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Lung transplant remains a key therapeutic option for patients with end stage lung disease but
short- and long-term survival lag other solid organ transplants. Early ischemia-reperfusion
injury in the form of primary graft dysfunction (PGD) and acute cellular rejection are risk factors
for chronic lung allograft dysfunction (CLAD), a syndrome of airway and parenchymal fibrosis
that is the major barrier to long term survival. An increasing body of research suggests
lymphocytic airway inflammation plays a significant role in these important clinical
syndromes. Cytotoxic T cells are observed in airway rejection, and transcriptional analysis
of airways reveal common cytotoxic gene patterns across solid organ transplant
rejection. Natural killer (NK) cells have also been implicated in the early allograft damage
response to PGD, acute rejection, cytomegalovirus, and CLAD. This review will examine the
roles of lymphocytic airway inflammation across the lifespan of the allograft,
including: 1) The contribution of innate lymphocytes to PGD and the impact of PGD on the
adaptive immune response. 2) Acute cellular rejection pathologies and the limitations in
identifying airway inflammation by transbronchial biopsy. 3) Potentiators of airway
inflammation and heterologous immunity, such as respiratory infections, aspiration, and the
airway microbiome. 4) Airway contributions to CLAD pathogenesis, including epithelial
to mesenchymal transition (EMT), club cell loss, and the evolution from constrictive
bronchiolitis to parenchymal fibrosis. 5) Protective mechanisms of fibrosis
involving regulatory T cells. In summary, this review will examine our current understanding
of the complex interplay between the transplanted airway epithel ium,
lymphocytic airway infiltration, and rejection pathologies.
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INTRODUCTION

Since the first successful series of heart-lung and lung transplants in the 1980s, obliterative
bronchiolitis has been recognized as the predominant pathologic finding of chronic lung allograft
rejection. Both proliferative bronchiolitis, characterized by transluminal fibroproliferative tissue or
Masson bodies, and constrictive bronchiolitis, characterized by concentric subepithelial fibrosis,
were observed in these early allografts, typically surrounded by lymphocytes (1). Chronic lung
allograft dysfunction (CLAD) is the syndrome of lung function decline in transplant recipients that
is the major barrier to long term survival following lung transplant and includes both obstructive
and restrictive phenotypes (2, 3). The obstructive phenotype is termed Bronchiolitis Obliterans
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Syndrome (BOS), because the predominant decline in one-
second forced expiratory volume (FEV1) is presumed to be
secondary to obliterative bronchiolitis pathology (3).
Restrictive allograft syndrome (RAS) is pathologically
associated with pleuro-parenchymal fibroelastosis (2). As was
demonstrated in this original autopsy series, the pathologic
hallmarks of BOS and RAS were frequently observed together
(4, 5). Although, autopsy and explant studies typically reflect
advanced or end stage lung disease which may limit conclusions
drawn regarding disease processes marked by significant
evolution. Further, advanced lung disease has significant tissue
heterogeneity, rendering temporal conclusions involving focal or
diffuse pathology challenging.

A similar syndrome of bronchiolitis obliterans is seen
following allogeneic, but not autologous, stem cell transplant,
suggesting that bronchiolitis obliterans results from an immune-
mediated process. Indeed, increasing numbers of donor-
recipient major histocompatibi l i ty complex (MHC)
mismatches have been associated with risk of CLAD (6, 7).
Even a minor histocompatibility antigen mismatch encoded by a
single amino acid can drive obliterative airway disease, a murine
analog of bronchiolitis obliterans, via CD8+ T cell-mediated
alloimmune responses (8). In the absence of MHC mismatch
between the lung and immune system, obliterative bronchiolitis
is associated with some unusual exposures. Identified as a result
of environmental exposures among popcorn factory workers, the
butter flavoring butane-2,3-dione (diacetyl) covalently binds
arginine residues in the small airways, forming haptens that
trigger lymphocytic inflammation as a precursor to obliterative
bronchiolitis (9–11). Together, these findings implicate
lymphocytic immune responses in the airways as central to
CLAD pathogenesis, as this review will explicate.
INNATE AND ADAPTIVE LYMPHOCYTES
IN THE LUNG

Among transplanted solid organs, lung and intestine allografts
have continual exposure to microbes and non-infectious
environmental stimuli, necessitating mucosal-associated
lymphoid tissue. Accordingly, lung allografts are predisposed
to lymphocytic inflammation. The lung is notable for a diverse
resident lymphocytic cell population at rest, and is a site for
lymphocyte trafficking from peripheral reservoirs during acute
injury (12). As such, across the various lung transplant
inflammatory syndromes, lymphocytes can play a variety of
roles. Where possible, this review attempts to distinguish
disease processes where it is known that lymphocytes directly
mediate injuries from those where there may be non-
specific recruitment.

Innate lymphoid cells (ILCs) provide a first line of
immunologic defense and are distinct from adaptive immune
cells, discussed further below (Table 1). ILC activation is
dependent upon integration of signals from cytokine
stimulation, activating and inhibitory receptors, and
physiological cues from their microenvironment (13, 14).
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There are three major ILC subsets: ILC1s defend against
viruses and some bacteria primarily through cytokines like
IFN-g (interferon-gamma) and TNF-a (tumor necrosis factor-
alpha). ILC2s classically respond to parasites and play important
roles in allergic responses with cytokines like IL-4, IL-5, and IL-
13 (18); and ILC3s play important antibacterial roles though IL-
1b, IL-22, and IL-17. ILC1s and natural killer (NK) cells have
overlapping roles and functions. Functionally, ILC1s are largely
tissue-resident, while NK cells more commonly circulate and
have greater cytotoxic function (12, 19). NK cells are a major
source of IFN-g in the lung and comprise up to 10% of the
resident lymphocyte populations. NK cells mediate infectious
and sterile lung diseases and have been implicated in both
allograft injury and tolerance through a variety of mechanisms
(12). NK cell function is determined by the integration of
multiple activating and inhibiting signals from a variety of
somatically-encoded receptors (20). As such, their role in
directly mediating versus trafficking to sites of injury depends
upon tissue contexts. For example, the role of NK cells during
influenza infection is contested as some studies show NK
depletion in experimental models leads to worse outcomes;
whereas, other studies show no differences in experimental
lung injury (21–23).

T cells develop in the thymus, where T cell receptor (TCR)
genes rearrange to generate a diverse array of receptors that are
subsequently selected for low-level binding to self-antigens.
Recognition of near-self antigens makes T cells adept at
recognizing virally infected cells, but also explains how auto-
and alloimmune responses develop. In fact, 5-15% of circulating
T cells will typically react to donor alloantigen, depending on
HLA (human leukocyte antigen) mismatching and recipient
immune status (24, 25). T cells are further subdivided based on
function and cellular markers into 3 major groups: CD4+ T cells,
CD8+ T cells, and gd T cells. Helper CD4+ T cells primarily
secrete cytokines to drive immune response and provide co-
stimulation to drive cytotoxic CD8+ T cell and B cell humoral
responses (26, 27). The types of cytokines produced by helper T
cells lends to their subcategorization into Th1, Th2, Th17, and T
regulatory subsets. There is some debate in the literature over the
relative contributions of helper T subtypes, but there is evidence
supporting a role for all four (15, 28, 29). Th1, Th2, and Th17
phenotypes are analogous to ILC1, ILC2, and ILC3 subclasses
and are mediated by similar transcription factors, Tbet, GATA3,
and RORgT, respectively (30–32). Like NK cells, CD8+ T cells
have cytotoxic properties and secrete perforin and granzymes to
lyse virally infected or malignant cells. Within this construct of
innate and adaptive lymphoid cells lies a multitude of pathways
to mediate injury, either non-specifically or in a targeted fashion.
Following transplantation, donor antigens can be presented on
either donor or host antigen presenting cells, resulting in direct
or indirect antigen presentation, respectively (33).

B cells and plasma cells comprise the final major category of
lymphoid cells and are responsible for producing antibodies. As
with T cell maturation, B cell diversity is determined by somatic
recombination, although B cells undergo a subsequent
optimization step, called somatic hypermutation to heighten
July 2022 | Volume 13 | Article 908693
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antigen specificity. B cells are activated by APCs (antigen
presenting cell) and CD4+ T cells and contribute to acute and
chronic allograft dysfunction through the process of antibody
mediated rejection (AMR) (16, 17). As such B cells and plasma
cells mediate allograft injury by directing effector cells to tissue
deemed “non-self.”

While most lymphocyte populations amplify the cascade of
responses that promote inflammation, there are a collection of T
cell and B cell subsets which work to dampen this process.
Regulatory immune cells help to limit the amount of collateral
d amag e f r om th e i nna t e and adap t i v e immune
systems. Regulatory T cells (Tregs) impair the expansion of
conventional T lymphocytes, dampen T cell function, secrete
immunosuppressive cytokines, adsorb proinflammatory
cytokines, potentiate tolerogenic APCs, and create an
environment to facilitate expansion of other Tregs (34).
Preclinical studies in mouse models of solid organ transplant,
have shown long-term graft acceptance by augmentation of Treg
populations in transplant recipients (35, 36). Regulatory B cells
(Bregs) are proposed to play a key role in homeostasis after lung
transplant (37–39). Breg features may contribute to tolerance,
making it possible to reduce immunosuppression (40). Finally,
while NK cells do not have a specific regulatory subset, their
actions may be curtailed via inhibitory surface receptor signaling.
NK cells may also perform regulatory functions such as targeting
pro-inflammatory cells, in certain contexts (41).
LYMPHOCYTIC INFLAMMATION IN THE
CONTEXT OF PRIMARY GRAFT
DYSFUNCTION (PGD)

Primary graft dysfunction (PGD) is a syndrome of acute lung
dysfunction in the early transplant period. Clinically, it is defined
as multi-lobar chest X-ray opacifications and a decreased ratio of
arterial oxygen to inspired oxygen (PaO2/FiO2) within the first
72 hours post-transplant. PGD is graded from absent (grade 0) to
severe (grade 3). Severe PGD accounts for 30% of mortality in the
first 30 days after transplant, 50% of the mortality within the first
year of transplant and has been associated with lower baseline
lung function and risk of CLAD (42, 43). PGD is the clinical
manifestation of the pathologic process of ischemia-reperfusion
injury (IRI) (44). Accordingly, PGD risk is dependent on the
severity of ischemic injury, including warm and cold ischemic
time. Allograft ischemia is further potentiated by chronic
hypoperfusion, as bronchial arteries are not typically re-
Frontiers in Immunology | www.frontiersin.org 3
anastomosed during transplant. Advancements in surgical
technique and allograft handling have reduced rates and
severity of ischemia through limited use of cardiopulmonary
bypass, limiting intra-operative blood transfusions, and limiting
fraction of inspired oxygen intraoperatively (45–49). PGD risk is
also driven by non-ischemic mediators of graft injury, including
recipient BMI, donor tobacco use, and operative transfusions as
stated above (47). Such factors may contribute to PGD by
potentiating inflammation.

IRI is primarily mediated by the innate immune system but
can be further amplified through adaptive immune responses
(Figure 1). Experimental and clinical data suggest a biphasic
nature to this inflammatory process. The early phase of IRI is
marked by oxidative stress, epithelial and endothelial
dysfunction leading to further injury. Airway epithelial cells
release chemokines and damage-associated molecular patterns
(DAMPs) (50, 51), while endothelial cells upregulate adhesion
markers (50, 52). Within murine models, oxidative stress
measured via isoprostanes, was increased after IRI and could
be mitigated by administration of azithromycin (53), These
signals recruit and activate innate immune cells, including
neutrophils and macrophages, and drive antigen presentation
(54, 55). Accordingly, macrophage depletion is associated with
reduced lung injury in murine models of PGD (56, 57). IL-17 and
DAMPs promote neutrophil migration to the interstitial space.
Neutrophils can amplify IRI through neutrophil extracellular
traps (58, 59). CD1d-restricted NKT cells (natural killer T cell)
have been shown to secrete IFN-g; and help recruitment of
neutrophils to the site of injury, suggesting innate immune
cells may play an important role as a major source of IFN-g in
the lung (60).

Innate and adaptive lymphocytes play a key role in bridging
early and late IRI. In both mouse models of IRI and in human
lung transplant recipients following PGD, NK cells are observed
in and around airways (61). By contrast, in lung allograft biopsies
taken peripherally (excluding airways) before implantation and
immediately after reperfusion NK cell populations are decreased
(62). This would suggest the airways as central sites of NK-cell
mediated IRI. The NKG2D receptor on NK cells recognizes stress
molecules that are absent or lowly expressed at baseline but
rapidly increased in response to a variety of injurious stimuli
(63). In mouse models of IRI, NKG2D receptor stress ligands
were shown to be increased on pulmonary endothelial and
epithelial cells (61). Further, blockade of the NKG2D receptor
or genetic deletion of the receptor on NK cells alone, was enough
to abrogate pulmonary injury in these mouse models. Although,
it should be repeated that NK cells predominantly influence the
TABLE 1 | Overview of airway lymphocyte types.

Lymphocyte types Key subtypes Activation signals References

Innate lymphoid
cells

ILC1, ILC2, ILC3 Cytokines (13, 14)

NK cells Cytotoxic, Cytokine secreting Missing self, stress molecules, antibodies (12)
T cells Cytotoxic, Helper (Th1, Th2, Th17), Regulatory, Follicular

helper
Intracellular or extracellular peptides presented on MHC to T cell
receptors (CD3).

(15)

B cells Naïve B cells, germinal center B cells differentiate into
plasma cells

Extracellular antigens binding to B cell receptor. (16, 17)
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early phase of IRI, with other cell populations becoming more
important as the initial wave of injury subsides. Consequently,
renal models of IRI also show a similar role for NK cells in
mediating renal tubule epithelial cell injury. This suggests that
NK cells, from the moment of reperfusion, may be critical in
translating epithelial cell stress during IRI to allograft damage.

These early reperfusion responses of NK cells may potentiate
long-term outcomes by killing graft APCs. NK cell activity
against APCs occurs in the setting of licensing mismatch (61).
During NK cell development, NK cells express inhibitory
receptors to host MHCI molecules to avoid self-cytotoxicity.
During transplant with a mismatch in donor and recipient
MHCI, this inhibitory signal is absent which releases NK cells
for activation. For example, NK cells from an HLA-Bw4 positive
recipient are licensed to Bw4 antigen and will kill APC lacking
Bw4 antigens. This phenomenon plays a critical role in allogenic
stem cell transplant, where graft versus host NK activity can
prevent leukemia relapse (64). In a mouse skin transplant model
of NK licensing mismatch, graft-derived APCs were largely
destroyed by donor NK cells and skin allograft survival was
improved via reduced antigen presentation to recipient
lymphocytes (41, 65). A similar phenomenon has been
observed in mouse lung transplant models, where NK cells
could improve tolerance of an orthotopic lung allograft in a
perforin dependent manner and in association with dendritic cell
depletion (66). While this is predominantly animal model
evidence there is some data pointing to HLA Bw4
Frontiers in Immunology | www.frontiersin.org 4
mismatching that potentiates NK cell host-versus-graft activity
has been linked to improved outcomes in two cohorts of lung
transplant recipients (41).

Conventional lymphocytes are also implicated in driving the
lung injury of IRI (67). IRI may potentiate HLA- or neo-antigen
presentation and subsequent alloimmune responses (68, 69). While
there is not a prominent influx of CD4+ T cells into the allograft
during experimental IRI, depletion of CD4+ T cells attenuates
injury. This suggests that CD4+ T cells have other roles than
direct injury, such as recruitment of effector cells (70). Although,
this also points towards CD4+ T cells being complimentary to other
underlying disease processes. Within severe combined
immunodeficient (SCID) mice a documented lack of lymphocytes
caused decreased neutrophil invasion into ischemic lungs (71). A
deeper look into this process shows that lymphocyte attraction of
neutrophils occurs as early as during warm ischemia time (72,
73). Finally, IRI may also amplify anti-donor anti-MHC and anti-
autoantigen antibody production (61).
ACUTE CELLULAR REJECTION
PATHOLOGIES AND THE SIGNIFICANCE
OF AIRWAY INFLAMMATION

Acute lung allograft rejection is mediated via two primary
pathologies: acute cellular rejection and antibody mediated
rejection. Some degree of acute cellular rejection (ACR) occurs
FIGURE 1 | Immune cell responses during ischemia reperfusion injury (IRI). Warm ischemia, cold ischemia, and subsequent reperfusion with oxygenated blood lead
to oxidative and mitochondrial cell stress, which are associated with epithelial injury. These injured epithelial cells produce damage molecular patterns (DAMPs) and
chemokines (A) that recruit and activate immune cells via the vascular endothelium. Activated endothelium tether passing leukocytes from the circulation via selectins
and integrins, causing immune cells to roll and adhere (B) prior to transmigration across a chemotactic gradient (C). Lymphocyte activation is driven through MHC
binding to T cell receptors or NK cell receptor ligand interactions. These activated lymphocytes may secrete cytotoxic perforin and granzyme molecules (D).
Professional antigen presenting cells can also present alloantigen to T cells amplifying graft-specific responses in response to injury (E). Epithelial cell loss of tight
junctions and breakdown results in barrier dysfunction and interstitial edema (F).
July 2022 | Volume 13 | Article 908693
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in up to 30% of all lung transplants within the first post-operative
year (74). ACR is predominantly a T cell mediated process.
Recipient-derived effector memory T cells infiltrate the allograft
traversing vascular endothelium, proliferate and migrate to the
airways, where they can persist as resident memory cells (75).
The diagnosis of ACR is currently confirmed with transbronchial
biopsies and quantified based on standardized histopathologic
patterns (76, 77). Risk factors for ACR include the degree of
human leukocyte antigen mismatching and genetically
determined differences within the innate and adaptive
immunologic responses of the recipient (78–80). A-grade
rejection refers to a mononuclear perivascular infiltrate. B-
grade rejection refers to lymphocytic bronchitis or small
airway inflammation. Lymphocytic bronchiolitis after
transplant is linked to worse CLAD-free survival (81). C-grade
rejection refers to obliterative bronchiolitis on transbronchial
biopsy. However, this finding is neither sensitive nor specific
for CLAD. D-grade rejection denotes accelerated graft
atherosclerosis, which is not typically seen on transbronchial
biopsies. Finally, E-grade rejection is not a part of standard
ISHLT criteria but refers to lymphocytic inflammation on
endobronchial (large airway) biopsies (82).

While B-grade rejection is generally assessed on
transbronchial biopsies, similar criteria can be used to grade
airway inflammation on large airway endobronchial biopsies. In
a single center study, diagnosis of E-grade rejection within the
first year after transplant was associated with a subsequent 1.8-
fold increased risk of CLAD or death. Interestingly, gene
expression profiling of A-, B-, and E-grade rejection
pathologies identified signatures of allograft rejection that are
shared across solid organ transplant, suggesting that these
h i s t o p a t h o l o g i c find i n g s may s h a r e a c ommon
pathobiology (82).

Much of the effect seen in E-grade rejection was attributable
to high-grade lymphocytic bronchitis (83). The presence of
lymphocytic inflammation on transbronchial or endobronchial
biopsies has been termed Lymphocytic Airway Disease (LAD). In
a separate study, LAD was associated with a 1.6-fold increased
risk of CLAD or death. Interestingly, this association was limited
to the cohort not taking azithromycin for CLAD prophylaxis
(84). The use of azithromycin has been suggested to improved
lung function after development of BOS as well as improve
overall survival, when used as rescue therapy (85–87). There is
evidence in animal models that azithromycin may be linked to
reduced production of IL-17 from Th17 cells (88). At our center,
we observed a decreased incidence of lymphocytic bronchitis
since the introduction of azithromycin for CLAD prophylaxis
(89). However, data are mixed regarding the effectiveness of
azithromycin on improving CLAD-free survival or overall
survival when used prophylactically (90–92). Additionally, the
mechanism whereby azithromycin reduces airway inflammation
remains unclear. However, there is some evidence supporting
multiple pathways via; the reduction in free radicals, suppression
of vascular endothelial growth factor’s (VEGF) effects on
angiogenesis, and the reduction of gastroesophageal reflux
owning to azithromycin’s gut motility effects (53, 93, 94).
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Young age is also associated with a higher rate of acute
rejection within the first year after transplantation, perhaps
owning to a stronger immune response or exposure to a
diverse antigens as recipients age lends to less immunogenic
responses (95). ACR in the pulmonary allograft is a serious
complication that is both an acute cause of graft-dysfunction and
inflammation-related morbidity, but also a major risk factor for
the development of CLAD (96). Acute rejection contributes to
some low risk of mortality, particularly in the first year after lung
transplantation, representing approximately 3.3% of all deaths
within the first 30 days (95).

Antibody-mediated rejection is rarer in the context of lung
transplantation and occurs when de novo or pre-formed
antibodies against donor antigens trigger cell injury via two
primary pathways. In the classic pathway, complement-
binding antibodies activate the complement cascade resulting
in membrane attack complex formation and direct target cell
death. However, injury may also occur when antibodies bound
to target are non-specifically recognized by cells carrying Fc-
receptors leading to a process termed antibody-dependent cell
mediated cytotoxicity (ADCC). Irrespective of mechanism, the
increased frequency of de novo donor-specific antibodies
(DSA) is associated with increased risk of CLAD (97, 98).
While antibodies against donor antigens are common and
associated with CLAD, definitive acute AMR occurs in fewer
than 5% of all lung transplant recipients (99, 100). The
development of DSA depends on T follicular helper cell
interactions with B cells, including CD28-dependent co-
stimulation (101). Thus, DSA may be a marker for
alloimmune activation as much as biological mediator.
Neutrophils , macrophages, and NK cells have been
implicated in ADCC. Though, NK cells are thought to be the
primary effector cell in human ADCC as their Fc receptor,
CD16, is activating-only. In contrast, CD32 and CD64 lead to a
mix of activating and inhibiting signals. In support of this
mechanism, CD16 polymorphisms that enhance ADCC are
associated with increased CLAD risk (102, 103). Thus, the roles
of lymphocytes and airway inflammation in AMR require
further investigation.

There are two pathways of allorecognition implicated within
ACR, the direct and indirect pathways. In the direct pathway,
donor APCs migrate to secondary lymphoid tissue and present
alloantigen directly to recipient T cells. In the indirect pathway,
recipient APCs present alloantigen derived from dying donor
APCs to T cells, either in the secondary lymphoid organs or in
the allograft itself (104). ACR is suspected to reflect the direct
pathway (105), and ACR is associated with increased in donor-
specific CD8+, conventional CD4+, and regulatory T cell
responses in the peripheral blood (24). Within other solid
organ transplant models, recipients one year post-
transplantation may demonstrate hypo-responsiveness to
alloantigen via the direct pathway (105–107). This type of
partial tolerance to donor MHC is inconsistently observed
following lung transplantation and may depend on
conventional or regulatory T cell immune senescence (108).
Conversely, one year post-transplantation, recipients show
July 2022 | Volume 13 | Article 908693
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hyper-responsiveness towards alloantigen via the indirect
pathway, where “primed” T cells have been identified on
bronchoalveolar lavage (BAL) (106, 107). Thus, repeated
rejection could lead to CLAD via either pathway.

ACR has important limitations as a predictor of CLAD
development. While both A- and B-grade rejection have been
linked to CLAD (81), the association between A1-grade ACR and
CLAD risk is inconsistent (83, 109, 110). This perhaps points to a
common theme among several studies that although in the acute
setting lymphocytic inflammation is a major contributor of
injury long term outcomes likely are underpinned by a
multitude of inflammatory mediators and effects.

ACR is typical ly heterogenous and sometimes a
symptomatically silent process. There is poor interobserver
reliability for ACR grading across sites, with a Cohen’s kappa
value of 0.18 to 0.48 for A-grade rejection and 0.04 to 0.47 for B-
grade (111, 112). Inadequate tissue sampling is an issue for both
grades, but insufficient airway tissue for confident assessment of
B-grade rejection has been reported in up to two-thirds of
transbronchial biopsies (113). During incipient CLAD, with
active decline in FEV1, there are no reliable histopathologic
correlates on transbronchial biopsy (113). ACR diagnosis can
depend upon institutional surveillance and biopsy protocols.
Multiple studies have identified gene expression or BAL cell
counts or cytology as better predictors of CLAD than ACR itself
(114–117). For example, a gene signature of lymphocytic
bronchitis assessed in small airway cytologic brushings
identified cases of FEV1 decline that would go on to death or
retransplant in the next two years, even when transbronchial
biopsies showed no evidence of rejection (113). These
inconsistencies suggest that these sampling and interpretation
issues may be under appreciated on transbronchial biopsy and
have led to an underappreciation of the importance of airway
inflammation leading to CLAD. Gene expression-based
diagnostics using BAL or airway brushes would sample a larger
proportion of small airway tissue, may facilitate detection of
airway inflammation, and could guide potential therapies to
reduce CLAD progression (29, 115).
POTENTIATORS OF LYMPHOCYTIC
AIRWAY INFLAMMATION AND
HETEROLOGOUS IMMUNITY

Airway inflammation may be challenging to quantify but can
yield insights into alloimmune responses and the risk for
progression to CLAD. However, there are multiple drivers of
airway inflammation outside of alloimmune responses that are
relevant to long term lung transplant outcomes including air
pollution, infections, and aspiration of gastric acid
(Figure 2) (118).

Lung transplant recipient exposure to air pollution, as
quantified by the concentration of particulate matter less than
10 micrometers in diameter (PM10), is associated with increased
risk of airway inflammation on biopsy and in BAL in the 2–3
Frontiers in Immunology | www.frontiersin.org 6
days following exposure (84). In a study including 13 centers in
Europe, PM10 and proximity to roads were associated with
worse CLAD-free survival (119). Interestingly, azithromycin
appeared to mitigate this effect.

Infections may stimulate alloimmune responses and
precipitate CLAD development directly and through increased
ACR (120). Bacterial infections like Pseudomonas, as well as
infections from fungi like Aspergillus may affect CLAD risk
through impacts on inflammation, airway epithelial cells, and
other constituents of the respiratory microbiome (121, 122).
Lung transplant recipients are at particular risk for community-
acquired respiratory virus (CARV) infections: respiratory
syncytial virus (RSV), coronavirus, rhinovirus, influenza, and
parainfluenza viruses (123). Several studies independently
demonstrate that community respiratory virus infections
convey an increased risk of CLAD development. When
stratified between upper and lower viral respiratory tract
infections there is an increased risk, almost 3-fold, for lower
respiratory tract viral infections (124). Additionally, there
appears to be a temporal component to the development of
CLAD and onset of respiratory viral infection (RVI), where a
recent infection confers a larger risk of CLAD development
(125). CARV infection within the first year of transplant
confers a risk to CLAD development several years thereafter
(126). Early treatment of RSV infection decreased the incidence
of new or progressive CLAD (127).

CARV infection may drive airway inflammation and
subsequent CLAD through multiple mechanisms. In a rat model
of lung transplantation, parainfluenza virus infection potentiated
lymphocytic inflammation and obliterative airway disease in
allogeneic lungs relative to syngeneic or uninfected lungs (128).
Viruses are potent inducers of interferons and interferon-
associated chemokines can recruit cytotoxic lymphocytes to
airways. Specifically, in CARV-infected lung transplant
recipients, higher concentrations of chemokine C-X-C motif
ligand 10 (CXCL10) and C-C motif chemokine ligand 11
(CCL11) predicted FEV1 decline over the next 6 months (129).
CARV infection can impair regulatory T cells and expose cryptic
antigens leading to de novo anti-ColV and k-alpha1 tubulin
antibodies that are associated with CLAD (130). Viral infections
can also lead to the release of exosomes containing self-antigens
that can trigger responses to self-antigens and CLAD pathology
(131). Viral infections can potentiate donor-specific immune
responses through heterologous immunity. For example, CD8+
T cells specific for Human cytomegalovirus (CMV) or Epstein-
Barr virus (EBV) have been shown to cross react with donor
alloantigen (132). NK cells can also mediate recall immune
responses to CMV through the NKG2C receptor, and elevations
in NKG2C+ NK cells in the BAL is a risk factor for CLAD (63).

CMV infection, within immunocompetent hosts, establishes
immunity which controls infection even if the virus is reactivated
(133). However, there is evidence to suggest CMV infection may
cause life-threatening complications in organ transplant
recipients and has been associated with more frequent acute
and chronic rejection (134–136). CMV-reactive T cells can cause
tissue damage by several mechanisms: (i) direct cytotoxic effect
July 2022 | Volume 13 | Article 908693
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on CMV infected (allograft) cells, (ii) indirect bystander
activation and proinflammatory milieu formation, and (iii)
heterologous (cross-reactive) allorecognition (137). The cross-
reactivity of CMV-reactive effector T cells to HLA class I antigens
is widely accepted and have been isolated from the peripheral
blood of kidney transplant recipients (132, 138, 139).

Chronic exposure to gastric acid secondary gastroesophageal
reflux disease (GERD) has also been shown to be associated with
the development of CLAD (140). Gastric acid may directly
trigger lymphocytic airway inflammation. For example, chronic
exposure to gastric fluid in rodent lung transplant models is
associated with ACR, peribronchial T cell infiltration, T cell-
dependent cytokine release in BAL, and increased frequencies of
obliterative bronchiolitis lesions (141, 142).Conversely, anti-
reflux surgery is associated with decreased BAL lymphocytes
and neutrophils (143). For these reasons, many centers will
perform anti-reflux surgery for lung transplant recipients with
uncontrolled GERD and risk of CLAD progression (143–145).
AIRWAY INFLAMMATION IN THE
PATHOGENESIS OF CLAD

CLAD pathology may reflect a final common pathway of injury
responses leading to airway remodeling and fibrosis. For
example, neutrophils in BAL fluid are identified as a reversible
CLAD risk factor. A syndrome >15% BAL neutrophils and ≥10%
Frontiers in Immunology | www.frontiersin.org July 2022 | Volume 13 | Article 9086937
decreased in FEV1 that reverses with azithromycin treatment is
termed azithromycin-responsive allograft dysfunction (ARAD),
previously known as neutrophilic reversible allograft dysfunction
(NRAD) (146). ARAD is closely linked with lymphocytic airway
inflammation and may reflect a paradoxical IL-17-dependent
production of IL-8 in airway epithelial cells exposed to
tacrolimus that is reversed by azithromycin (87, 147).
Nonetheless, while azithromycin prophylaxis can potently
reduce airway inflammation, it has been inconsistently
associated with CLAD prevention (91, 148). That lung
transplant recipients continue to develop CLAD despite
azithromycin prophylaxis suggests multiple pathways to CLAD.

Airway inflammation can induce and activate myofibroblasts.
These cells deposit the extracellular proteins like collagen and
fibronectin that constitute airway fibrosis (149). Myofibroblasts
may derive from airway epithelial cells via epithelial to
mesenchymal transition (EMT) as well as from pericytes via
pericyte-mesenchymal transition (PMT) (150–152). Pathologic
EMT can be triggered by lymphocyte activation and secretion of
transforming growth factor-beta (TGF-b). Mouse models with
knockout of TGF-b show protection from fibrosis and EMT
(153–155). Growth factors such as VEGF and TGF-b also
mediate interactions between the lung endothelium and
pericytes and have been independently studied as drivers of
fibrosis (156, 157). Myofibroblasts can also differentiate from
donor-derived resident mesenchymal stem cells in response to
Th2 lymphocytic inflammation (158).
FIGURE 2 | Infectious and non-infectious insults drive immune activation that can lead to CLAD. (A) CMV or other respiratory viral infections in epithelial cells
augment antigen presentation through upregulation of donor-derived MHC and b2-microglobuilin, shown in (B). These MHC complexes present viral antigens and
participate in direct presentation of donor antigens to T cell receptors. CMV antigens are also presented on HLA-E to activating NKG2C receptors on NK cells (C).
Sterile injury, such as through exposure to gastric acid reflux (D) or air pollution, can cause direct airway cell injury which also leads to upregulation of antigen
presentation and proinflammatory cytokines (E). Recipient antigen presenting cells then present alloantigens through the indirect pathway using recipient MCH or
through the semi-direct pathway using acquired donor MHC molecules (F). This can drive lymphocytic immune responses specific to donor antigens or unmasked
self-antigens. (G) Bacterial and fungal infections can serve as an acute or persistent source of pathogen-associated molecular patterns that drive immune responses
in lymphoid and myeloid immune cells (H) via Toll-like receptors, Dectin-1, or other pathways.
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Club cell dysfunction can also drive CLAD pathology. Club
cells are non-ciliated epithelial cells typically found within
bronchioles that promote injury repair and secrete anti-
inflammatory proteins (159–162). Club cell depletion leads to
CLAD-like pathology that can be prevented with CD8+ T cell
depletion (163). Club cells can proliferate rapidly and
differentiate into airway epithelial cell populations. Such
proliferation puts stress on cell replication machinery,
including telomeres, the nucleoprotein caps on chromosomes.
Telomere dysfunction in the allograft has been associated with
CLAD risk and induction of club cell telomere dysfunction in
mice drives both lymphocytic airway inflammation and CLAD-
like pathology (164, 165).
CONCLUSIONS

CLAD is primarily a disease of airway or parenchymal fibrosis
resulting from alloimmune responses and lymphocytic airway
inflammation is likely to be a major driver of CLAD pathology.
However, lymphocytic airway inflammation can be challenging
to detect using standard of care histopathologic analysis on
transbronchial biopsies. Transcriptional analysis of airway
brushings biopsies, or BAL fluid may allow more reliably
detection of pathogenic airway inflammation (29, 113, 121).
Airway lymphocytes include ILCs, T cells, B cells, and NK
cells, which have distinct roles in PGD, ACR, AMR, and
CLAD. Together with acute peri-vascular rejection, antibody-
mediated responses, ischemia-reperfusion injury, graft
infections, and gastroesophageal reflux disease, airway
inflammation appears to drive an inflammatory milieu leading
to airway-centric fibrosis (6, 24, 81, 83, 116, 166–169).

At the same time there are some limitations to the current
data linking airway lymphocytes to rejection pathology. The
observation of lymphocytes coincident with graft pathology does
not imply lymphocytes are causal. These lymphocytes could be a
consequence of injury, or actively counteracting pathology, such
as with regulatory T and B cells (24). While there are some causal
data from rodent lung transplant models, the models have
Frontiers in Immunology | www.frontiersin.org 8
limitations and may not always match human immunobiology
(170). Additionally, lymphocytes are only a component of the
immune cells contributing to lung injury, as neutrophils,
monocytes, and other cells also play key roles.

Targeting immune suppression to airway lymphocytes is a
promising strategy to prevent or delay CLAD. For example, a
trial of inhaled cyclosporin showed encouraging results, even
though it was terminated early for business reasons (171). The
JAK-1 inhibitor itacitinib has shown promise as inhibitor of
lymphocytic mucosal inflammation and is under investigation
to address inflammation in the context of early CLAD (172).
The use of azithromycin as prophylaxis for CLAD or as a rescue
from BOS has been implemented by several institutions, as
detailed previously with varying degrees of success (85–87, 90,
92). Also, an adenosine A2A receptor antagonist is under
investigation to reduce invariant NKT cell mediated
inflammation in PGD (173). Other strategies to dampen
airway inflammation, such as regulatory T cell adoptive
therapy and/or pretransplant allograft modification during ex
vivo lung perfusion, have shown preclinical promise as adjuncts
to traditional immune suppression (174). A fair portion of our
understanding of allograft injury comes from in vitro, ex vivo,
and animal models which are extremely important in studying
the biology that informs our clinical pursuits. However, it is
vital to continue to test these theories within robust and safe
clinical trials.
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GLOSSARY

ACR acute cellular rejection
ADCC antibody-dependent cell-mediated cytotoxicity
AMR antibody mediated rejection
APC antigen presenting cell
ARAD Azithromycin-responsive allograft dysfunction
BAL bronchiolar lavage
BOS bronchiolitis obliterans syndrome
Breg regulatory B cell
CARV community-acquired respiratory virus
CCL11 C-C motif chemokine ligand 11
CD cluster of differentiation
CLAD chronic lung allograft dysfunction
CMV human cytomegalovirus
CXCL10 chemokine C-X-C motif ligand 10
DAMP damage-associated molecular pattern
DSA donor-specific antibody
EBV Epstein-Barr virus
EMT epithelial mesenchymal transition
FEV1 one-second forced expiratory
GERD gastroesophageal reflux disease
HLA human leukocyte antigen
IFN-g interferon-g
IL interleukin
ILC innate lymphoid cell
IRI ischemic reperfusion injury
AK-1 Janus kinase 1
LAD lymphocytic airway disease
MHC major histocompatibility complex
NK natural killer
NKT natural killer T cell
NRAD neutrophile reversible allograft dysfunction
PaO2/FiO2 arterial oxygen partial pressure to fraction of inspired oxygen ratio
PGD primary graft dysfunction
PM10 Particulate matter under 10 micros in size
RAS restricted allograft syndrome
RORgT retinoic acid-related orphan receptor-g
T RSV respiratory syncytial virus
RVI respiratory viral infection
SCID severe combined immunodeficiency
Tbet T-box expressed in T cells
TCR T cell receptor
TGF-b transforming growth factor-b
TNF-a tumor necrosis factor-a
Treg regulatory T cell
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