. The physics rationale of this
effect can be understood as follows: the critical threshold of the
epidemics is dominated by the critical threshold of the largest
subpopulation, so the maximum epidemic threshold (minimum
spreading of the disease) will be achieved when all populations
(both residential and common sites) are of similar size. Note
that the same phenomenology has been reported in [22] for
mono-partite metapopulation networks.

Up to now we have supposed homogeneity in the sizes of
the subpopulations of type residential, meaning all entries of
vector n are equal. Now we explore what is the effect that
heterogeneity will have in the epidemic threshold. To do so,
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FIG. 3. Epidemic threshold curve as a function of mobility proba-
bility p, for different degrees of heterogeneity of subpopulation sizes,
controlled by their variance. (In print, lighter hues of gray correspond
to lower values of the variance.) Here D = 10, C = 5 and the total
number of agents is N = 100. We vary how individuals are distributed
among residential sites, ranging from the homogeneous case (all
residential sites are of equal size) to the most heterogeneous setup (all
individuals reside in the same node). We see that as the heterogeneity
increases, the epidemic threshold gets smaller, and the effect of the
optimum mobility p∗ is diluted.

we keep the total number of individuals in the population
constant, but we redistribute individuals in such a way that
the variance of the size distribution increases monotonically.
The results are displayed in Fig. 3, where we observe that, as
heterogeneity increases (higher variance values), values of p∗
are shifted right and the maximum values of βc are less peaked.
This reflects that the uneven distribution of sizes of residential
subpopulations affects the critical threshold in such a way
that the more heterogeneity the more easy for the epidemic
to become endemic.

Finally, we analyze the role of the isolation factor on the
critical properties of the model. In Fig. 4 we show the epidemic
threshold curve as a function of mobility probability p, for
different settings of the isolation factor γ . We observe an
interesting effect: if the isolation is inactive (γ = 1), we see
the increase of the epidemic threshold before p∗ and the subse-
quent decrease as reported in Fig. 2; but as we decrease γ from
1 to 0 (thus gradually restricting the mobility of the infected
individuals) the critical behavior of the system becomes more
favorable to the epidemic extinction. As the mobility of the
infected individuals is more restricted, the epidemic threshold
increases with increasing mobility. In the particular example
reported in Fig. 4, the critical behavior of the epidemic thresh-
old is monotonically increasing for values of γ � 0.3. We also
observe that the change in the curvature of all the epidemic
threshold functions coincides at exactly the expected value of
p∗, which in this case is 0.5 given that the number of residential
and common sites is the same (D = C). Following the behavior
observed in Fig. 2, we also tried the configurations D < C and
D > C and obtained that the crossing point of all curves is
p∗ > 0.5 and p∗ < 0.5 respectively, as expected, for the case
of unweighted fully connected bipartite connectivity matrices.

FIG. 4. Epidemic threshold βc as a function of the mobility
parameter p, for different values of the isolation factor γ . (In print,
lighter hues of gray correspond to lower values of the isolation factor.)
For this plot we have used a fully connected unweighted bipartite
network consisting of ten residential sites and ten common locations.
All residential patches are of size 100 and the recovery probability is
μ = 0.1. We observe that the curves cross at exactly the expected
value p∗ = 0.5 given that there are exactly the same number of
residences and common sites (see main text for a broader explanation).

VI. CONCLUSIONS

Summarizing, in this work we have proposed an analytical
model to explore the spreading of epidemics in localized
environments with non-random, recurrent mobility patterns.
The critical properties of the epidemic process have been
determined and corroborated by simulations. The results show
that the main effect of the recurrent mobility is that the
epidemic threshold depends on the mobility probability in a
non-monotonic way, presenting an optimal value for which the
epidemic is most contained. We also show that restricting the
mobility of the infected individuals is an effective mechanism
to to delay the critical threshold, specially for high values of
the mobility. Importantly, the presented approach allows the
appropriate modeling of epidemics on realistic scenarios that
include recurrent mobility among bipartite structures, such as
university campuses, home-to-work commutes or the spread-
ing of disease in cities. The current formulation of this model
is applicable to particular cases which may require locations of
heterogeneous sizes, weighted connectivity and different topo-
logical structures, and allows determining whether isolation
strategies are worth implementing in such specific scenarios.
The presented model not only offers analytical insights to the
very important problem of epidemic spreading in localized
environments but could also become a powerful tool to use in
data analysis and policy making.
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