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Abstract. Extraction of cell nuclei from hematoxylin and eosin (H&E)-stained histopathological images is an
essential preprocessing step in computerized image analysis for disease detection, diagnosis, and prognosis.
We present an automated cell nuclei segmentation approach that works with H&E-stained images. A color
deconvolution algorithm was first applied to the image to get the hematoxylin channel. Using a morphological
operation and thresholding technique on the hematoxylin channel image, candidate target nuclei and back-
ground regions were detected, which were then used as markers for a marker-controlled watershed transform
segmentation algorithm. Moreover, postprocessing was conducted to split the touching nuclei. For each seg-
mented region from the previous steps, the regional maximum value positions were identified as potential nuclei
centers. These maximum values were further grouped into k -clusters, and the locations within each cluster were
connected with the minimum spanning tree technique. Then, these connected positions were utilized as new
markers for a watershed segmentation approach. The final number of nuclei at each region was determined by
minimizing an objective function that iterated all of the possible k -values. The proposed method was applied to
the pathological images of the tumor tissues from The Cancer Genome Atlas study. Experimental results show
that the proposed method can lead to promising results in terms of segmentation accuracy and separation of
touching nuclei. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this

work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JMI.4.2.027502]
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1 Introduction
With the advent of fast digital slide scanners, tissue histopathol-
ogy slides are now able to be digitized and stored in a digital
image form that can be repeatedly accessed and examined by
pathologists.1–5 In practice, different components of the tissue
are dyed with different stains so that the specific tissue compo-
nents can be differentiated in digital histopathology images, to
facilitate visual inspection by pathologists. Hematoxylin and
eosin (H&E) staining is a widespread staining protocol and
has been widely used in pathological staining. Hematoxylin
stains the nuclei in a dark blue color while eosin stains cyto-
plasm as pink,5 which enables morphological feature analysis
related to cell nuclei.

Pathological examination, in which a series of H&E-stained
histopathological slides are manually examined by pathologists
for disease diagnosis, is a time-consuming and labor-intensive
task. More importantly, this process is subjective, prone to error,
and has large inter- and intraobserver variation. Due to the
heterogeneity and morphological complexity of tumors, it is
a challenging task even for well-trained pathologists to reach
an agreement when diagnosing a tumor sample by visual

inspection of H&E-stained images. For example, the reproduc-
ibility and consistency of breast cancer grading are poor with a
manual analysis method.5–7 Diagnosis results with a traditional
visualization scheme may be even less reliable in developing
countries because of the persistent shortage of sufficiently
trained pathologists. Therefore, it is essential to develop an auto-
mated analysis system to improve the efficiency and accuracy of
disease diagnosis by digital pathological images.

Automated cell nuclei segmentation is an essential prepro-
cessing step in various automated analysis systems that use dig-
ital histopathological images, including cancer classification,
recognition, and grading.5–10 In the segmentation step, a digital
image is partitioned into multiple parts, in which each part has
a similar texture or intensity value.11–14 Segmentation is usu-
ally the first and most vital step since the segmentation
results directly determine the success of the final analysis.
Consequently, a variety of segmentation approaches have
been developed. In a broad sense, the segmentation methods
can be divided into six categories: thresholding,11,15 region
growing,11,16 clustering,11,17 watershed,11,18 active contour
model,19,20 and graph cut.21,22 Segmentation of cell nuclei has
been attempted using threshold-based methods.23–26 However,
these methods may lead to under- and oversegmentation prob-
lems due to the variability across images or heterogeneity within
the cell nuclei. On the other hand, threshold-based methods are
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very efficient and have been widely used as an initial step for
further processing or in combination with other methods, such
as morphological operation24,27,28 and the watershed transform
technique,29 to achieve the final segmentation results. In
Ref. 30, the region growing algorithm is used to extract the
cell nuclei. The proposed methods in Ref. 30 would still result
in an oversegmentation problem when heterogeneity appeared
in the cell nuclei, which is a common situation in H&E-stained
images. Even though the region growing-based method in
Ref. 31 can solve the heterogeneity problem to some extent
by using multiple scale images, it cannot handle the touching
and overlapping cell nuclei. In Refs. 32–37, clustering-based
methods were applied to the nuclei segmentation, but it was
found that the clustering method is sensitive to the intensity var-
iations within the nuclei. Furthermore, it is challenging to define
the number of clusters when the image is complex. Therefore,
the clustering algorithm is sometimes used as a preprocessing
step for further nuclei segmentation.38 In Refs. 33, 39–42, the
cell nuclei were identified with the watershed algorithm, and
the segmented regions were further merged with other methods,
such as region growing and graph cut. To reduce the overseg-
mentation problem, the marker-controlled watershed algorithm
is used in cell and cell nuclei segmentation.5,29,43,44 The marker-
controlled watershed technique is also widely used to separate
touching or overlapping nuclei as a postprocessing step.45–47 The
difficulty for this algorithm is how to better identify these mark-
ers in nuclei images. In Ref. 47, the markers are determined with
distance transform,11 whereas in Ref. 5, the markers are esti-
mated with gradient-weight distance transform.5 In Ref. 48,
the markers are decided with H-minima transform.48,49 How-
ever, these marker detection methods sometimes make one tar-
get have more than one marker because they are unable to derive
the number of targets within a region. Therefore, they still pro-
duce an oversegmentation problem. In Refs. 50–52, the active
contour models are used to segment the cell nuclei. However,
these methods still produce an oversegmentation problem
when high variation exists within the nuclei and cannot separate
the touching or overlapping nuclei without further processing.
Moreover, these methods are sensitive to initialization and other
artifacts present in the tissue image. They are also restricted
in computational efficiency. In Refs. 53 and 54, methods based
on graph cut are used to segment the cell nuclei. However, they
cannot split the touching and overlapping nuclei. In Ref. 42, the
two-stage graph cut is applied to segment the overlapping
nuclei, but it is not easy to assign the corresponding weight. In
Ref. 54, graph cut combined with the α-expansion algorithm54,55

is utilized for nuclei segmentation. It is computationally expen-
sive and loses the global optimal minimum value of the graph
cut. In Ref. 56, nuclei segmentation is achieved by incorporating
nuclei shape information into the graph cut. But it considers
only the healthy nuclei, and this makes its application limited.

In summary, there is no single method that can handle all the
segmentation problems well. For automated cell nuclei segmen-
tation for H&E-stained histopathology images, there are three
challenges.48,57 First, there is large variation among H&E-
stained images, which is probably caused by the process of
slide preparation and image acquisition. Second, the intensities
of the background regions (nonnuclei areas) in H&E-stained
images are uneven, which complicate the separation of nuclei
and nonnuclei. Third, a three-dimensional structure of tumor tis-
sues is captured as a two-dimensional histopathological image,
in which cell nuclei are often “touching” and “overlapping”with

each other, which makes it difficult to separate the individual
cell nuclei. For example, two H&E-stained histopathological
images are shown in Fig. 1. A robust cell nuclei segmentation
algorithm is needed to overcome the aforementioned problems.

In this study, we aim to develop a fully automatic method for
nuclei segmentation in H&E-stained histopathology images.
The color deconvolution technique, thresholding, and morpho-
logical operations are applied as preprocessing steps for nuclei
segmentation so as to make the method robust to the variation
and heterogeneity existing in nuclei images. The marker-con-
trolled watershed is used to handle the touching nuclei problem
while k-means combined with an objective function is utilized to
find the appropriate number of nuclei within overlapping
regions. The paper is organized as follows: in Sec. 2, the pro-
posed algorithm is presented in detail. In Sec. 3, we show the
experimental results. In Sec. 4, we give the conclusions and
future work.

2 Methodology
The method begins with a color deconvolution algorithm that
separates the H&E-stained histopathology image into H&E
channels. Then, morphological operations and thresholding
techniques are applied to the hematoxylin channel so that the
markers are determined for the use of nuclei segmentation
with the marker-controlled watershed transform algorithm.
Finally, the segmentation results are refined with the marker-
controlled watershed approach again by minimizing an objec-
tive function that can estimate the number of overlapping nuclei
in the segmented regions. The flow diagram of our proposed
method is shown in Fig. 2.

Fig. 1 Two H&E-stained histopathological images (magnification:
40×).

Fig. 2 Flow diagram of the proposed segmentation algorithm.
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2.1 Color Deconvolution

The color deconvolution framework was proposed by Ruifrok
and Johnston58 in 2001 and has been successfully applied in
histopathology images.5 The color deconvolution technique is
based on the fact that the imaging process can be simulated
with the Lambert–Beer law.58 Consequently, the relationship
between the RGB color spaceΩ and a new color space € defined
by the stains can be expressed as

EQ-TARGET;temp:intralink-;e001;63;657Ω ¼ expð−M€Þ; (1)

where M is the stain matrix or convolution matrix. Therefore,
the intensity referring to the stain concentration in the new
color space € is derived as

EQ-TARGET;temp:intralink-;e002;63;593€ ¼ M−1E; (2)

where M−1 is the inverse of stain matrix M and E ¼ − logðΩÞ
represents the optical density, which has combined the informa-
tion on the absorbance and concentration of stains.58 Therefore,
the amount of each stain in color space € can be achieved once
the stain matrix or convolution matrix M is estimated. Even
though many methods were proposed to estimate the stain
matrix, the method presented in Ref. 59, which has shown better
performance and is insensitive to imaging conditions, is applied
in our proposed nuclei segmentation method. An example of
color deconvolution from RGB space to H&E space is
shown in Fig. 3. It can be visually seen that the adopted algo-
rithm is robust to separating the RGB image into the H&E
image. All the subsequent processing is conducted on the hema-
toxylin channel image since the cell nuclei in the tissue section
are dyed with hematoxylin.

2.2 Morphological Operations

Even though the color deconvolution algorithm can separate the
image from RGB space into H&E space, the hematoxylin image
still has an intensity variation problem within the cell nuclei.
Fortunately, the morphological operations can remove unneces-
sary structures within the nuclei and make the nuclei region
much smoother. The two main morphological operations
applied to the hematoxylin image are opening by reconstruction
and closing by reconstruction.11 Opening by reconstruction is a
morphological transform involving morphological erosion11 fol-
lowed by morphological reconstruction.11 It can filter out the

unconnected bright targets that are smaller than the structuring
element and preserve the shape of image objects that are bigger
than the structuring element. Conversely, closing by reconstruc-
tion is defined as the morphological dilation operation11 fol-
lowed by the morphological reconstruction operation.11 This
operation can remove unconnected dark objects smaller than
the structuring element in the cell nuclei while still leaving
the background unchanged. As described in Ref. 5, the differing
sizes of the structuring element11 used in morphological oper-
ations will result in varied segmentation results. It is also
claimed that the size of the structuring element should be
selected according to the size of the nuclei and the resolution
of the H&E-stained image.5 In this study, a disk-shaped struc-
turing element with a radius of ∼7 is used while the magnifica-
tion of the histopathological slide image is 40×. We also
experimentally verify that our algorithm is not very sensitive
to the size of the structuring element when the radius of the
structuring element is smaller than 8 in this step. Further-
more, the morphological filling operation11 is applied to the
image after applying opening by reconstruction and closing
by reconstruction, to make the segmentation result less sensitive
to the size of the structuring element.

2.3 Thresholding

After a series of morphological operations to the hematoxylin
channel, the cell nuclei tend to be flat and the difference between
nuclei and background is enlarged. That is, the image starts to
consist of two classes (foreground and background), and the pix-
els in the image follow a bimodal histogram. Consequently, an
automated thresholding technique will work well to briefly
detect the cell nuclei. On the other hand, if a fixed threshold
is used to identify the nuclei in the thresholding segmentation,
it will fail when different images with high variation need to be
processed. In this paper, Otsu’s method11 to automatically find
the threshold value is applied to briefly segment the cell nuclei.
Otsu’s algorithm exhaustively searches for the threshold that can
minimize the intraclass variance, which is given as11

EQ-TARGET;temp:intralink-;e003;326;337σ2ωðTÞ ¼ ω1ðTÞσ21ðTÞ þ ω2ðTÞσ22ðTÞ; (3)

where σ2i (1 ≤ i ≤ 2) are the variances of the two classes and
weights ωi are the probabilities of the two classes separated
by a threshold T. The weights ω1ðTÞ and ω2ðTÞ can be further
obtained with the following equations:

Fig. 3 Color deconvolution: (a) H&E-stained image, (b) hematoxylin channel image, and (c) eosin chan-
nel image.
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EQ-TARGET;temp:intralink-;e004;63;429ω1ðTÞ ¼
XT
i¼1

PðiÞ and ω2ðTÞ ¼
XI

i¼Tþ1

PðiÞ; (4)

where I is the maximum intensity value and PðiÞ is the prob-
ability of intensity value i occurred in the image. An example of
applying Otsu’s method to a morphologically processed image
is shown in Fig. 4(b).

2.4 Marker-Controlled Watershed Transform
Segmentation

For marker-controlled watershed segmentation, the main step is
to appropriately identify the markers, which consist of internal
and external markers.11–13 The internal markers represent the
cell nuclei that we are looking for, while the external markers
represent the background regions around all of the cell nuclei.
The external markers should be a connected component in the
image. When the markers are determined, the watershed trans-
form can find the peaks or watersheds between the internal and
external markers based on the magnitude gradient hematoxy-
lin image.

After applying the thresholding operation with Otsu’s
method to the morphologically operated hematoxylin image,
the boundaries of some nuclei in the resulting binary image
would appear irregular and have some protrusions. Therefore,
the morphological opening operation, which is a morphological
erosion followed by a dilation operation,11 is used to make the
boundary smooth. The disk-shaped structuring element with
radius 3 is utilized for the morphological opening, which can
smooth the boundary and remove small protrusions at the
same time. To mark the internal markers referring to cell nuclei,
the distance transform algorithm11 is first applied to the
smoothed binary image. To be specific, the distance transform

of a foreground pixel p (location with 1 value in the binary
image) is calculated as11

EQ-TARGET;temp:intralink-;e005;326;730DðpÞ ¼ minq∈B dðp; qÞ; p ∈ F; (5)

where pixel p belongs to the set of background pixels B (loca-
tions with zero value in the binary image), F is the set of fore-
ground pixels, and dðp; qÞ means the distance between pixel p
and pixel q. Here, the Euclidean distance is adopted while other
distance metrics, such as chessboard, cityblock, and quasi-
Euclidean, can be also used.60 With this distance transform,
the values would be zero at the background regions and the rel-
atively high values would tend to be at the locations of the cen-
ters of the cell nuclei. Then, the internal markers are obtained by
using H-maxima transform48 with a threshold value of 3 on the
distance-transformed image. The H-maxima transform can sup-
press all maxima in intensity images with an intensity value
smaller than the threshold value to be zero, and it can make
the values of other maxima locations to be the threshold
value. Therefore, the locations having a threshold value in
the H-maxima transform are regarded as the foreground and
used as the internal markers. The distance transform and H-
maxima transform can make the internal markers keep the
shape of the cell nuclei. Since the threshold value used in the
H-maxima transform is the small value 3, it can only separate
the slightly touching cell nuclei. However, we focus on nuclei
separation in the segmentation refinement part and try to make
the preceding processes as flexible as possible. The small thresh-
old value in H-maxima transform would make it robust enough
to avoid losing some small cell nuclei. On the other hand, the
locations with zero values in H-maxima transform are taken as
the background, and the morphological skeleton11 of the back-
ground is viewed as external markers. The morphological skel-
eton of a connected region I is expressed in terms of erosions
and openings and can be given as11

EQ-TARGET;temp:intralink-;e006;326;369SðIÞ ¼
[K
K¼0

fðI⊖kBÞ − ½ðI⊖kBÞ ∘ B�g; (6)

where B is a structuring element, ðI⊖kBÞ means k-successive
erosions of region I while K is the last iterative step before I
erodes to empty, and ∘ indicates the morphological opening
operation.11

Once the internal and external markers are determined, they
are combined as final markers and used to modify the magnitude
gradient hematoxylin image that can be achieved with Sobel
detection or morphological operation methods.11 The gradient
image is adjusted by the use of the minima imposition
technique11 so that the regional minima in the gradient image
only occur at the locations that have markers. Applying the min-
ima imposition algorithm to the gradient hematoxylin image, Ig
with final markers M is described as follows:11

EQ-TARGET;temp:intralink-;e007;326;176I 0g ¼ Rε
½ðIgþ1Þ∧M�ðMÞ; (7)

where Rε
AðBÞ means the morphological erosion reconstruction

of B from A and ∧; stands for the point-wise minimum between
(Ig þ 1) and M. Therefore, the oversegmentation problem is
reduced when the watershed transform technique is applied to
the modified gradient hematoxylin image. An example of the
H&E-stained image labeled with markers (internal and external

Fig. 4 Segmentation processes: (a) hematoxylin channel image,
(b) thresholding, (c) markers (green color), and (d) segmentation
results.
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markers) and the segmentation result from the marker-controlled
watershed transform algorithm are shown in Figs. 4(c) and 4(d).

2.5 Segmentation Refinement

Even though the preceding processing steps can get coarse seg-
mentation results quickly and separate the slightly touching cell
nuclei, some overlapping nuclei cannot be divided, and, thus, a
refinement process is necessary. The main method applied for
splitting the overlapping nuclei is also a marker-controlled
watershed transform algorithm, and the key point is how to
determine the number of cell nuclei in a connected region.
Other algorithms used in this section consist of gradient-
weighted distance transform,61 k-means,32 and minimum span-
ning tree.62

In this refinement step, each region, ϑ, in the segmented
hematoxylin image from the previous result is evaluated sepa-
rately. First, each region, ϑ, is conducted with gradient-weighted
distance transform.61 Gradient-weighted distance transform, as
its name reveals, combines the image gradient with the spatial
distance information. It can be mathematically expressed as11

EQ-TARGET;temp:intralink-;e008;63;524Dg ¼ D × exp

�
1 −

G − Gmin

Gmax − Gmin

�
; (8)

where D is the distance transform map, G is the gradient trans-
form map, and Gmin and Gmax are the minimum and maximum
values in the gradient map G, respectively. It can be noted that
the Dg value tends to be high at positions closer to the target
center and locations with smaller gradient values. On the
other hand, theDg value becomes smaller at the object boundary
and at positions with big gradient values. The gradient-weighted
distance transform is suited for providing the separation cue
because the pixels with larger gradient values are more likely
to be located at the nuclei boundary or at the boundary
among overlapping cell nuclei. Then, the regional maxima in
gradient-weighted distance transform image Dg are detected.
Supposing a total n regional maxima are achieved in this
step, it means there may, at most, be n objects in this region
because more than one regional maxima can be detected on
some targets due to the irregularity of the target shape. Some
regions with multiple regional maxima are presented in Fig. 5.

Then, the k-means algorithm is applied to the n regional
maxima points. k-means is a clustering technique that aims
to minimize the within-cluster sum of squares defined as

EQ-TARGET;temp:intralink-;e009;326;752O ¼
Xk
j¼1

Xm
i¼1

kxðjÞi − cjk2; (9)

where k is the number of clusters,m is the number of data points
in the i’th cluster, xðjÞi is the i’th data point in the j’th class, cj
represents the mean of points in the j’th group, and kxðjÞi − cjk
is the Euclidean distance between xðjÞi and cj. To use the
k-means algorithm, the number of clusters should be defined
in advance. Here, we know that the number of clusters (number
of targets in that region) could be any number between 1 and n.
As a result, we applied the k-means approach to the n regional
maxima points by varying the number of clusters from 1 to n,
respectively. Then, the data points within each cluster are con-
nected by using a minimum spanning tree scheme62 and are
regarded as the internal markers. We utilize the connected
maxima points but not the cluster centroid point as the markers
because the cluster centroids may be distant from the maxima
points, whereas the minimum spanning tree can connect all the
elements within the cluster together with the minimal total
weighting for its edges. Once the internal markers are deter-
mined, the results of morphological erosion to the complement
of region ϑ using the structuring element with radius 3 are used
as external markers. Then, the marker-controlled watershed
transform algorithm is applied to the gradient hematoxylin
image modified with the internal and external markers using
the minima imposition technique. Consequently, we can get k
segmented regions within region ϑwhile each subregion is mod-
eled as an ellipse that is represented as

EQ-TARGET;temp:intralink-;e010;326;435 ½ðx − cxÞ cosðαÞ þ ðy − cyÞ cosðαÞ�2
a2

þ ½ðx − cxÞ sinðαÞ − ðy − cyÞ cosðαÞ�2
b2

¼ 1; (10)

where a and b are the major and minor axis, respectively, cx and
cy are the center points, and α is the rotation angle between the
x-axis and the major axis. All these ellipse parameters are mea-
sured by analyzing the connected component in the previously
segmented image resulting from region ϑ. Still, the potential
number of touching objects in region ϑ is unknown up to
now, and we have developed an objective function to estimate
the target number based on the assumption that each object tends
to be an elliptical shape. The objective function is expressed as

Fig. 5 Regional maxima detection: (a) gradient-weighted distance transform to the mask of segmented
image and (b) regional maxima (marked in green dot).
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EQ-TARGET;temp:intralink-;e011;63;591ξðKÞ ¼
XK
i¼1

XJ
j¼1

jPj
i ∈= ϑj þ

XM
m¼1

����Pm
ϑ ∈=

[K
i¼1

Ei

����; (11)

where Pj
i is the j’th point on the i’th fitted ellipse, Pm

ϑ denotes
them’th point on region ϑ, Ei represents the i’th fitted ellipse, K
means the number of clusters, J is the total number of points
within the i’th ellipse, andM is the total number of points within
region ϑ. jPj

i ∈= ϑj equals 1 if Pj
i ∈= ϑ. Otherwise, it is 0. The

definition of jPm
ϑ ∈=

S
K
i¼1 Eij is similar to jPj

i ∈= ϑj. The illustra-
tion of the above equation is given in Fig. 6.

Therefore, the potential number of targets in region ϑ is esti-
mated by choosing the cluster number K that achieves the mini-
mum ξ value, and the corresponding segmentation results are
used as the final ones for that region. All other regions are ana-
lyzed with a similar procedure so that the overlapping objects
are appropriately separated. The whole procedure of this seg-
mentation refinement part is given in Algorithm 1

It should be noted from Algorithm 1 that the iterations within
the inner loop are independently processed and the iterations
within the outer loop are also independently executed.
Therefore, the segmentation refinement steps are suitable for
parallel computing. Either the outer or inner loop can be
designed as a kernel function on a device [graphics processing
unit (GPU)] and runs on a multicore GPU in parallel.63 The data
resulting from lines 2, 3, 5, 6, and 7 are visited commonly by each
iteration, and it is better to load them into the shared memory on
GPU to speed-up the data access if the memory size will allow it.
The kernel function from the outer loop can even call the kernel
function from the inner loop with a Compute Unified Device
Architecture dynamic parallelism technique.63 However, when
the image is very small and only a few regions are detected,
such as when the total iteration number in the loop is much
smaller than the number of cores on the GPU, the speed-up
would be limited because there is a data transfer latency between
the central processing unit (CPU) and GPU.

3 Experimental Results
In this section, 10 H&E-stained histopathological slide images
with lung cancer were randomly selected from The Cancer
Genome Atlas (TCGA) dataset. All the slide images we studied
were measured based on the tissue of lung cancer and checked
by an experienced pathologist, whereas slide images of low
quality, such as those containing severe artifacts, were excluded
from our research. These slide images in TCGA were obtained
using the whole slide scanner at a magnification of 40× with
a resolution of 0.25 μm∕pixel or 20× with a resolution of
0.50 μm∕pixel. In this study, we only used slide images with
a resolution of 0.25 μm∕pixel. However, the proposed nuclei
extraction approach was also performed on slide images with
a resolution of 0.50 μm∕pixel by either resizing those images
or reducing the size of the structuring element used in the mor-
phological operation in our algorithm. From each slide image,
two images with sizes of 350 × 350 and having an average of
70 cell nuclei were randomly selected from a tumor region
labeled by a pathologist while analyzing the nontumor region in
the slide images was beyond the scope of this paper. Then, the

(a)                        (b)

Fig. 6 Illustration of objective function in Eq. (11). [The area under red dot mark is the value of Eq. (11),
the white object is cells and the fitted ellipse is marked in blue.]

Algorithm 1 Procedure of segmentation refinement.

1: Input previous segmentation image obtained from Sec. 2.4.

2: Label all the regions (suppose a total of M connected regions).

3: Perform gradient-weight distance transform.

4: For i from 1 to M

5: Extract the i ’th region.

6: Erode the complement of the i ’th region and use the resulting
image as external markers.

7: Detect the regional maxima within the i ’th region (suppose total N
maxima in the i ’th region).

8: For j from 1 to N

9: Apply k -means scheme to the N maxima while cluster number
is set to be j .

10: Connect cluster members with minimum spanning tree
technique and use the connected points as internal markers.

11: Modify gradient hematoxylin image with the above markers
(internalþ external markers).

12: Apply watershed transform algorithm to modified gradient
hematoxylin image.

13: Fit each segmented region with an ellipse shape.

14: Measure ξ value with Eq. (11).

15: End

16: Choose j ’th segmentation result as the separation result of i ’th
region where j achieves the minimum ξ value in the above loop.

17:End
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nuclei extraction process was conducted on these images. The
segmentation procedure was implemented in MATLAB®

R2015b and was conducted on a desktop personal computer
with a 3.40-GHz Intel Core i7-4770 processor.

Figure 7 shows some segmentation results with our proposed
algorithm, from which it can be visually seen that our scheme

can achieve reasonable nuclei extraction results. To show the
robustness of our method, the segmentation algorithms pre-
sented in Refs. 5, 29, and 56 were used as comparisons. The
nuclei segmentation results achieved from the method in
Refs. 5, 29, and 56 are also given in Fig. 7, and it is noted
that the method in Refs. 5, 29, and 56 produced more

Fig. 7 Examples of some segmentation results: (a) original H&E-stained image, (b) segmentation results
with our proposed method, and (c) to (e) segmentation results with method in Refs. 5, 29, and 56,
respectively.
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undersegmentation problems. These segmentation results were
also quantitatively analyzed. Here, the Dice similarity coeffi-
cient (DCS), sensitivity (SN), and positive predictive value
(PPV)5 were adopted as metrics for the segmentation evaluation.
The DCS, which is a measure of overlap between two areas, is
widely used as a segmentation evaluation and is defined as

EQ-TARGET;temp:intralink-;e012;63;686DSCðAseg; AgtÞ ¼ 2
jAseg ∩ Agtj
jAsegj þ jAgtj

; (12)

where Aseg and Agt are the segmented region and the region of
“ground truth” that are extracted by an expert pathologist and
j • j means the number of pixel points in a certain region
(Aseg or Agt). The DCS tends to be 1 when the segmentation
results are very similar to the ground truth. For a segmentation
approach, the value of the DCS is the higher, the better. The SN
and PPV, which are metrics to evaluate target detection, are
given as follows:

EQ-TARGET;temp:intralink-;e013;63;552SN ¼ TP

TPþ FN
; PPV ¼ TP

TPþ FP
; (13)

where TP is the true positive, which refers to the number of cell
nuclei correctly detected; FP is the false positive, which repre-
sents the number of cell nuclei incorrectly detected; and the FN
is the false negative, which denotes the number of cell nuclei
undetected. Similar to the DCS, the higher the values for SN
and PPV, the better the proposed segmentation algorithm. Here,
a total of 10 images extracted from 10 randomly selected slide
images are interactively segmented by a pathologist with the
method present in Ref. 64, and these segmented cells are
used as the ground truth for a metrics measurement. There
are a total of 600 nuclei in the 10 extracted images. The method
in Ref. 64 was chosen to get the ground truth nuclei because the
segmentation results can be improved by interactively labeling
more nuclei target regions and background regions based on
segmentation results from the previous step until satisfactory
results are achieved. Since the truthing process is time–consum-
ing, the evaluation is only based on a set of randomly sampled
data, which could be a potential limitation of this study. The
results of the quantitative evaluation of our proposed segmen-
tation algorithm and those from Refs. 5, 29, and 56 are given
in Table 1. A t-test65 was conducted for all metrics between
the proposed method and the other three approaches. All p val-
ues were smaller than 0.01, which means the difference is sig-
nificance. Consequently, it can be seen from Table 1 that the
performance of our proposed approach is superior to the
other three methods. The main reason affecting the segmenta-
tion results in Ref. 5 may be the criterion to merge segmentation
results under different image scales, while it is not easy to set the

predefined threshold in Ref. 29 that will affect marker extraction
and the final segmentation results. It is assumed in Ref. 56 that a
one-to-one correspondence between the markers and objects
exists. However, this will produce an under- or oversegmenta-
tion problem when the assumption is not satisfied. In fact, the
assumption is not satisfied in many histopathological slide
images because of the complex boundaries of the cell nuclei.

The ability to separate touching nuclei is another element that
needs to be evaluated in the nuclei segmentation algorithm. The
segmentation results using our proposed methods and those in
Refs. 5, 29, and 56 are presented in Fig. 8. It can be found that
our method is robust enough to separate the touching nuclei.
However, the methods in Refs. 5, 29, and 56 fail to separate
some overlapping nuclei and produce an oversegmentation
problem. Here, the underseparating, overseparating, and
encroachment errors are used to quantitatively evaluate the per-
formance of cell nuclei separation in the segmentation algo-
rithm. Underseparating is defined as no splitting of the
touching nuclei, whereas overseparating refers to separation
within a single nontouching cell, and the encroachment error
is described as an incorrect nucleus separation.66 A total of
224 regions having connected nuclei are used to statistically
determine the predefined metrics. Table 2 shows the quantitative
evaluation results. It can be found that our proposed method can
achieve better nuclei separation in terms of underseparating,
overseparating, and encroachment errors. It is not robust to
detect the number of nuclei in touching nuclei regions in
Refs. 5, 29, and 56. Consequently, it sometimes fails to separate
a touching region or produces an oversegmentation problem.

A comparison of time consumption (TC) on a CPU for our
proposed method and those in Refs. 5, 29, and 56 is listed in
Table 3. These results are achieved from 10 images and each
one has a size of 350 × 350. It can be noted that the TC of
our method is on average higher than the approaches in
Refs. 29 and 56 while it is less than the scheme in Ref. 5.
This can be explained as the required time being strongly
affected by the complexity of the algorithm, especially in the
segmentation refinement part among these algorithms. For
the methods in Refs. 29 and 56, the postprocessing step is
only involved in the distance transform and morphological oper-
ation, and it is much simpler than our method and that in Ref. 5.
However, the method in Ref. 5 is more complex than our algo-
rithm because many cell features need to be measured and multi-
ple scale images are processed. Even though our proposed
algorithm is not the most efficient one in terms of TC, our
method has better results in terms of segmentation accuracy
and cell nuclei separation (see Tables 2 and 3).

There are many parameters in our proposed algorithm, and
some of them are hyperparameters that will affect the final seg-
mentation results. Therefore, it is necessary to know more about
these parameters. In Sec. 2.1, there is no variable that needs to be
set manually. In Sec. 2.2, two kinds of morphological opera-
tions, which are opening by reconstruction and closing by
reconstruction, are involved in the size of the structuring
element. Usually, the size of the structuring element in this
step should be similar to the size of the nuclei. However, the
size of the nuclei is very flexible and not fixed, which increases
the difficulty of selecting the size of the structuring element. We
have conducted an SN analysis and the results are robust against
choices of the size of the structuring element when it is around 7.
In Sec. 2.3, there is no hyperparameter because the threshold
value is automatically searched based on the image. In

Table 1 Evaluation results of cell nuclei segmentation.

Metrics DSC SN PPV

Method in Ref. 5 0.815 0.900 0.928

Method in Ref. 29 0.794 0.877 0.885

Method in Ref. 56 0.755 0.819 0.932

The proposed method 0.880 0.931 0.985
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Sec. 2.4, the radius of the disk-shaped structuring element is
assigned as 3, which would be used in the morphological open-
ing operation so as to make the object boundary smooth. A small
disk-shaped structuring element is enough to smooth the boun-
dary, while a bigger structuring element would undermine the
shape of the nuclei. Therefore, it is suggested to set this radius
value to be 3. In addition, there is another parameter in Sec. 2.4,
which is a threshold value. The threshold value is used to get the
internal markers by combining with the H-maximum transform.
This threshold value is set to be the small value 3 that will keep
the internal marker having the nuclei’s shape. Even though a
small threshold value can separate some slightly connected
nuclei, it cannot dispatch other nuclei with more areas

Table 2 Evaluation results of cell nuclei separation.

Metrics Undersplit Oversplit Encroachment error

Method in Ref. 5 0.112 0.025 0.161

Method in Ref. 29 0.192 0.029 0.138

Method in Ref. 56 0.143 0.056 0.143

The proposed method 0.076 0.022 0.098

Fig. 8 Separation of touching cell nuclei: (a) original H&E-stained image, (b) separation results with our
proposed method, and (c) to (e) separation results with method in Refs. 5, 29, and 56, respectively.

Table 3 Evaluation results of consuming time (unit: s).

Image
Method in
Ref. 5

Method in
Ref. 29

Method in
Ref. 56

The proposed
method

Image 1 8.55 2.47 2.69 2.70

Image 2 7.33 2.58 2.97 3.83

Image 3 6.54 2.41 2.67 3.39

Image 4 8.50 2.58 2.88 3.85

Image 5 6.94 2.61 2.97 4.41

Image 6 9.37 2.67 2.91 4.45

Image 7 10.06 2.77 2.97 4.65

Image 8 10.34 2.68 2.98 4.10

Image 9 11.50 2.60 2.67 5.09

Image 10 9.54 2.55 2.59 3.99

Average 8.87 2.59 2.83 4.05
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overlapping. However, this small threshold value will not affect
the final segmentation results, because the nuclei separation is
specifically done in the segmentation refinement part. In other
words, the final result is not very sensitive to this threshold value
when it is around 3. Moreover, the disk-shaped structuring
element used in the morphological skeleton algorithm has the
smallest size and is fixed. Therefore, it can be viewed as a con-
stant. In Sec. 2.5, the number of clusters in the k-means algo-
rithm is iteratively given and the proper one is selected once the
objective function is minimized. That is, the value of this var-
iable is automatically obtained. Additionally, all the parameters
in Eq. (10) are measured from the segmentation results at the
previous step. Thus, no parameter value should be manually
given in advance. In other words, there are no parameters
that need to be tuned in Sec. 2.5.

4 Conclusions and Future Work
In this paper, we developed an automatic method that is able to
segment cell nuclei in H&E-stained histopathological images.
The hematoxylin image that can appropriately represent the
concentration of the hematoxylin stain is obtained with a
color deconvolution algorithm, and all of the following proc-
esses are conducted based on the hematoxylin image.
Morphological operations and automated thresholding tech-
niques applied to the hematoxylin image make the segmentation
result robust to the nuclei diversity and image heterogeneity
while the segmentation results are further refined by minimizing
a designed objective function so that the clustered cell nuclei can
be separated. Our experimental results reveal that the proposed
nuclei extraction approach can obtain good segmentation results
and achieve better performance in terms of segmentation accu-
racy and nuclei separation compared with other nuclei extraction
algorithms. We have tried different combinations of methods,
but this particular series of image processing methods gives
the best results among all other combinations. To the best of
our knowledge, the segmentation refinement method is an
idea that can determine the nuclei number within a connected
region and separate the multiple nuclei. Even though our method
has proven effective in separating touching nuclei, it still suffers
from an oversegmentation problem when the nuclei shape is far
from elliptical. Adding more information such as nucleus size
into the objective function may be a way to solve this problem.

Based on the nuclei segmentation results, it may be fruitful to
perform cell classification as a future work that would be ben-
eficial to pathologists. One idea is to extract the cell features
from the segmented cell nuclei and classify the cells by
using traditional classification schemes. Another is to extract
image patches centered with the segmented cell nuclei from
the original H&E-stained histopathological image and learn
the cell feature itself using a deep learning approach so that
the researchers no longer need to define and analyze the features
by themselves. The learned features may then be used for cell
classification. Furthermore, the proposed segmentation algo-
rithm may be helpful in cell tracking when a series of time-
lapse images are available, and the cell tracking can be benefi-
cial to the analysis of cell cycle progress and the understanding
of drug effects on cancer cells. Based on our experiences, this
methodology can be extended to other organs, such as breast and
kidney, in the same pathology because almost all malignant cells
have similar atypia in the nucleus from a pathologist’s view. It is
worth noting that the current method was developed based on
H&E-stained images with 40× magnification (which is usually

considered relatively high resolution for H&E-stained images).
When applying this method to lower resolution H&E-stained
images such as 20× magnification the size of the structuring
element used in the morphological operations needs to be
adjusted accordingly. In addition, this proposed method is more
suited to nuclei that have an ellipse-approximated shape. If the
cell nuclei are not in an ellipse-approximated shape, a situation
that is fairly uncommon, the proposed method may not work
well.
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