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Single-cell technology is a relatively new and promising way to obtain high-resolution

transcriptomic data mostly used for animals during the last decade. However,

several scientific groups developed and applied the protocols for some plant tissues.

Together with deeply-developed cell-resolution imaging techniques, this achievement

opens up new horizons for studying the complex mechanisms of plant tissue

architecture formation. While the opportunities for integrating data from transcriptomic

to morphogenetic levels in a unified system still present several difficulties, plant

tissues have some additional peculiarities. One of the plants’ features is that cell-to-cell

communication topology through plasmodesmata forms during tissue growth and

morphogenesis and results in mutual regulation of expression between neighboring

cells affecting internal processes and cell domain development. Undoubtedly, we must

take this fact into account when analyzing single-cell transcriptomic data. Cell-based

computational modeling approaches successfully used in plant morphogenesis studies

promise to be an efficient way to summarize such novel multiscale data. The inverse

problem’s solutions for these models computed on the real tissue templates can shed

light on the restoration of individual cells’ spatial localization in the initial plant organ—one

of the most ambiguous and challenging stages in single-cell transcriptomic data analysis.

This review summarizes new opportunities for advanced plant morphogenesis models,

which become possible thanks to single-cell transcriptome data. Besides, we show the

prospects of microscopy and cell-resolution imaging techniques to solve several spatial

problems in single-cell transcriptomic data analysis and enhance the hybrid modeling

framework opportunities.

Keywords: single-cell transcriptomics, cell-based computational models, plant morphogenesis, hybrid modeling

approach, modeling software, bioimaging, spatial gene expression maps, systems biology
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1. INTRODUCTION

Modern biology is going through the era of big data and
omics technologies. Single-cell sequencing (SCS) is one of
the breakthroughs and rapidly developing technologies. This
technology’s value is difficult to overestimate since it allows one
to describe with high accuracy the trajectories of cell development
and characterize individual cell types (Trapnell, 2015). A targeted
study of isolated cells is of particular importance in the
context of systems biology, as demonstrated on root hair cells
(Hossain et al., 2015). The main steps of SC analysis include
cellular dissociation, single-cell RNA sequencing (scRNA-seq),
dimensionality reduction, clustering, and reconstruction of
the developmental trajectories. McFaline-Figueroa et al. (2020)
provide currently available techniques for such kind of analysis.
However, such a data-driven approach provides only a partial
understanding of the developmental processes for different cell
types since it includes only the molecular level.

Thus, a combination of microscopy methods (Li et al., 2014)
and imaging techniques (Omari et al., 2020) could provide a
new level of understanding the developmental processes. In turn,
the combination of high-precision SCS approaches with high-
quality microscopic data can be integrated into mathematical
models describing morphogenesis. Therefore, we believe that
current methods for processing SC data should be coupled
with morphological data on a tissue level and computational
frameworks describing tissue development. Such a systemic-
biological cycle will allow researchers to find out the essential
spatiotemporal regulators of morphogenetic processes and
provide an in silico - in vivo verification of emerging hypotheses.

The relationship between growth characteristics of individual
cells and organogenesis was noted in the work of Hong
et al. (2018). In particular, it was shown that growth rate
and growth direction significantly affect organ developmental
processes, and, therefore, could determine the invariant organ
formations. Consequently, it is essential to study cells’ individual
characteristics to create a holistic picture of morphogenetic
processes at the tissue and organ levels. The main drivers of
morphogenesis are shown schematically below, in Figure 1. Stem
cells can divide, either symmetrically or with precise daughter-
cell size ratio, the so-called formative divisions, which are
fundamental determinants in the processes of morphogenesis
Smolarkiewicz and Dhonukshe (2013). Also, the emergence of
cellular patterns forming tissues significantly depends on the
anisotropic cell growth biomechanics, which occurs, in particular,
in tip-growing cells (Rounds and Bezanilla, 2013).

In addition to the mechanical factors influencing growth, it
is known that the formation of apical meristems (which are the
niches of undifferentiated stem cells) is complex and includes
molecular, hormonal and epigenetic levels of regulation (Ali

Abbreviations:A. thaliana,Arabidopsis thaliana L.; SC, single-cell; SCS, single-cell
sequencing; scRNA-seq, single-cell RNA sequencing; RNA-seq, RNA sequencing;
t-SNE, t-distributed Stochastic Neighbor Embedding; UMAP, Uniform Manifold
Approximation and Projection; LSM, Laser Scanning Microscopy; LS, Light-Sheet
Microscopy; SPM, Scanning Probe Microscopy; SIM, Structured Illumination
Microscopy; 3D-SEM, 3-Dimensional Scanning Electron Microscopy; ODE,
Ordinary Differential Equation; PDE, Partial Differential Equations.

et al., 2020). Moreover, the realization of the cell death program
is known to be a stimulating factor for hormone signaling in
developmental processes (Xuan et al., 2016), and a detailed
overview and classification of plant cell death can be found in
Locato and De Gara (2018).

The multilevel nature of morphogenetic processes increases
the need for systemic biological research that integrates
multilevel data. For example, a combination of advanced
microscopy, sequencing, and artificial intelligence allows us to
elaborate on the initial plant cell atlas (Rhee et al., 2019). We
also see great potential in complex studies and cell-based models
describing morphogenetic processes.

This review aims to show how the combination of SC data,
morphometric data, and cell-based models will expand our
understanding of tissue and organ morphogenesis. We discuss
the possibilities and prospects of such an integrative approach
for solving reverse problems, including SC data and tissue
imaging coupled with cell-based morphogenesis models. Finally,
we consider available tools for cell-based models and present our
cell-based modeling framework for morphogenetic processes.
This algorithm is iterative and includes six main steps: (i) model
formulation; (ii) design experiments to obtain microscopy and
scRNA-seq data; (iii) obtaining experimental data; (iv) data
analysis; (v) data integration into a hybrid (discrete-continuous)
mathematical model of morphogenesis; (vi) model validation
and verification.

2. EXISTING APPROACHES TO THE
ANALYSIS OF SINGLE-CELL DATA AND
THEIR POTENTIAL FOR CELL-BASED
MODELS

Characterizing the plant cell fate and ontogenesis using SC
technologies is a novel and promising approach for getting high-
resolution genomic data that reveals new facts about various cell
types. The first SC transcriptomic experiments have been carried
out for the model plant A. thaliana in 2019. For A. thaliana,
most of SC studies were conducted on root cells (Denyer et al.,
2019; Jean-Baptiste et al., 2019; Ryu et al., 2019; Shulse et al.,
2019; Turco et al., 2019; Zhang et al., 2019; Farmer et al., 2021).
Whereas, there are only two studies conducted on leaf tissues
(Kim et al., 2021; Lopez-Anido et al., 2021). Thus, for all the
main cell types of roots and leaves, the developmental trajectories
were revealed. Also, Zea mays, being a representative of C4-
photosynthetic cereals, is a promising object for SC experiments
due to the large size its cells, which allows to easily isolate
specific cells, for example, from the shoot apical meristem. To
date, there are studies based on the single-cell analysis for corn
tissues carried out on a shoot apex (Satterlee et al., 2020), phloem
(Bezrutczyk et al., 2021), and ears (Xu et al., 2021). The first and
so far only scRNA-seq on rice roots (Liu et al., 2021) revealed
significant differences in the characteristics of individual cell
types in comparison to the cell types of A. thaliana, which
indicates the presence of significant species-specific differences
at the cellular level. A brief summary of the currently existing
Sc-experiments is given in Table 1.
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FIGURE 1 | A general scheme for systems biological and modeling concepts of plant tissue morphogenesis including cell growth and division, and developmental

PCD (plant cell death). Arrows indicate the relationships between fundamental cell fate and intracellular processes. The cell fate processes are indicated in green; the

intracellular processes or properties are indicated in yellow. The blue box indicates the significant components of the cell-based modeling approach. References

correspond to theoretical articles briefly explained in the text.

TABLE 1 | Summary of scRNA-seq datasets obtained for plants.

Publication

date

References Drop-Seq

platform

Illumina

platform

Organism Plant

organ

Average

reads per

cell

Total

genes

detected

Expressed

genes per

cell

March 2019 Denyer et al., 2019 NanoDrop NextSeq A. thaliana Root 87.000 17.000 4.276

April 2019 Ryu et al., 2019 10X Genomics HiSeq 4000 A. thaliana Root 75.000 22.000 5.000

May 2019 Zhang et al., 2019 10X Genomics NovaSeq A. thaliana Root 40.000 23.161 1.875

May 2019 Shulse et al., 2019 Drop-seq

v. 3.1

HiSeq 2500,

HiSeq 4000,

NextSeq

A. thaliana Root >1,000 UMI 20.464 1.549

May 2019 Jean-Baptiste

et al., 2019

10X Genomics NextSeq

500

A. thaliana Root 19.000 22.000 2.445

July 2019 Turco et al., 2019 Drop-seq

v. 3.1

NextSeq A. thaliana Root NA 21.603 NA

April 2021 Lopez-Anido et al.,

2021

10X Genomics NextSeq500,

HiSeq4000

A. thaliana Leaf 70.000 NA 1.870

December

2020

Satterlee et al.,

2020

Droplet

microfluidics

NextSeq

500

Zea mays Shoot NA NA 2000

January 2021 Kim et al., 2021 10X Genomics HiSeq 2500 A. thaliana Leaf 96.000 27.000 3.300

January 2021 Farmer et al., 2021 10X Genomics HiSeq A. thaliana Root NA 25.000 4.700

January 2021 Bezrutczyk et al.,

2021

10X Genomics HiSeq Zea mays Phloem 5,000 NA NA

February 2021 Xu et al., 2021 10x Genomics NextSeq

500

Zea mays Ears 32.000 28.900 1800

March 2021 Liu et al., 2021 10x Genomics HiSeq 2000 Oryza

sativa

Roots NA NA 2600

There are several fundamental questions about the limitations
and capabilities of the SC method (Rich-Griffin et al., 2020):
How realistic is it to recreate a cell atlas using such data?

Can we apply the technology to cells of any type? How
to identify the main gene regulators and gene networks
of development?
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The problem of combining SC data from different plant
species is of particular interest since the successful application of
this approach can be used to create a unified developmental atlas.
However, it is necessary to consider the species-specific features
of tissue development and organization, which imposes certain
restrictions on the joint interpretation of the exact SC data.

There is an acute lack of SC data of leaf and shoot stem
cells except for A. thaliana. The small amount of existing SC
transcriptome data is partly due to the complexity and length
of the required experimentation and data analysis. In a recent
overview of SC methods for plants (Lähnemann et al., 2020;
Shaw et al., 2020), the authors highlight the major challenges
and drawbacks of single-cell approaches: (i) gene expressing bias
caused by the protoplasting procedure, (ii) unequal efficiency for
extraction of different types of cells, (iii) difficulties for the reverse
reconstruction of the cell atlas based on transcriptomic data,
(iv) lack of data. We also want to point out that there are fuzzy
boundaries between cell populations due to their connectivity
and the presence of transport processes between them. Therefore,
there are still several limitations to the biological interpretation of
the SC data.

Thus, the classification of cell types and reverse spatial
reconstruction are critical stages of SC transcriptome data
analysis. This task is rather complex and requires using the
original dimension of the expression data. SC data generally
represent a filtered and normalized array with dimension
M × N, where M is the number of cells with a sufficient
number of reads, N is the number of genes with a non-zero
expression. The first component that can facilitate this problem
is certain developmental trajectories caused by intracellular
factors that limit the space of developmental possibilities and
cause their partial determinism. Such factors have a different
nature: the concentration of substances and energy substrates
in the cell, the concentration of hormones and morphogens,
the mechanical characteristics of cells (e.g., turgor pressure,
tension, and thickness of the cell wall). Unfortunately, it is
currently impossible to estimate the effect of these factors
and their contribution to genes’ expression. However, their
presence makes it possible to identify the main differentiation
genes. In general, this fact allows to carry out the procedure
for reducing the dimensions of data. Depending on the data
set’s complexity, it is proposed to select from 1,000 to 5,000
highly variable genes for clustering and cell classification
(Luecken and Theis, 2019).

A variety of available methods and tips for single-cell
data dimensionality reduction and clustering are presented
in the work of Nguyen and Holmes (2019). In most cases,
researchers choose t-SNE and UMAP algorithms. The large
computational complexity of the t-SNE method on big datasets
was eliminated by adding fast Fourier transforms (Flt-SNE,
Linderman et al., 2019). Comparison of t-SNE and UMAP
methods revealed that UMAP outperforms even an optimized
t-SNE in the computation time; also, clustering by UMAP
is the most meaningful for distinguishing between cell types
(Becht et al., 2019). Before the widespread use of t-SNE
and UMAP, there was a probabilistic modeling method using
Bayesian mixture of factor analyzers (MFA) (Campbell and

Yau, 2017), based on the assumption that changes in gene
expression are a linear function of time, which allows performing
the Gibbs sampling procedure. This method’s stability is
inversely proportional to the number of genes with non-linear
transient behavior, and its threshold was estimated in 40% of
the total sample; if this threshold is exceeded, the authors
recommend using the Diffusion Pseudotime (DPT) method
(Haghverdi et al., 2016).

Also, machine learning demonstrates its consistency and
efficiency in the analysis of SC transcriptomic data. For example,
single-cell interpretation via multi-kernel learning algorithm
(SIMLR) can perform dimension reduction, clustering, and
visualization; this algorithm is characterized by enhanced
performance and better visualization and interpretability
compared to t-SNE, PCA, and zero-inflated factor analysis
(ZIFA) methods (Wang et al., 2017). There are additional
packages and algorithms for analyzing single-cell data,
from preprocessing to data visualization; for example, on
the Bioconductor platform (Amezquita et al., 2020), or the
Python-based scalable toolkit SCANPY (Wolf et al., 2018).

Modeling the dynamics of gene networks is a promising
approach for extracting biological facts from single-cell
transcriptomics. When reconstructing such networks, it is
possible to identify both transcriptional regulators and their
targets. For example, a high-performance TENET protocol is
based on the calculation of transfer entropy and can predict large-
scale gene regulatory cascades and relationships in single-cell
data (Kim et al., 2020). Also, there is SCENIC, a fast calculation
Python algorithm that reconstructs the regulons (Van de Sande
et al., 2020). Comparing the accuracy of calculations of gene
networks by different algorithms showed that successful methods
on artificial data sets are characterized by low accuracy on real
data (Pratapa et al., 2020). The authors have selected three
promising methods with high computational accuracy on real
data: partial information decomposition and context (PIDC)
(Chan et al., 2017), gene network inference with the ensemble
of trees (GENIE3) (Irrthum et al., 2010), and GRNBoost2
(Moerman et al., 2019).

Elaboration of specific algorithms for using SC transcriptomic
data to reconstruct developmental gene networks and identify
new regulators remains a challenging issue. Databases and
genetic interactions can serve as an additional source
for expanding genetic networks and their verification. For
example, STRING database (Szklarczyk et al., 2019) includes
information about protein-protein interactions and allows to
perform network reconstruction, visualization and functional
enrichment analysis. Cytoscape is a suitable environment
for further network visualization and addition of meta-
information (Shannon et al., 2003). The functionality of
this application has been significantly expanded due to
the many available plugins. For example, the GeneMANIA
plugin (Warde-Farley et al., 2010) allows to predict additional
network elements and new connections, whereas the plugin
yFiles (Wiese et al., 2004) provides additional tools for
network layout.

Another ambitious challenge is the integration of multi-
omics SC data. Ma et al. (2020) examines the capabilities
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FIGURE 2 | Relevant information from single-cell transcriptomics experiments for cell-based models. Three types of information are highlighted in orange blocks, their

integration into the cell-based model is shown in green, and double-headed arrows indicate each block’s comparison. The central yellow block indicates original

processed single-cell RNA sequencing (scRNA-seq) data.

of 10 SC integration tools and tests the functionality of the
four most relevant ones (Giotto, MOFA, LIGER, Seurat3). It
should be noted that the existing problems in the analysis
and interpretation of data give rise to the rapid development
of various methods and approaches to their processing. The
available collection of various methods and tools for analyzing
SC data is presented in this online repository. Also, pipelines and
statistical methods useful for analyzing SC data are presented in
the work by Petegrosso et al. (2020).

Although obtaining high-quality SC transcriptomic data for
plants is a routine, standardized procedure, cell extraction
processes, meaningful interpretation and verification of data
are essential and non-trivial stages for the development of
this technology. An important step in data validation and
interpretation is the construction of mathematical cell-based
models, which combines the data about concentration of
morphogens and expression of genetic regulators inside the
cells and “rules,” which determine intercellular communications,
cellular mechanics, transport processes as well as the transition
between cellular states. However, with current technology, we
cannot directly use the entire array of transcriptome data
to create mathematical models of morphogenesis due to the
large number of dimensions. Therefore, it is important when
comparing different cell types to identify the main genetic and
metabolic differences and take them into account in models.

There are a few methods, which can potentially allow
researchers to use scRNA-seq data for building the cell-based
models (see Figure 2):

1. Identifying crucial genes (main effect genes) and regulators
which explain a lot of variance/differences between cell types.

2. Searching for novel regulatory genes, which have a spatial
distribution of expression between cells of different types.

3. Reconstructing Boolean gene networks using transcriptomic
data.

4. Estimation of differences in integral characteristics (such as
biomass, wall thickness, concentration of metabolites).

For example, SC transcriptome data could provide some
indirect estimations of the cell wall’s mechanical properties.
The main mechanosensing genes are described in Du and
Jiao (2020): receptor-like kinase FERONIA (FER), Leucine-rich
repeat extensins (LRXs), DEFECTIVE KERNEL 1 (DEK1), and
their targets of cell wall integrity pathways. Therefore, assessing
these genes’ expression levels in different cell types can potentially
describe their mechanosensitivity and cell wall stiffness. Thus, SC
data allows the definition of cell types’ molecular characteristics,
identifies regulatory subnetworks, and assesses their dynamics.
These data can potentially be taken into account as parameters in
cell-oriented models.

3. MODERN IMAGING TECHNOLOGIES
FOR OBTAINING DATA ON PLANT TISSUES
WITH A SINGLE-CELL RESOLUTION

Spatial organization plays a significant role in each cell’s fate,
affects transport, the direction of division, apoptosis, and the
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FIGURE 3 | Types of microscopy techniques, their outputs, and meanings for describing morphogenetic processes in cell-based models. There are three blocks in

the scheme: (i) methods (blue box), (ii) corresponding outputs (yellow box), and (iii) model levels (orange box) from structural to organoid resolution. Abbreviations

used: LSM (Laser Scanning Microscopy), LS (Light-Sheet microscopy), SPM (Scanning probe microscopy), SIM (Structured Illumination Microscopy),

3D-SEM(3-Dimensional Scanning Electron Microscopy).

cells’ structural peculiarities. Therefore, this information is
the basis for a systemic integrative study of the processes
of morphogenesis.

The cells of vascular plants form a shared symplast through
the cell walls, which determine the fixed position of the cells in the
tissue (Vaahtera et al., 2019). In plants, cell migration is almost
absent, but in some cases, cells can shift their positions relative
to each other: part of the plant cell remains in its original place,
while other parts of the cell grow to the new locations, moving
significantly relative to other cells (Lev-Yadun, 2015).

There are various specialized approaches for phenotyping
(Figure 3): visible light, spectroscopy, infrared, fluorescence,
3D, and tomographic methods for getting plant images (Li
et al., 2014). The imaging techniques for plant quantification
are broadly used due to their inexpensive cost, simplicity of
operation, and maintenance (Omari et al., 2020).

Reconstruction of plant architecture in terms of shape, size,
and topology of cell connections (Figure 3) is an essential
component to reach an integrative systemic understanding of
aspects of the functioning of both individual cells and tissue
as a whole (Fricker, 2016; Zubairova et al., 2019; Kerstens
et al., 2020). A variety of optical tissue imaging techniques
(Figure 3) currently allow access to such cellular characteristics
(optical and fluorescent microscopy, laser scanning approaches,
and structured lighting microscopy). Since higher plants’
organs are multilayered and volumetric, imaging techniques
based on 3D analysis of a fluorescent signal, such as laser

scanning microscopy, are currently among the most widespread
visualization methods of cellular architecture. It allows to
reconstruct the architecture of tissue and organ fragments
consisting of thousands of cells (Zubairova et al., 2019) and to
analyze in vivo large time-series for reconstructing the dynamics
of development (Goh, 2019; Seerangan et al., 2020).

Together with modern image analysis methods, they provide
a reliable decomposition of cell layers and assessment of cell
morphological parameters (Legland et al., 2016; Erguvan et al.,
2019; Zubairova et al., 2019). The number of cells reconstructed
by ImageJ-plugins LSM-W2 (Zubairova et al., 2019), SurfCut
(Erguvan et al., 2019), as well as MorphoGraphX instruments
(Kerstens et al., 2020) is limited by the computer performance
and technical capabilities of the microscope. They allow working
on a local computer with arrays from thousands of cells, which
is of a comparable order to scRNA-seq methods. The most
comprehensive range of methods makes it possible to segment
cells, measure cell shape parameters, and reveal the topology of
cells’ connection with each other (Jackson et al., 2017).

Over the past few years, the possibility to study many entire
organs through complete reconstruction at the cellular level
became a significant breakthrough (Wolny et al., 2020). The
root tip of A. thaliana is the most abundant target for scRNA-
seq in plants. At the same time there are many reconstructions
and 3D atlases for it (Dolan et al., 1993; Bowman, 2012; Mai
et al., 2014) and even specialized software that allows displaying
the various cellular characteristics into cellular ensembles, for
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example, the iRoCS Toolbox (Schmidt et al., 2014). In vivo laser
scanning microscopy techniques coupled with mathematical
modeling allowed describing the processes of morphogenesis for
the arabidopsis root apical meristems (Mironova et al., 2012). The
dynamics of the development of A. thaliana lateral roots are also
available for visualization at the cellular level from the earliest
stages of their establishment (Goh, 2019). Using confocal and
multiphoton microscopy approaches, apexes and leaf primordia
can also be completely reconstructed (Kiss et al., 2017; Wolny
et al., 2020), as well as adult leaves (Wuyts et al., 2010) and sepals
(Tauriello et al., 2015).

3D reconstruction of A. thaliana ovule coupled with
transcriptome sequencing provides incredibly detailed data about
developmental processes of this organ (Vijayan et al., 2021),
which can serve as a set of reference points for further integration
of future single-cell data on this organ. Simultaneously, the
methods of visualization and analysis of images also allow
working with plants with larger organs, for example, with
Nicotiana tabacum roots (Pasternak et al., 2017).

Light-sheet imaging techniques allow to increase the scan
depth and improve the quality of the reconstruction. These
technologies, coupled with mathematical modeling, gave insights
into the geometrical organization of divisions during the
formation of the lateral root of A. thaliana (von Wangenheim
et al., 2016). In particular, the first division of the cell-founders
is always asymmetric and determines the formation of a layered
structure, while the pattern of further cell division forms thanks
to a regular change in the orientation of the division plane.
Also, the technique of optical cleaning of plant tissues allows for
getting deep 3D imaging and is compatible with fluorescence-
based microscopy (Warner et al., 2014). The measurements
of morphological characteristics of cells and their mutual
arrangement allowed researchers to form a structural model of
the studied organ and identify cell types (Kerstens et al., 2020).

The current opinion about coordination of growth processes
and divisions (Sablowski, 2016) stressed the role of individual cell
characteristics and intercellular interactions in these processes.
Optical microscopy is a valuable method for obtaining the
structural characteristics on the subcellular resolution. For
example, this approach allows studying the ultrastructural
features of the cell wall (Yarbrough et al., 2009), which enables
us to assess cellular biomechanics indirectly. The combination
of large-scale annotated image datasets and deep learning
approaches is a promising technique for annotating physical,
morphological, and tissue grading cellular properties (Fricker,
2016; Biswas and Barma, 2020).

The cell wall’s mechanical parameters deserve special attention
since they determine features of the growth process (Bidhendi
and Geitmann, 2016), and therefore is incredibly important
for modeling plant morphogenetic systems. In addition to
assessing the thickness of the cell wall (Krzesłowska et al.,
2019), modern approaches make it possible to evaluate its
composition and mechanical parameters. For example, probe
microscopy can assess the spatial composition of polysaccharide
filaments on the surface of living tissues (Zhang et al., 2016),
and Raman microscopy can produce data on the composition
and ultrastructure of the cell wall on sections of organs in the

usual (Zeise et al., 2018) and confocal modes (Gierlinger et al.,
2012). The ultrastructure of cell walls as well as tissues and organs
can be studied with a 3D electron microscope (Kremer et al.,
2015). All these methods make it possible to assess biomechanical
parameters within organs and serve as the basis to improve the
simulation modeling of growth processes.

Therefore, the next important step is integrating the structure
model with the cell parameters that mark the individual and
group characteristics of cells (Figure 3). Many characteristics
of the nucleus, organelles, and cell walls can be identified
at the scale of an entire organ using approaches of protein
immunolocalization, expression of reporter constructs that mark
certain cellular features, as well as using methods to increase the
resolution of microscopy (Figure 3).

The data on the frequency ofmitoses along the root (Pasternak
et al., 2017; Lavrekha et al., 2020) provides insight into the
dynamics of replenishment of cell files and the size zones, where
cell divisions occur. Also, cells in S-phase can be identified
by incorporating labeled nucleotide analogs (Pasternak et al.,
2017). The passage of the cell cycle phases is closely associated
with the cell fate specification (Roeder et al., 2012). The state
of chromatin in cells of various types can be identified using
immunolocalization (She et al., 2018) and shed light on cell
activity. Visualization of the cytoskeleton can be done both
by immunolocalization, staining with phalloidin, and, in vivo,
using reporter genetic constructs (Zhang et al., 2020). These
cells’ characteristics can be related to changes in gene groups’
expression in cells and are suitable for improving the integration
of the structural model with single-cell transcriptomic data.

The distribution of various proteins in plant organ cells
can also be determined (Sauer and Friml, 2010) and used
for integration into a model. Proteins can be transporters
that determine the fluxes of substances that deserve special
attention; for example, the auxin membrane transporter PIN1
has a significantly uneven distribution over root cells and a
polar arrangement on the cell surface (Omelyanchuk et al.,
2016). It has also been shown that RNA molecules capable
of being transported from tissue to tissue play an essential
role in the regulation of biological processes in a plant,
and their visualization within an organ is also possible
(Luo et al., 2018).

Also, plasmodesmata play a unique role in the processes
of intercellular symplastic transport and signaling in plant
tissues (for comprehensive review, see Heinlein and Epel,
2004). Plasmodesmata are intercellular channels characterized by
various states from open to closed (Crawford and Zambryski,
2001). Plasmodesmata behavior underlies the isolation of groups
of cells in the tissue, called symplastic domains (Pfluger and
Zambryski, 2001; Lucas and Lee, 2004; Yadav et al., 2014).
Stress factors affect the formation of plasmodesmata (Fitzgibbon
et al., 2013). The transport of mRNA and metabolites through
the plasmodesmata affects the concentration of substances and
gene expression levels inside particular cells (Lucas and Lee,
2004). Many non-cell-autonomous transcription factors and
small RNAs are known tomove through plasmodesmata between
cells and regulate their interaction during development (Kragler,
2013; Yadav et al., 2014; Sevilem et al., 2015).
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Transmission electron microscopy is the classical method for
studying the morphology of plasmodesmata. Combined with
light-based microscopy, it allows one to study the structure and
distribution of plasmodesmata between cells of specific cell types
(Nicolas et al., 2017). Also, the topology of plasmodesmata of
contacting cells at organ scale can be studied using confocal
and super-resolution microscopy (Fitzgibbon et al., 2010, 2013).
In this sense, microscopy allows us to assess the location and
topology of plasmodesmata and, therefore, identify the potential
of local transport of substances through these transport channels,
symplastic domains, and to assess the order of cell division. Thus,
the organization and localization of transport channels inside the
plant tissues are connected with the intracellular characteristics.

On the other hand, intracellular sensing processes contribute
to intercellular signaling. For instance, there are special sensory
plastids in epidermal and vascular parenchyma cells, which
can cause a global systemic stress response in a plant
(Beltrán et al., 2018).

The redox state of organelles is also an additional factor
associated with developmental processes, ROS signaling, and
antioxidant systemic plant cells (Bobrovskikh et al., 2020).
In particular, the CellROX fluorescent reagent visualizes the
oxidative potential of cells in a tissue (Kováčik and Babula, 2017).

Besides, mass spectrometry imaging and live single–cell mass
spectrometry practically corresponds to single-cell metabolomics
and makes it possible, for example, to mark the concentrations
of secondary metabolites on the whole adult organ (Yamamoto
et al., 2019). Such approaches can be combined with SC analysis
of the expression of these metabolites’ biosynthetic enzymes
and transporters. As a result, they provide a basis for modeling
the distributed regulation of these processes at the tissue level
(Figure 3). The most important polynucleotides, such as RNA,
can also be detected at the level of single molecules (Huang et al.,
2020), which allows direct integration into the structural model
of the organ.

Modern imaging techniques allow access to the structural
and physiological characteristics of cells in a whole organ
manner. It provides ample opportunities to create, enrich,
and verify structural models of plant organs and tissues. An
important aspect is that many assessments can be carried out
over time. Comparison of temporal dynamics in zones with
active morphogenetic events will make it possible to track
changes in cellular topology, and thus, to trace the nature of
division (symmetric and asymmetric) and growth (isotropic and
anisotropic), as well as to detect several mechanical features of the
developing tissue (for example, the relative stiffness of different
cell zones).

Thus, a large arsenal of available microscopic and imaging
techniques allows obtaining high-quality multilevel data
integrated into plant morphogenesis models. For example,
there is a computational morphodynamics approach that allows
formalizing quantitative data from morphometry measurements
into a set of rules (Formosa-Jordan et al., 2018):
1. To set ODE, which describes the growth rate of individual cells

using data from regulatory networks.
2. To set various rules for the geometry of division

(periclinal/tangential divisions with different angles)

according to mechanical constraints of intercellular vertex
interactions.

3. To use the first two steps to calculate effective growth and final
rate equation.

4. CELL-BASED MODELING APPROACHES
REPRODUCING PLANT TISSUE
MORPHOGENETIC PROCESSES

4.1. Existing Models and Modeling
Approaches
This section will discuss existingmathematical models describing
the tissue organization and/or properties of individual cell
types. While considering plant growth and developmental
processes, researchers often highlight a unique role for the
hormone auxin. For instance, in plant roots, auxin triggers
cascades of events during development and morphogenesis,
while other hormones (cytokinins, brassinosteroids, abscisic acid,
gibberellins, and others) interact with auxin (Saini et al., 2013).
Auxin is also an important regulator in developing shoot apical
meristems in combination with cytokinins, gibberellic acid, and
some transcriptional factors: WUSCHEL, ARR7/ARR15, ARF5
(Durbak et al., 2012). Mironova et al. (2012) demonstrated
the effectiveness of the reverse fountain and the reflected
flow mechanisms of PIN-associated transport in the root
apical meristem. Comparison of different complexity models
showed that a model that only describes auxin transport
processes is insufficient for the reproduction of realistic patterns
of morphogenesis, but adding an additional layer-specific
regulation or layer-driven growth could help solve this problem
(De Vos et al., 2014).

Simultaneously, the mechanical characteristics of tissues,
which are determined through a complex interplay of genetic
and physiological systems, are an essential component for
describing the processes of morphogenesis. The feedback
effects of mechanical interactions and stresses, which affect the
regulation of proliferation patterns, are highlighted in Nelson
et al. (2005). The experimental evidence of the mechanical stress
approach’s consistency for plant tissue development is shown
in the work of Uyttewaal et al. (2012). The transition from
the linear models of hormonal transport to hybrid multicellular
and multiscale models has excellent potential for predicting the
emergent properties of the system (Voß et al., 2014). The basis
for mechanical models of cell growth is the representation of
multicellular tissues in vertex-based graphs with the calculation
of the interaction forces between these elements. The equations
binding the growth of plant cells with the rate of water absorption
and the cell wall’s growth were first published in Lockhart’s
work for the case of constant turgor pressure (Lockhart, 1965).
In order to model growth in a more general case, Lockhart’s
equations were extended, taking into account the change in
turgor pressure as a result of reversible elastic deformation and
transpiration processes in the Ortega model (Ortega, 2010).
Within the framework of this approach, a linear leaf growth
model was proposed (Zubairova et al., 2016). In addition,
Newton’s First Law and Hooke’s Law can be used to describe
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TABLE 2 | The most popular tools for cell-based plant tissue morphogenesis modeling.

Name, reference, link Spatial scale Formalism Examples

Virtual cell (Moraru et al., 2008) 2D/3D Kinetics, diffusion, flow, membrane

transport, electrophysiology

Gajdanowicz et al., 2011; Onal

et al., 2020

OpenAlea (Pradal et al., 2008) 2D/3D Functional-structural plant models Muraro et al., 2014

CellModeller (Dupuy et al.,

2008)

2D Biphasic systems; viscous yielding of the

cell walls

Dupuy et al., 2010; Rudge et al.,

2012

VirtualLeaf (Merks et al., 2011) 2D Vertex dynamics model van Mourik et al., 2012; De Rybel

et al., 2014; De Vos et al., 2014

CompuCell3D (Swat et al.,

2012)

2D/3D Cellular Potts model Hester et al., 2011; Swat et al.,

2015

CellZilla (Shapiro et al., 2013) 2D Vertex dynamics model Nikolaev et al., 2013; Shapiro et al.,

2015

LBIBCell (Tanaka et al., 2015) 3D Lattice Boltzmann method for solving fluid

and signaling processes

Stopka et al., 2019

cell growth and expansion, as was done in the recent work by
Retta et al. (2020).

Unfortunately, most available auxin-related models are
focused only on the transport processes in the root tissue and
poorly explain the overall processes of growth and development
(Morales-Tapia and Cruz-Ramírez, 2016). However, several
models combine both a mechanical approach and auxin
transport processes. For example, there is a dynamic model
that describes molecular mechanisms in conjunction with
physical tension fields and auxin dynamics (Barrio et al., 2013).
This model reproduces emergent patterns of morphogenesis
from proliferative to transition and elongation zones. The
study combining experimental data on the organization
of the extracellular matrix and numerical simulations
demonstrated that auxin plays an essential role in altering
cells’ mechanical properties; this process involves the ABP1 and
KATANIN 1 proteins (Sassi et al., 2014). Also, the advanced
cell-based mathematical model describes the relationship
between the concentration of morphogens and the cellular
mechanistic properties in the developing apical shoot meristems
(Banwarth-Kuhn et al., 2019).

Thus, the models of plant tissue morphogenesis put
at the forefront three biological facts: (i) the dependence
on intercellular hormonal signaling, (ii) the importance of
the intracellular state and individual cellular characteristics,
(iii) the relevance of mechanical stresses in intercellular
interactions. Therefore, scRNA-seq technologies, microscopy,
imaging techniques, and a range of complementary approaches
to measuring cell mechanical properties (Banwarth-Kuhn et al.,
2019; Bidhendi and Geitmann, 2019) can provide a complete
picture of morphogenetic processes at the cellular level.

4.2. Available Software and Tools for
Cell-Based Modeling
In general, elaborating mathematical models of morphogenetic
processes could base on specialized software, which we discuss in
this section. Researchers may also develop and implement their
frameworks and algorithms using mathematical packages and
general-purpose programming languages (Python, Mathematica,

MATLAB). Three formalisms are most often used to build cell-
based models: vertex-based, center-based (also called spring-
based), and Cellular Potts models. Vertex-based models are often
used to simulate plant tissue and make it possible to conveniently
describe the dynamics of cell movements in cell ensembles
taking into account mechanical constraints (for example, during
morphogenesis). This formalism is implemented in the Cellzilla
(Shapiro et al., 2013), VirtualLeaf (Merks et al., 2011) packages.
In center-based models, cells are represented as dots with mass,
connected by mechanical elements (springs). Banwarth-Kuhn
et al. (2019) give an example of this formalism’s application
to the description of growth processes in the shoot apical
meristem. Cellular Potts models are often used to describe
the processes occurring in animal tissues and tumor formation
processes; this formalism is implemented in CompuCell3D
(Swat et al., 2012). It is also possible to use the Voronoi
tessellation formalism for modeling morphogenetic processes;
e.g., see Romero-Arias et al. (2017).

Below we discuss available software, while a
summary is presented in Table 2; for more details, see
Supplementary Table 1.

Virtual Cell (Cowan et al., 2012; vcell.org) is an environment
for modeling, analysis, and simulation of cellular processes, and
it includes tools for gene network and for the integration of
biological images. This package consists of distinct functional
modules: rule-based networks, ODE, PDE and kinematics,
stochastic simulations, parameter estimation and has the ability
to integrate it into hybrid models. Users can define the
model structure and the system automatically builds the code
and compiles it. A detailed overview of this tool is given
in Moraru et al. (2008). Also, there is a VCell extension
for compartmental and spatial rule-based modeling (Blinov
et al., 2017). The implemented models using VCell can have a
different scale, for example, the model of potassium transport
in plant vascular tissues (Gajdanowicz et al., 2011), and model
of the paracrine-juxtacrine loop for breast cancer cells and
macrophages (Onal et al., 2020).

VirtualLeaf package (code.google.com/archive/p/virtualleaf/,
Merks et al., 2011) using a vertex-based approach (Nagai and
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Honda, 2001); the algorithm includes vertex motions at each
step that minimize the Hamiltonian energy by the Monte
Carlo algorithm. For each cell, an unstressed area is specified,
corresponding to the cell’s state when the turgor pressure is
balanced with the external pressure. For each cell wall element,
the unstressed length is specified, corresponding to the length
of the cell wall segment in the absence of turgor pressure. The
balance between turgor pressure and the cell wall’s resistance
can be described in terms of the generalized potential energy
(Hamiltonian) calculated as the sum of all cells and cell wall
elements, which is then minimized by the algorithm. The
growth models of root were implemented using this framework
(De Vos et al., 2014).

Cellzilla uses a vertex dynamics model for describing
morphodynamics processes and takes into account
morphogenetic regulation (http://cellzilla.info/, Shapiro et al.,
2013). The cellular structure is represented by a list of three
elements: a list of vertex coordinates, a list of edges consisting
of pairs of vertex numbers, and a list of cells consisting of
lists of edge numbers belonging to a cell. The interaction
between morphogens and the transport flows in each cell
is described in terms of chemical kinetics using the arrow
notation of the Cellerator package (Shapiro et al., 2003).
This software automatically constructs and solves a system of
differential equations describing the dynamics of morphogens’
concentration in all tissue cells. Methods for constructing
models of plant cell growth in CellZilla are described by
Shapiro et al. (2013). Using this system, Nikolaev et al. (2013)
constructed a model for A. thaliana shoot apical meristem
structure maintenance.

CellModeller (haselofflab.github.io/CellModeller/; Dupuy
et al., 2010) is a software with modular structure for
2-dimensional simulations. It can reproduce the intracellular
dynamics of metabolites, intercellular transport processes, as
well as cell mechanics using physical laws. This software can be
used for modeling plant morphogenetic processes. For example,
a simple morphogenetic system for the Coleochaete alga has
been developed (Dupuy et al., 2010).

LBIBCell (Tanaka et al., 2015, https://tanakas.bitbucket.io/
lbibcell/) was developed specifically to simulate morphogenetic
processes in tissues. This tool uses the immersed-boundary
concept (which describes cells as viscous fluid with elastic walls),
coupled with the Lattice Boltzmann method. The model of
biased epithelial lung growth was implemented using this tool
(Stopka et al., 2019).

OpenAlea (Pradal et al., 2008) is an integrative platform that
combines various computational frameworks. This platform’s
main goal is the integration andmutual enrichment of experience
in different sections of plant process modeling. This system
is based on Python language and has a visual programming
interface. For example, the OpenAlea package VPlants (https://
team.inria.fr/virtualplants/) allows building models of tissue
morphogenesis. This package was used in modeling vascular
development in A. thaliana (Muraro et al., 2014).

CompuCell3D (Swat et al., 2012) is a C++ software for 3D
modeling, which includes both graphical user and command-
line interfaces. This system uses classical mechanics for

describing cellular behavior according to mechanical constraints.
Multicellular systems are described using the Cellular Potts
model. The input data include the grid’s size, number of
cells, cellular interactions, energy functions, and activator
concentrations. The protocol for using this program to study
cellular morphogenesis parameters is presented in Palm and
Merks (2015). Most of the models elaborated with this software
describe the development of animal tissues (Hester et al., 2011)
and the processes of tumorigenesis (Swat et al., 2015).

Thus, the available software and methods are pretty diverse,
and the choice of a particular tool depends on the specifics
of the task at hand. Among these tools, it is necessary to
highlight Cellzilla and VirtualLeaf as the most specific for
describing plant morphogenesis processes. On the other hand,
the development of new frameworks and algorithms, which
depend on researchers’ ability to program, is a promising
approach since it significantly expands the functionality and
removes several restrictions on applying one or another
formalism implemented in existing software.

4.3. Our Framework and Model Flowchart
In this section, we propose a general framework for modeling
plant morphogenetic processes based on various biological data.
This kind of model should include two main data sources:
scRNA-seq and tissue imaging data; besides, SC metabolomics
and cell wall stiffness studies can serve as additional data sources.
For plant organ growth modeling, the accurate description of
processes on the cellular level is essential since this level combines
molecular regulation with hormonal regulation, cell division, and
reproduction processes (De Vos et al., 2012).

Mathematically, events occurring in plant tissues and cells
can be classified into continuous and discrete ones. The first
ones include the processes of metabolism, growth, transport and
development of cells. Discrete events, on the other hand, include
processes such as birth (or emergence), division, death, and
change of cellular state. Individual cells’ metabolic characteristics
are influenced by their genotype and developmental stage, which
would be described by single-cell transcriptomics approaches.
The nature of the proposed framework is hybrid since it
combines different mathematical formalisms and modules:
(i) ODE/PDE equations for describing the dynamics of
substances and morphogens inside the cell and the processes
of intercellular transport, (ii) discrete events occurring during
the onset of threshold conditions (for example, cell division
when a specific cell area is reached, or cell differentiation at a
hormone concentration above the threshold), (iii) the biophysical
laws of mechanical interactions between cells (such as Ortega’s
approach Ortega, 2010 or Newton’s and Hooke’s laws Retta et al.,
2020). In this sense, scRNA-seq data helps measure individual
characteristics of cell populations (which characterize system
dynamics), while microscopy should help to define geometrical
patterns and “rules” (e.g., division geometry or dividing plane
orientation). These steps will help to create hybrid models with
tissue/cellular resolutions.

The usefulness of such a hybrid approach in describing
ecological systems was described in the work of Vincenot et al.
(2011). In particular, the combination of discrete and continuous
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FIGURE 4 | The proposed hybrid framework for cell-based models construction. The framework includes six functional blocks explained in the text. Individual blocks

are marked with corresponding colors; colored arrows indicate the transition between blocks. Blue and orange checkmarks indicate information related to single-cell

and imaging data, respectively.

phenomena is a natural property of multicellular systems, and
such hybrid frameworks allow researchers to make more realistic
simulations in silico. Van Liedekerke et al. (2015) described the
advantages and disadvantages for different types of agent-based
models of tissue mechanics and noted that hybrid models could
reproduce spatial resolution, physical aspects of interactions,
cell shapes diversity. Osborne et al. (2017) compared different
approaches to cell-based modeling using typical cases of the
described processes; the authors noted that the vertex-based
approach, in contrast to others, allows one to simulate boundary
conditions in proliferation processes effectively. This feature
allows us to consider this method as the most promising for
modeling the root apical meristems, which has more severe
mechanical restrictions for growth than leaf and shoot tissues.
For modeling leaf and shoot tissues, for example, it is possible
to use the Voronoi tessellation or overlapping spheres modeling
approach described in Osborne et al. (2017).

Thereby, we assume the use of such a hybrid approach
complementary to modern research due to its multilevel nature;
it combines SC transcriptomic and microscopy data into a cell-
based modeling framework. Below in the text and in Figure 4,
we outline the main stages of our framework that must be taken
into account.
1. The posed biological problem determines the structure of

the model. A modeler should define a biological system’s
properties, its elementary subsystems, and connections
between these elements, which are significant to reproduce
them in the model. Based on these decisions, it is necessary
to determine the main properties of the simulated object:
genotype, organ, tissue zone, stage of development. Since a
cell is a crucial element for describing the processes of plant
morphogenesis, the next step is to find out which cellular
structures will be reproduced in the model to determine the

formalism used to describe them and the equations for growth
and the rules of division. Then, it is necessary to decide
on the objects at the molecular level to be considered, in
particular the genetic systems of interest, to find out whether
it is required to consider transport processes for morphogens
(for example, hormones), and also to decide whether it is
necessary to take into account the biomechanics of cells for
the modeled system.

2. Designing experiments to obtain imaging (2.1) and scRNA-
seq (2.2) data based on the given aim. For imaging (2.1), it
is essential to choose a suitable plant portion and microscopy
technology and determine whether it is necessary to track
the dynamics of development of a given fragment of tissue
and for which interval of time. For scRNA-seq (2.2), it is
important to make sure that the process of isolation of
protoplasts and their analysis will not be limited due to the
structure of the tissue and/or organ of the plant, imperfections,
and shortcomings of the available methods, otherwise, this
technique will have to be worked out and improved to an
acceptable level.

3. Perform the experiments and produce data. (3.1) It is
necessary to prepare (for example, fix and stain) a target tissue
fragment, get images, process and analyze them (manually
or using plugins), and digitize the resulting patterns to
build a structural model of the tissue/organ and identify
morphogenetic rules for incorporation into a computational
model. (3.2) While obtaining and analyzing scRNA-seq data,
special care should be taken to ensure that the research aim
is as close as possible to the intended modeling goals. Care
should be taken to avoid contamination with cells of those
classes that are not needed and so that for most of the required
cells, it would be possible to analyze the molecular systems
required for the model. Besides, scRNA-seq-based approaches
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for the reconstruction of gene networks of the corresponding
processes have high potential.

4. Analyze experimental data. Experimental results at cell and
tissue level have to be analyzed in order to derive key
parameters to be used in the model formulation in terms of
cellular characteristics (4.1) and molecular processes (4.2) for
all the considered cell types.

5. Systematic assembly of the hypotheses, available data and
mathematical formalization into a single hybrid model, which
consists of the following blocks: (1) ODE / PDE equations for
describing the dynamics of substances andmorphogens inside
the cell and the processes of intercellular transport, (2) discrete
events occurring at the onset of threshold conditions (for
example, cell division when a specific cell area is reached,
or cell differentiation at a hormone concentration above
the threshold), (3) biomechanics interactions between cells
(4) agent-based rules describing patterns of divisions and
mechanical features of the tissue.

6. Validation and verification of models is based on their success
in reproducing the behavior of real biological phenomena
that can be evaluated experimentally. In this sense, it can be
useful to return to the stage of morphometry and compare the
dynamics of tissue development with simulations and study in
detail the molecular organization of the subsystems described
in the model.

In general, the proposed approach is universal for describing any
morphogenetic system; however, the pipeline described above
may differ in some steps for each specific case, while some of them
could be eliminated. In particular, plant tissue morphodynamics
is context-dependent due to mechanical interactions inside
cell ensembles and the transport of morphogens through
plasmodesmata, which is confirmed by numerous studies
(Crawford and Zambryski, 2001; Heinlein and Epel, 2004;
Lucas and Lee, 2004; Kragler, 2013; Yadav et al., 2014; Sevilem
et al., 2015; Luo et al., 2018). At the same time, models for
morphodynamics of animal tissues with strong neighborhood
structures could include analogous mechanisms modified to
consider cell adhesion processes. For example, this approach is
applicable to model the processes of animal epithelial or tumor
growth (Interian et al., 2017).

5. CONCLUSIONS AND FUTURE
CHALLENGES

Post-genomic technologies made it possible to obtain detailed
information about processes at genomic and transcriptomic
levels using SC and whole tissue RNA sequencing technologies.
Besides, the existing abundance of microscopy methods allows
high-quality characterization of morphology and physiology at
the level of extended fragments of tissues and organs. However,
microscopy approaches do not allow to perform quantitative
assessments of important intracellular characteristics, such as
concentrations of substances and metabolites. SC metabolomics
approaches for plants, which are beyond this review’s scope,
still remain overshadowed, although significant developments
have been made in mass spectrometry approaches for such
kind of analyses (de Souza et al., 2020). Gilmore et al. (2019)

discuss the latest advances in mass spectrometry imaging: matrix
laser desorption ionization (MALDI) and secondary ion mass
spectrometry (SIMS), which have a high potential for assessment
of metabolism at subcellular spatial resolution. The development
of these methods will allow metabolomics to achieve the same
spatial resolution level as SC transcriptomic. The review of
Bidhendi and Geitmann (2019) presents the main features and
possibilities of measuring the cell wall’s mechanical properties:
indentation technique, tensile test, acoustic microscopy, fracture
measurements, and microfluidics. The authors emphasize that
multiscale in silico mechanical modeling has excellent potential
for the field and could help obtain a unified understanding of
mechanical behavior across different scales.

To date, the methods and technologies necessary to obtain
various experimental data for plant morphogenesis models
have reached a balance and are mostly consistent with
each other in terms of power, productivity, and spatial
resolution. The community of mathematical biologists and
programmers faces crucial theoretical challenges and is creating
efficient computational frameworks capable of large-scale
numerical simulations involving cellular ensembles of several
thousands of cells. Such models will provide more accurate
resolution and realism in the description of morphogenetic
processes. Examples of optimization works are the algorithm
of Jeannin-Girardon et al. (2015), and graphics processing
units (GPU) accelerated framework for 3D cellular growth and
division models (Madhikar et al., 2018). Moreover, declarative
modeling perspectives concerning morphogenetic processes
are considered (Mjolsness, 2019), which potentially will help
formalize mathematical calculations at higher levels compared to
general-purpose programming languages.

The widespread development of SC technologies in the
future could serve as a driver for other areas of cellular and
developmental biology of plants (Libault et al., 2017). However,
we have an urgent need for data integration to successfully apply
the technology, in particular at tissue level with its organization’s
peculiarities as an emerging system. Besides, an increased
availability of SC data can stimulate the development of methods
and modeling concepts at cellular and tissue levels, which will
open the way for the binding of multi-omics characteristics for
individual cell types and the observed phenotype.

On the other hand, it is necessary to verify the emerging
issues related to the interpretation and analysis of SC data
using advanced microscopy and in silico biology. In this
sense, one of the most urgent problems of SC sequencing
is the reverse reconstruction of the spatial position of cells
based on corresponding transcriptome expression. Searching
for major regulatory genes that characterize certain cell lines
will be a critical step to solve this problem. Also, cell-based
models of morphogenesis could help interpret and integrate
SC and imaging data, making the reasoning more transparent
and establishing an understanding of essential parameters and
mechanisms for the described systems.

Summarizing all of the above, we have found the following key
features related to SC-technologies that need to be addressed:

1. Some limitations are still present in the phases of integration,
analysis, and interpretation of data.
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2. Only a limited set of plant species and organs is suitable
for obtaining transcriptome and structural data with
cellular resolution.

3. There is a need for a more precise reconstruction of scRNA
plant atlases.

The task of elaborating and analyzing in silico models of
morphogenesis, due to the complexity of the studied systems
and computational limitations, are non-trivial. Thus, cell-based
models, which use a hybrid formalism, could effectively combine
our knowledge on different levels and help tackle the complexity
of the system. However, the current problem of the large
number of dimensions of the initial SC data should be solved
by applying preprocessing and filtering algorithms, as well
as for the reconstruction of related gene networks. Thereby,
model formulation and numerical experiments in silico could
be applied using only the essential part of the initial high-
dimensional SC data. Such reduction should aim to contain
data on gene expression changes and metabolites concentrations,
which determine the different cellular states.
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Kováčik, J., and Babula, P. (2017). Fluorescence microscopy as a tool for
visualization of metal-induced oxidative stress in plants. Acta Physiol. Plant.
39:157. doi: 10.1007/s11738-017-2455-0

Kragler, F. (2013). Plasmodesmata: intercellular tunnels facilitating
transport of macromolecules in plants. Cell Tissue Res. 352, 49–58.
doi: 10.1007/s00441-012-1550-1

Kremer, A., Lippens, S., Bartunkova, S., Asselbergh, B., Blanpain, C., Fendrych, M.,
et al. (2015). Developing 3D SEM in a broad biological context. J. Microsc. 259,
80–96. doi: 10.1111/jmi.12211

Krzesłowska, M., Timmers, A. C., Mleczek, M., Niedzielski, P., Rabeda, I., Woźny,
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