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Abstract: Background: Carotid flow velocity criteria are well established, with age being a factor
influencing measurements. However, there are no volumetric standards for the flow in extracranial
arteries. The aim of the study was related to volumetric flow assessment of extracranial arteries in a
healthy population >65 years old. Methods: Doppler volumetric measurements of internal carotid
(ICA), external carotid (ECA) and vertebral arteries (VA) were performed in 123 healthy volunteers
>65 years old and compared with 56 healthy volunteers <65 years old. Results: The continuous
decline in cerebral blood flow (CBF) volume was observed (p < 0.00001). Volumetric reference values
were established in study groups: 1., 65–69 years: 898.5 ± 119.1; 2., 70–74 years: 838.5 ± 148.9;
3., 75–79 years: 805.1 ± 99.3; 4., >80 years: 685.7 ± 112.3 (mL/min). Significant differences were
observed between groups: 1 and 3.4, as well as 3 and 4 (p = 0.0295, < 0.000001, 0.00446 respectively).
CBF volume decreases gradually with age: 28–64 years—6.2 mL/year (p = 0.0019), 65–75 years—
11.4 mL/year (p = 0.0121) and >75 years—14.3 mL/year (p = 0.0074). This is a consequence of flow
volume decline in ICA (p = 0.00001) and to lesser extent ECA (p = 0.0011). The decrease of peak
systolic (p = 0.002) and end diastolic (p = < 0.00001) velocities in ICA and peak systolic velocity in
ECA (p = 0.0017) were observed. Conclusions: CBF decreases with ageing. Volumetric assessment of
CBF may play an important additional role in diagnostics of patients with carotid stenosis. Doppler
assessment of cerebral flow volume may create an interesting tool for identifying patients with
diminished cerebrovascular reserve and higher risk of ischemic symptoms occurrence.
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1. Introduction

Peripheral artery disease is estimated to affect about 20% of population beyond 60 years old
and more than 50% over 85 years [1] and its prevalence is going to increase with the phenomenon
of aging of the population [2]. Cardiovascular diseases are contemporarily considered one of the
most serious health burdens, posing a first place among causes of death according to the WHO (Word
Health Organization). In 2016, almost 18 million people died due to cardiovascular disorders, among
them 85% because of myocardial infraction or stroke [3,4]. Stroke is estimated to affect annually about
15 million people worldwide. One third of these patients die while about 5 million remain permanently
disabled [5]. It is regarded that about 85% of all strokes are of an ischemic type, while 15%, even up to
one fifth, are the result of hemodynamically significant atherosclerotic lesions of the bifurcation of the
common carotid artery and proximal part of internal carotid artery [6–8]. The quantitative assessment
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of the total cerebral blood flow previously required nuclear medicine methods, which availability is
limited due to high costs and required equipment. The evaluation of total cerebral blood flow with
ultrasound methods is featured with good accuracy, availability, and might be useful in monitoring
various cerebrovascular disorders. While the blood flow velocity criteria in healthy patients as well as
in the diagnosis of carotid stenosis are well defined, there are no reference values concerning blood
flow volume. Limited data in the literature concerning the blood flow volume in carotid arteries are
available, with only a few authors touching this problem, and research based on relatively small groups
of patients [9–12]. The objective of this study covered assessment of the blood flow volume in internal
carotid, external carotid and vertebral arteries in healthy volunteers over 65 years old in order to assess
the normal hemodynamic parameters in this age group. The reference flow volume data might be
potentially used in the diagnosis and monitoring the patients with various cerebrovascular disorders.

2. Subjects and Methods

In total, 123 healthy volunteers beyond 65 years old were included in the study (62 female; mean
age 73.6 ± 6.6 years old, 61 male; mean age 72 ± 5.0 years old). In order to achieve homogenous
stratification in terms of age, the whole study group was divided into cohorts in each 5-year period
between 65 and 80 years of age, gender-disaggregated. Patients exceeding 80 years were gathered
in one cohort. Maximum age in females was 96 years old and 87 years old in males. The group
of 56 healthy volunteers aged 18–65 (34 female; mean age 51.2 ± 10.6 years, 22 male; mean age
49 ± 10.1 years) were included in the examination with the aim of comparison of flow parameters with
the group over 65 years old. Characteristics of the study group is presented in the Table 1.

Table 1. Group characteristics.

Age
Group

Number
of

Patients

Average
Age

(Years)

Number
of

Females

Average
Age of

Females
(Years)

Number
of Males

Average
Age of
Males
(Years)

Age
Median in

Females
(Years)

Age
Median in

Males
(Years)

Age
Standard
Deviation

in
Females
(Years)

Age
Standard
Deviation
in Males
(Years)

65–69
years 42 66.9 21 67 21 66.8 67 66 1.5 1.4

70–74
years 41 72.2 16 72.1 25 72.3 72 72 1.2 1.5

75–79
years 24 76.8 11 76.8 13 76.8 77 77 1.0 1.6

≥80
years 16 83.7 13 83.5 3 84.7 82 87 4.21 4.0

<65
years 56 50.3 34 51.2 22 49 54 45 10.6 10.1

All patients lived an independent life and had no previous history of neurological and
cerebrovascular disorders. Detailed inclusion and exclusion criteria are presented in Table 2. Informed
consent was given by all study participants before the examination. The study was held with the
approval of Medical University of Warsaw Bioethical Committee.

Before the Doppler ultrasonography (DUS) examination, blood pressure in each individual did
not exceed 140 mmHg-systolic and 90 mmHg-diastolic, no tachycardia, or bradycardia was observed.
In order to avoid interobserver variability, all measurements were performed by the same sonographer
using the Canon Aplio i800 ultrasound scanner with Linear i11LX3 transducer. Each DUS began
after 15 minutes of rest in supine position. During the examination, the patient lied supine with their
head slightly elevated and turned to the contralateral side (by 10–20 degrees to the measurement of
common carotid artery (CCA) and vertebral artery (VA), and about 30–40 degrees to internal carotid
(ICA) and external carotid artery (ECA) measurements. The diameter of each vessel, defined as the
shortest distance between internal layers of vessel walls, were measured 3 times with three different
techniques: B-mode, SMI-Superb Micro-Vascular Imaging mode and hybrid: B-mode combined with
SMI image. The average from 3 measurements was considered the vessel diameter. The cerebral
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blood flow was calculated as the sum of the flow volume in internal, external and vertebral arteries.
The ICA flow measurements were conducted in their upper segments 3–4 cm above the ICA bulb to
avoid false results due to changes in velocity in the vicinity of the carotid bulb. The external carotid
arteries were evaluated above the origin of the upper thyroid artery to avoid false results due to
physiological blood supply to the thyroid gland. Vertebral arteries were evaluated in possibly straight
segments at V2 (V1 in the case of a tortuous course and technical difficulties). Flow volume in CCA was
measured 4 cm below the carotid bifurcation. CCA flow was measured as a control—the measurement
was regarded as accurate when CCA flow volume slightly exceeded the sum of ICA and ECA flow
volume. All measurements were conducted three times and their average was considered a final
result. Insonation angle was equal or lower than 60 degrees. The sample volume size was adjusted to
cover between 0.5 and 2/3 of arterial lumen. The blood flow velocity wave forms were recorded—at
least 5 waveforms with similar patterns were considered a proper flow pattern sample demanded to
perform further measurements. The blood flow volumes were calculated using the ultrasound scanner
semiautomatic program.

Table 2. Inclusion and exclusion criteria.

Inclusion Criteria–Study Group

1 Age ≥ 65 years
2 Informed consent before the examination

3 No hemodynamically significant carotid atherosclerotic lesions, causing blood flow disturbances (ICA
stenosis < 30%)

4 No exclusion criteria

Exclusion Criteria–Study Group

1 Age < 65 years
2 No informed consent given before the examination
3 Internal Carotid Artery stenosis > 30%
4 Stenosis of Common Carotid, External Carotid or Vertebral Artery

5

Concomitant diseases: uncontrolled hypertension, ischemic heart disease, heart insufficiency, positive
history of heart infraction, positive history of stent implantation to coronary or any other arteries,
cardiac arrhythmia, tachycardia, bradycardia, congenital vascular or heart failure, positive history of
vascular interventions, presence of endocrine diseases: thyroid goiter, hyper-, hypothyroidism
diabetes, adrenal diseases, positive history of thyroid surgery, smoking, alcohol use.

6 Positive history of ischemic stroke, TIA symptoms or other neurological symptoms.

TIA: transient ischemic attack; ICA: internal carotid artery.

3. Statistics

Statistical analysis was performed with Statistica 13 (StatSoft Polska Sp. z.o.o., Krakow, Poland).
The t-test, Mann–Whitney U test, analysis of variance (ANOVA) and regression analysis were performed.
A t-test was applied when the normal distribution of data was stated. The Shapiro–Wilk test was
performed as a test of normality: a data set with a p value of less than 0.05 rejects the null hypothesis
that the data are from a normally distributed population. Consecutively, Levene’s test was used to
assess the equality of variances—the p-value below 0.05 rejects the null hypothesis of equal variances.
The normal distribution of data with equal variances was a prerequisite to use the t-test. When the
normal distribution of data with no equality of variances was observed, the t-test with Cochran–Cox
correction was performed. When one of the variables was of no normal distribution the non-parametric
Mann–Whitney U-test was performed. Kruskal–Wallis one-way analysis of variance was performed
to compare data in several groups, when at least data distribution in one group of no Gaussian
distribution. The statistical significance was stated with post-hoc tests.
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4. Results

The continuous gradual decline in cerebral blood flow volume with increasing age was observed
in all study participants—the data are presented in Figure 1.

J. Clin. Med. 2020, 9, x FOR PEER REVIEW 4 of 11 

 

 
Figure 1. Regression analysis of cerebral blood flow volume—sum of flow volumes in the internal 
carotid artery (ICA), external carotid (ECA) and vertebral artery (VA). (A) Statistically significant 
decrease of 7.6 mL/min in whole study group (p < 0.00001, r = −0.6231, r² = 0.3882). (B) Smaller decline 
of 6.2 mL/year in the group aged below 65 years (p = 0.0019, r = −0.4052, r² = 0.1642). (C) More prominent 
with age and in the group aged 65–75 reaching 11.4 mL/year (p = 0.0121, r = −0.2759, r² = 0.0761). (D) 
Increase to 14.35 mL/year above 75 years old. (p = 0.0074, r = −0.4222, r² = 0.1782). 
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is presented in the Figure 1. The decline became more prominent with age. In the whole group, the annual 
decline in cerebral blood flow was 7.6 mL/year—Figure 1A. In the group aged below 65 years old, 
the annual decline in cerebral blood flow (CBF) was lower and estimated for 6.2 mL/year (p = 0.0019, 
r = −0.4052, r² = 0.1642)—Figure 1B. The decline became more prominent with age and in the group 
aged 65–75 reached 11.4 mL/year (p = 0.0121, r = −0.2759, r² = 0.0761)—Figure 1C. In the group aged 
above 75, it increased to 14.35 mL/year (p = 0.0074, r = −0.4222, r² = 0.1782)—Figure 1D. 

Statistically significant volumetric differences were observed between the groups aged 65–69 
years and 75–80 years (p = 0.0295), 65–69 years and > 80 years old (p < 0.000001), as well as between 
70–74 years and > 80 years old (p = 0.00446)—Figure 2A. The gradual decline in total cerebral flow 
volume was mainly due to statistically significant flow volume decline in ICA (p = 0.00001, r = −0.3933, 
r² = 0.1547)—Figure 2B, and to lesser extent in ECA (p = 0.0011, r = −0.2916, r² = 0.0851)—Figure 2C, both 
for males and females. No statistically significant flow volume differences were observed between 
genders as well as between contralateral arteries in terms of ICA. Thus, the data are presented 
collectively, not disaggregated by gender. No statistically significant flow volume changes were 
observed in vertebral arteries (p > 0.07, r = −0.1636, r² = 0.0268)—Figure 2D. 

Figure 1. Regression analysis of cerebral blood flow volume—sum of flow volumes in the internal
carotid artery (ICA), external carotid (ECA) and vertebral artery (VA). (A) Statistically significant
decrease of 7.6 mL/min in whole study group (p < 0.00001, r = −0.6231, r2 = 0.3882). (B) Smaller
decline of 6.2 mL/year in the group aged below 65 years (p = 0.0019, r = −0.4052, r2 = 0.1642). (C) More
prominent with age and in the group aged 65–75 reaching 11.4 mL/year (p = 0.0121, r = −0.2759,
r2 = 0.0761). (D) Increase to 14.35 mL/year above 75 years old. (p = 0.0074, r = −0.4222, r2 = 0.1782).

The correlation of the flow volume as sums of ICA, ECA and VA (p < 0.00001, r = −0.6231,
r2 = 0.3882) is presented in the Figure 1. The decline became more prominent with age. In the whole
group, the annual decline in cerebral blood flow was 7.6 mL/year—Figure 1A. In the group aged below
65 years old, the annual decline in cerebral blood flow (CBF) was lower and estimated for 6.2 mL/year
(p = 0.0019, r = −0.4052, r2 = 0.1642)—Figure 1B. The decline became more prominent with age and in
the group aged 65–75 reached 11.4 mL/year (p = 0.0121, r = −0.2759, r2 = 0.0761)—Figure 1C. In the
group aged above 75, it increased to 14.35 mL/year (p = 0.0074, r = −0.4222, r2 = 0.1782)—Figure 1D.

Statistically significant volumetric differences were observed between the groups aged 65–69 years
and 75–80 years (p = 0.0295), 65–69 years and > 80 years old (p < 0.000001), as well as between
70–74 years and > 80 years old (p = 0.00446)—Figure 2A. The gradual decline in total cerebral flow
volume was mainly due to statistically significant flow volume decline in ICA (p = 0.00001, r = −0.3933,
r2 = 0.1547)—Figure 2B, and to lesser extent in ECA (p = 0.0011, r = −0.2916, r2 = 0.0851)—Figure 2C,
both for males and females. No statistically significant flow volume differences were observed between
genders as well as between contralateral arteries in terms of ICA. Thus, the data are presented
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collectively, not disaggregated by gender. No statistically significant flow volume changes were
observed in vertebral arteries (p > 0.07, r = −0.1636, r2 = 0.0268)—Figure 2D.
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No statistical significance in flow volume between contralateral arteries was observed, except 
vertebral arteries, left vertebral artery was dominant: 56 mL/min vs. 75 mL/min (p < 0.0001). 

No male to female differences were observed between examined arteries except external 
carotid arteries, where flow volume was significantly higher in males (105.75 mL/min vs. 89 
mL/min, p < 0.00007). As these observations have been previously described, they are not shown on the 
Figures. 

The decrease in peak systolic velocity (PSV) (p = 0.002, r = −0.2392, r² = 0.0572), end-diastolic 
velocity (EDV) (p = < 0.00001, r = −0.4112, r² = 0.1691) in ICA as well as the decrease of PSV in ECA 
(p = 0.0017, r = −0.2612, r² = 0.0682) were observed. ICA EDV decrease was relatively more prominent 
than PSV decrease. No significant gender differences were observed in blood flow velocities thus the 
data are presented collectively in the Figure 3. 

Figure 2. The gradual decline of cerebral flow volume in patients over 65 years old. (A) Statistically
significant volumetric differences between the groups aged: 65–69 and 75–80 years (p = 0.0295), 65–69
and >80 years old (p < 0.000001), 70–74 and >80 years old (p = 0.00446). (B) Statistically significant
ICA flow volume decline (p = 0.00001, r = −0.3933, r2 = 0.1547). (C) Less prominent ECA flow volume
decline (p = 0.0011, r = −0.2916, r2 = 0.0851). (D) No statistically significant flow volume changes in
vertebral arteries with age (p > 0.07).

No statistical significance in flow volume between contralateral arteries was observed, except
vertebral arteries, left vertebral artery was dominant: 56 mL/min vs. 75 mL/min (p < 0.0001).

No male to female differences were observed between examined arteries except external carotid
arteries, where flow volume was significantly higher in males (105.75 mL/min vs. 89 mL/min,
p < 0.00007). As these observations have been previously described, they are not shown on the Figures.

The decrease in peak systolic velocity (PSV) (p = 0.002, r = −0.2392, r2 = 0.0572), end-diastolic
velocity (EDV) (p = < 0.00001, r = −0.4112, r2 = 0.1691) in ICA as well as the decrease of PSV in ECA
(p = 0.0017, r = −0.2612, r2 = 0.0682) were observed. ICA EDV decrease was relatively more prominent
than PSV decrease. No significant gender differences were observed in blood flow velocities thus the
data are presented collectively in the Figure 3.
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Figure 3. Flow velocity changes in internal and external carotid arteries. (A) The significant decrease
of peak systolic velocity (PSV) (p = 0.002, r = −0.2392, r2 = 0.0572). (B) The significant decrease
of end-diastolic velocity (EDV) (p = <0.00001, r = −0.4112, r2 = 0.1691) in ICA. ICA EDV decrease
is relatively more prominent. (C) The significant decrease of PSV in ECA (p = 0.0017, r = −0.2612,
r2 = 0.0682).

Values of flow volumes, velocities and proposed reference values with standard deviations among
the study group are presented in the Table 3.

Table 3. Flow volume values and velocities in study group.

Group-Age 65–69 70–74 75–80 >80

Mean (mL/min) 898.5 838.5 805.1 685.7
Std. err (mL/min) 18.4 23.3 20.3 29.0
Std. dev (mL/min) 119.1 148.9 99.3 112.3

Proposed reference value
(mL/min) 898.5 ± 119.1 838.5 ± 148.9 805.1 ± 99.3 685.7 ± 112.3

ICA volume (mL/min) 273.8 ± 60.5 237.9 ± 54.3 240.1 ± 47.3 203.3 ± 42.7
VA volume (mL/min) 71.8 ± 32.3 70.3 ± 28.2 60.5 ± 25 57.3 ± 18.5

ECA volume (mL/min) 103.6 ± 32.9 104.2 ± 32.7 91.5 ± 23 81 ± 35
ICA PSV (m/s) 0.72 ± 0.14 0.67 ± 0.15 0.68 ± 0.17 0.59 ± 0.14
ICA EDV (m/s) 0.26 ± 0.07 0.21 ± 0.06 0.20 ± 0.05 0.18 ± 0.06
VA PSV (m/s) 0.45 ± 0.11 0.45 ± 0.14 0.44 ± 0.12 0.41 ± 0.11
VA EDV (m/s) 0.13 ± 0.06 0.12 ± 0.05 0.13 ± 0.04 0.13 ± 0.04
ECA PSV (m/s) 0.8 ± 0.24 0.81 ± 0.25 0.78 ± 0.26 0.67 ± 0.21
ECA EDV (m/s) 0.1 ± 0.05 0.13 ± 0.07 0.13 ± 0.05 0.12 ± 0.05

ICA, internal artery; ECA, external carotid; VA, vertebral artery.



J. Clin. Med. 2020, 9, 1375 7 of 11

5. Discussion

Contemporarily Doppler ultrasound examination is a gold standard in the diagnostics of carotid
stenosis and qualification to vascular intervention, enabling to asses both: the hemodynamics as well
as other parameters connected with increased stroke risk [13]. The severity of stenosis, assessed mainly
on the basis of changes in PSV, EDV, PSV ratio between CCA and stenosis, and lumen reduction,
is the most important stroke risk factor. Rapid stenosis progression, large size of the plaque, low
plaque echogenicity, increased juxta luminal black area, the presence of spontaneous embolization in
transcranial doppler, plaque ulceration and impaired cerebrovascular reserve are the features increasing
the risk of stroke in patients with asymptomatic carotid stenosis [7,14–17].

Cerebral blood flow, being the important, however difficult to assess quantity, is connected with
cerebrovascular reserve. The estimation of total cerebral blood flow is mainly done with the use of
radionuclide or techniques such as: positron emission tomography (PET), single-photon emission
computed tomography (SPECT) and Xenon-enhanced CT scanning. Those methods allow to achieve
reliable, reproducible and accurate results but due to their limited accessibility and high costs, are
limited of use [9,18]. Despite the ongoing debate, there is no standard of cerebral blood flow volume,
measured as a sum of volumes in the extracranial arteries [19]. The first description of sonographic
assessment of cerebral blood flow (CBF) was first published by Schoening et. al. These authors also
proved that the sonographic quantification of CBF is an accurate method, featured with high intradiane,
interdiane and intraobserver and interobserver reproducibility and comparable with radionuclides
methods [9–12].

The fact that total cerebral blood flow volume is subject to changes is known, however there is no
abundant data in the literature concerning this problem, and the published research is conducted on
relatively small study groups.

Schoening et al. sonographically examined the total cerebral blood flow (TCBF) changes in
adolescents. According to their findings, the TCBF (a sum of flow volumes in ICA and VA), rapidly
develops between 3 and 6.5 years old (raising from 687 ± 85 to 896 ± 110 mL/min), and consecutively
decline from 6.5 years old to adulthood, reaching about 700 mL/min in 15 years old. The authors claim
that the increase of TCBF was caused mainly by the statistically significant increase mainly in ICA
flow volumes, and less prominently in VA. From 65 years on the marked decrease in flow volume in
VA arteries was observed, without significant decrease of ICA flow volume. ECA flow volume was
observed to continually increase with age. The authors did not observe sex-related differences [20].

In 1982, Umeatsu et al. measured the blood flow in common carotid artery using ultrasonic
volume flowmeter (VFM). The authors stressed that the carotid blood flow varies with age. In subjects
with carotid stenosis, the authors found decreased flow volume caused by atherosclerotic lesions,
and elevated flow volume after endarterectomy. The authors also stressed that in the physiological
conditions ICA 70%, comparing to external carotid flow, which is approximately that of vertebral flow
(30%) [21].

Up to this day, several authors dealt with the problem of ultrasound examination of cerebral blood
flow volume in healthy adults. Scheel et al. published in the Stroke their work in which the influence of
age and sex on cerebral blood flow was examined. After examination of 78 healthy adults, the authors
found a statistically significant inverse correlation between age and cerebral blood flow volume, caused
mainly by the significant reduction in bilateral ICA flow volume, without significant changes in other
arteries. The authors found that cerebral blood flow volume slightly decreases at a 3 mL/year rate [9].
Several other research studies using other imaging techniques like magnetic resonance imaging (MRI)
confirmed this result, with the rate of CBF volume decrease ranging from 3.9 to 4.8 mL/year [9,22,23].
Phase contrast MRI imaging is thought to be a very accurate method of CBF assessment, however
B-flow imaging gives very close, however significantly higher, results. Color Doppler and power
Doppler techniques can overestimate the flow volume [18]. Therefore, determining the arterial lumen
diameter is a factor of utmost importance to obtain reliable flow volume results, because even an
0.1 mm diameter difference may result in a few percent results over or underestimation.
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Yazici et al. also demonstrated age-dependent cerebral blood flow volume decreases due to
volumes and velocities decrease in CCA, ICA and VA. There were no sex differences in flow volume
in extracranial arteries except ECA, in which the flow volume was significantly higher in men [19].
The results considering blood flow velocities are consistent with the ones obtained by Sheel et al.,
who observed volumetric flow only in the ICA [24]. The decrease of blood flow volume in the ICA
in an ageing population, independent of gender, with no side-to-side differences was also proved
by Schebesch et al. [25]. Albayrak et al. also demonstrated the decrease in peak systolic velocities,
end diastolic velocities, and flow volumes in ICA and VA with increasing age [26]. Schöning et al.,
examining the group of healthy adults between 20 and 63 years old, did not noted the decrease in
cerebral blood flow in this group. The authors observed decrease in flow velocities in ICA (PSV and
EDV) and PSV in VA [10].

In this study, the decline in TCBF volume was noted, becoming more prominent with age.
The annual decline in the group aged between 18–65 proved to be much smaller than in individuals
over 65 years old. The decrease is the result of significant decrease of flow volume mainly in ICA
and, to lesser extent, ECA. The decrease in ICA, PSV, EDV, and ECA PSV is convergent with obtained
volumetric results, being in accordance with results published by other authors. However, it is worth
stressing that the cerebral blood flow volume decline is more rapid in elderly people than in younger
aged groups, accelerating rapidly after 70–75 years old, which was not published previously. These data
are in accordance with the contemporary knowledge concerning cerebral blood flow and physiological
brain aging processes. The brain perfusion and its weight changes throughout life. Its mass rapidly
increases by the age of 6, reaching about 92% of its maximum weight, which is obtained in about
18 years old adults [20,27–29]. Those changes are accompanied by perfusion changes. In healthy adults,
brain perfusion is estimated to 50 mL/100g/min, with higher flow in grey matter of 80 mL/100g/min
and lower in white matter of 20 mL/100g/min [30,31]. It is proven that, after exceeding the age of
forty, the volume and mass of brain begin to decline: initially at the rate of 5% per year, increasing
over 70 years old [30–32]. In the ageing brain, white matter lesions (WML) are observed. Common
also in asymptomatic patients, they are connected with increased cardiovascular risk, reduction of
cerebral reactivity, blood flow and vascular density [32–35]. Elevated blood pressure also influences
the brain aging processes, leading to faster brain atrophy, especially accentuated in grey matter [32,36].
This factor also stresses the importance of excluding the patients with elevated blood pressure from
the examination.

Throughout the years, there were also no consensus concerning the reference vertebral arteries
blood flow volumes. In the 1980s, with vertebral flow below 200 mL/min, vertebrobasilar insufficiency
was suspected [37], however, later studies reported values between 100 mL/min and 300 mL/min in
healthy individuals [19,22–24]. Generally, up to three quarters of patients have one dominant vertebral
artery, and this phenomenon mainly occurs at left side [9,10,22–24]. The lowest vertebral volume
values in this study oscillated about 70 mL/min with the highest values exceeding 200 mL/min. All
the patients were asymptomatic with good waveform spectrum in vertebral arteries, which confirms
that flow volume in VA below 100 mL/min may not cause vertebrobasilar insufficiency. In our study,
the left vertebral artery was dominant in the majority of patients, which is consistent with previously
published studies.

Minor discrepancies in the volumetric measurements might originate from the flow volume
calculation method. The volume of blood is a product of cross-sectional area multiplied by
time-averaged velocity (TAV), which may be estimated either from the maximum frequency TAMAX
(also known as TAP—time-averaged peak velocity) or from TAMEAN (intensity weighted mean
frequency) [38,39]. Volume values calculated with time-averaged peak frequency are featured with
overestimating tendency [38–40]. When the flow pattern in the examined vessel is “flat”—flow
velocities in peripheral parts of the vessel are almost the same as in the central part, both TAMAX
and TAMEAN have similar values. In carotid arteries, where the flow pattern is considered parabolic,
TAMEAN may have slightly lower values as TAMAX [38–40]. TAMEAN values depends also on
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sample volume—the gate should be broad enough to measure central and peripheral bloodstream.
Too small sample volume might cause overestimation of TAMEAN, representing only blood layers
in the measured part of the vessel [38–40]. In physiological conditions in carotid arteries, the major
part of the flow occurs during systole, with the flow pattern resembling a flat pattern. In end-diastole,
flow becomes parabolic [26,38–40]. Measurement of the arterial lumen and proper sample volume
positioning are of key importance in achieving reliable measurements. In this study sample, volume
covered 0.5 to 2/3 of arterial lumen to provide reliable TAMEAN estimation. The flow in the ICA
was measured 3–4 cm above the carotid bifurcation where it regains laminar character, avoiding false
results due to changes in velocity in the vicinity of carotid bulb. The ECA flow was measured distally
to the origin of superior thyroid artery. In euthyroid patients, thyroid blood flow may exceed 100
mL/min (it is estimated as 5 mL/min/g) and superior thyroid artery is responsible for a considerable
part of it [41].

Cerebral blood flow is estimated by the majority of authors as a sum of the flow in ICA and
VA. In physiological conditions, ECA provides very little blood supply to the central nervous system.
However, in case of the presence of significant stenosis of the ICA, ECA becomes the vital collateral
blood supply pathway to the brain structures, which in Doppler ultrasound examination, might be
featured with decrease in flow resistance, increase in end diastolic velocity and flow volume. In order
to be able to assess the degree of compensation, the reference values of cerebral blood flow volume,
including the ECA, should be known.

6. Conclusions

This study provides a new insight into physiological changes of carotid hemodynamics: cerebral
blood flow volume reference values in patients beyond 65 years were determined, gradual decline in
cerebral blood flow, caused mainly by the significant reduction of ICA flow volume and to lesser extent
ECA flow volume, was observed in healthy volunteers. The significant decline in the peak systolic
velocity (PSV) and end diastolic velocity (EDV) in the ICA, and PSV in the ECA, was observed.

The knowledge of processes concerning changes in cerebral and carotid blood flow in a healthy
population may be a source of important additional information in diagnostics of patients with
carotid stenosis.
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