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Abstract: During meiosis, homologous chromosomes must recognize, pair, and recombine with
one another to ensure the formation of inter-homologue crossover events, which, together with
sister chromatid cohesion, promote correct chromosome orientation on the first meiotic spindle.
Crossover formation requires the assembly of axial elements, proteinaceous structures that assemble
along the length of each chromosome during early meiosis, as well as checkpoint mechanisms that
control meiotic progression by monitoring pairing and recombination intermediates. A conserved
family of proteins defined by the presence of a HORMA (HOp1, Rev7, MAd2) domain, referred to
as HORMADs, associate with axial elements to control key events of meiotic prophase. The highly
conserved HORMA domain comprises a flexible safety belt sequence, enabling it to adopt at least two
of the following protein conformations: one closed, where the safety belt encircles a small peptide
motif present within an interacting protein, causing its topological entrapment, and the other open,
where the safety belt is reorganized and no interactor is trapped. Although functional studies in
multiple organisms have revealed that HORMADs are crucial regulators of meiosis, the mechanisms
by which HORMADs implement key meiotic events remain poorly understood. In this review, we
summarize protein complexes formed by HORMADs, discuss their roles during meiosis in different
organisms, draw comparisons to better characterize non-meiotic HORMADs (MAD2 and REV7), and
highlight possible areas for future research.
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1. Introduction

Proteinaceous structures, called axial elements, are a defining structural feature of
meiotic chromosomes [1]. The assembly of these structures begins with the loading of
meiosis-specific versions of the cohesin complex at meiotic onset, providing a scaffold
for the recruitment of additional meiosis-specific proteins, including HORMADs, whose
incorporation into axial elements is essential for subsequent meiotic events. This includes
initiating meiotic recombination and formation of the synaptonemal complex (SC), a tri-
partite structure that assembles at the interface between aligned homologue pairs and
is required for crossover formation [2]. Saccharomyces cerevisiae Hop1 was the first mei-
otic HORMAD to be identified, with mutants lacking Hop1 displaying a reduction in
crossover events and impaired SC formation [3]. Subsequent studies demonstrated that
Hop1 is required for the formation of DNA double strand breaks (DSBs) that initiate
meiotic recombination, to promote their repair using the homologous chromosome as a
repair template, and for checkpoint control of meiotic prophase [4–6]. Similar roles have
now also been described for Hop1 orthologues in Saccharomyces pombe (Hop1) [7], mice
(HORMAD1 and HORMAD2) [8–11], plants (ASY1) [12], and nematodes (HIM-3, HTP-1,
HTP-2 and HTP-3) [13–16] (Table 1). In addition to their roles in pairing, recombination
and meiotic checkpoints, Caenorhabditis elegans HORMADs are also required for ensur-
ing normal levels of cohesin on axial elements [17], for the acquisition of axis-associated
histone marks [18], and for the two-step release of sister chromatid cohesion during the
meiotic divisions [17,19,20]. Thus, HORMADs control critical chromosomal events of the
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meiotic program, but despite their fundamental importance for fertility, knowledge of the
mechanisms by which HORMADs control meiotic events remains limited.

Table 1. Orthologues of meiotic HORMADs, their main axis interactors, and their regulators in yeast,
mammals, worms, and plants.

S. cerevisiae Homo sapiens/Mus musculus C. elegans Arabidopsis thaliana

HORMADs Hop1 HORMAD1 HTP-1 ASY1
HORMAD2 HTP-2 ASY2

HTP-3
HIM-3

HORMAD interactor on axis Red1 SYCP2 - ASY3
Cohesin Cohesin

HORMAD regulation Pch2 TRIP13 PCH-2 PCH2
p31COMET CMT-1 COMET

The biochemical and structural features of proteins containing a HORMA domain
are widely conserved. Therefore, we start this review by describing how conformational
changes in Mad2 and Rev7, the best characterized HORMA-domain proteins, control the
formation and disassembly of protein complexes involved in chromosome segregation
and DNA repair in somatic cells. We next describe the protein complexes formed by
meiotic HORMADs in different organisms, focusing on their roles in the assembly of axial
elements, meiotic recombination, synaptonemal complex formation, checkpoint regulation
of meiotic progression, and the role of posttranslational modifications in regulating meiotic
HORMADs’ functions. Table 2 offers a detailed summary of the interactors for Mad2,
Rev7 and meiotic HORMADs. Throughout the review, we highlight gaps in our current
understanding of the mechanisms by which HORMADs control multiple aspects of meiotic
chromosome behavior.

2. The HORMA Domain: A Protein-Protein Interaction Module for
Regulatory Mechanisms

The HORMA domain was first identified and named on the basis of a primary se-
quence similarity between yeast Hop1, Rev7, and Mad2 [21]. Mad2 is a key component of
the spindle assembly checkpoint that regulates chromosome segregation during mitosis
and meiosis [22], while Rev7 is a multifunctional protein involved in different DNA repair
pathways, including the translesion synthesis and shielding complexes [23]. Mad2 and
Rev7 are short proteins, consisting exclusively of their HORMA domains, which can be
further divided into the following two distinct domains: a core consisting of three central
α-helices (αA-C) and a three-stranded β-sheet (β4-6), and a flexible C-terminal domain
called the safety belt (Figure 1). In solution, recombinant monomeric Mad2 preferentially
adopts an open Mad2 (O-Mad2) conformation, where β8 of the safety belt domain interacts
with β6 [24,25]. The addition of a short peptide motif, termed closure motif (CM), from one
of its binding partners leads to a significant conformational rearrangement, promoting the
safety belt (β8′ and β8”) to interact with β5 on the opposite side of the protein. This results
in a closed Mad2 (C-Mad2) conformation, in which the CM is topologically entrapped
by the safety belt [26]. This rearrangement has been subsequently identified in Rev7
and Hop1, and is believed to be a common property of all HORMA domain-containing
proteins [27–29].
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Figure 1. (A) Structures of human MAD2 in an open (PDB 1DUJ) and closed (PDB 1KLQ) confor-
mation [24,26]. The safety belt and CM are highlighted in blue and orange, respectively. (B) In ad-
dition to the canonical safety belt-CM binding site (shown here by the REV3 CM; PDB 6BC8), REV7 
interacts with other protein partners through additional interfaces. Important residues for these in-
teractions between human REV7 and REV1 (cyan), REV7 (purple) and SHLD2 (blue) are high-
lighted. Additional interaction surfaces characterized in yeast Rev7 are shown in black [30]. 

Reversing the stable interaction between C-Mad2 and a CM requires an energy de-
pendent unfolding of the HORMA domain. The disassembly of the Mad2-containing mi-
totic checkpoint complex (MCC), which is required for spindle assembly checkpoint inac-
tivation, is catalyzed by the conserved protein Pch2 or its mammalian orthologue TRIP13, 
members of the AAA + ATPase superfamily. Through the hydrolysis of ATP, Pch2/TRIP13 
facilitates the opening of C-MAD2, in a process that also requires the adaptor protein 
p31comet [31]. Recent cryo-EM structures of the TRIP13-MAD2-CDC20-p31comet complex 
suggested this would occur through an interaction of MAD2’s N-terminus with TRIP13, 
leading to the destabilization of C-MAD2 [32]. The deletion of these disordered N-termi-
nal residues in MAD2 leads to a preference for the closed conformation and spindle as-
sembly checkpoint activation defects in cells, verifying the importance of these residues 
in its conformational rearrangement [33]. Similar evidence suggests that TRIP13 and 
p31comet also function to open C-REV7 [34,35], and to modify the folding of meiotic HOR-
MADs (see below), thus, pointing to a universally conserved mechanism for HORMAD 
opening. 

In addition to the canonical CM binding mediated through the HORMADs safety 
belt domain and the N-terminal interaction with TRIP13/Pch2, additional surfaces on 
MAD2 and REV7 have been shown to mediate protein-protein interactions (Figure 1, Ta-
ble 2). Both MAD2 and REV7 can undergo homo- and heterodimerization, mediated 
around the αC helix [25,36] (Table 2). In Mad2, the mutagenesis of this dimerization inter-
face results in a loss of function, underlying the importance of these interactions [37]. Hu-
man REV7 has also been shown to interact with REV1 through residues on β5 and the 
safety belt (β8′ and β8″), and SHLD2 through β6 (Figure 1) [38,39]. Interestingly, these 
interactions are conformationally specific. By coupling HORMA domain conformation to 
the presence of specific intermediates of chromosome metabolism, cells can rapidly react 
to different situations, by triggering the assembly or disassembly of HORMA-containing 

Figure 1. (A) Structures of human MAD2 in an open (PDB 1DUJ) and closed (PDB 1KLQ) confor-
mation [24,26]. The safety belt and CM are highlighted in blue and orange, respectively. (B) In
addition to the canonical safety belt-CM binding site (shown here by the REV3 CM; PDB 6BC8),
REV7 interacts with other protein partners through additional interfaces. Important residues for
these interactions between human REV7 and REV1 (cyan), REV7 (purple) and SHLD2 (blue) are
highlighted. Additional interaction surfaces characterized in yeast Rev7 are shown in black [30].

Reversing the stable interaction between C-Mad2 and a CM requires an energy depen-
dent unfolding of the HORMA domain. The disassembly of the Mad2-containing mitotic
checkpoint complex (MCC), which is required for spindle assembly checkpoint inactivation,
is catalyzed by the conserved protein Pch2 or its mammalian orthologue TRIP13, members
of the AAA + ATPase superfamily. Through the hydrolysis of ATP, Pch2/TRIP13 facilitates
the opening of C-MAD2, in a process that also requires the adaptor protein p31comet [31].
Recent cryo-EM structures of the TRIP13-MAD2-CDC20-p31comet complex suggested this
would occur through an interaction of MAD2’s N-terminus with TRIP13, leading to the
destabilization of C-MAD2 [32]. The deletion of these disordered N-terminal residues in
MAD2 leads to a preference for the closed conformation and spindle assembly checkpoint
activation defects in cells, verifying the importance of these residues in its conformational
rearrangement [33]. Similar evidence suggests that TRIP13 and p31comet also function to
open C-REV7 [34,35], and to modify the folding of meiotic HORMADs (see below), thus,
pointing to a universally conserved mechanism for HORMAD opening.

In addition to the canonical CM binding mediated through the HORMADs safety belt
domain and the N-terminal interaction with TRIP13/Pch2, additional surfaces on MAD2
and REV7 have been shown to mediate protein-protein interactions (Figure 1, Table 2).
Both MAD2 and REV7 can undergo homo- and heterodimerization, mediated around the
αC helix [25,36] (Table 2). In Mad2, the mutagenesis of this dimerization interface results
in a loss of function, underlying the importance of these interactions [37]. Human REV7
has also been shown to interact with REV1 through residues on β5 and the safety belt (β8′

and β8”), and SHLD2 through β6 (Figure 1) [38,39]. Interestingly, these interactions are
conformationally specific. By coupling HORMA domain conformation to the presence
of specific intermediates of chromosome metabolism, cells can rapidly react to different
situations, by triggering the assembly or disassembly of HORMA-containing protein
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complexes. This property has made HORMADs key components of different signaling
mechanisms [29].

3. Protein Complexes Formed by Meiotic HORMADs

In contrast with Mad2 and Rev7, which consist exclusively of a HORMA domain,
meiotic HORMADs contain additional N- and C-terminal regions. These domains have
the potential to both affect the interactions mediated by the HORMA domain, and to act as
platforms for recruiting interactors beyond those bound by the safety belt mechanism or
other surfaces of the HORMA domain. Considering the large number of proteins reported
to interact with human REV7 (Table 2), it seems likely that the current low number of
confirmed meiotic-HORMAD interactors is an underrepresentation of the actual number,
especially given the multiple roles HORMADs play during meiosis.

A conserved feature of the C-terminal region of meiotic HORMADs is the presence
of CMs that promote the formation of HORMAD oligomers on chromosome axes [27,40].
These CMs are also proposed to induce the formation of a self-closed conformation (SC-
HORMAD), in which the HORMA domain binds the CM on its own C-terminus [27,41]
(Figures 2 and 3). We note that, although interactions between the HORMA domain and
their internal CMs have been identified, currently there is no direct evidence showing that
this occurs via the safety belt-CM mechanism in cis (i.e., structure of a full length HORMAD
binding its internal CM). Similarly, structural evidence for meiotic HORMADs displaying
a stable open conformation, as observed for Mad2, is currently lacking. However, the
HORMA domain of Hop1 adopts two distinct monomeric conformations in solution: one
consistent with a closed conformation and a second in which the safety belt is disengaged
from the HORMA domain [27]. This conformation, referred to as unbuckled, is thought
to represent an intermediate that allows the binding of the safety belt to a CM. Below, we
summarize the studies that are starting to elucidate how meiotic HORMADs and their
interactors control different chromosomal events of meiosis.
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Figure 2. Summary of meiotic HORMAD interactors in yeast (A), mammals (B), worms (C) and
plants (D). The HORMA domain of each protein is represented as a blue box and CMs by orange
rectangles. Black arrows indicate interactions mediated through the safety belt-CM, green arrows
indicate interactions through another interface, grey arrows indicate interactors through an unknown
interface and red arrows indicate interactions not involving HORMADs. Interactions only sup-
ported by immunoprecipitation and/or fluorescence colocalization dependency are indicated with a
dotted line (Table 2). See also Figure 3 for a representation of potential conformational changes in
meiotic HORMADs.
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Figure 3. Graphical representation of possible meiotic HORMAD conformations, mediated by
Pch2/TRIP13: SC (self-closed)-HORMAD; U(unbuckled)-HORMAD; and C(closed)-HORMAD
bound to a CM motif on an interactor, such as an axis component. We note that, in addition to
the HORMAD binding to its own CM in cis, a trans conformation is also possible.

4. Binding of Meiotic HORMADs to Axial Elements

In early meiotic prophase, HORMADs and other meiosis-specific proteins localize to
the chromosomal axis in a cohesin-dependent manner. Early studies in yeast demonstrated
that the axis component Red1 is required for recruiting Hop1 to axial elements [42] and
recently, a CM present on Red1 was shown to mediate Hop1 binding [27] (Figure 2A). Red1
orthologues in S. pombe (Rec10) [27,43], mammals (SYCP2), and plants (ASY3) also contain
CMs that directly interact with meiotic HORMADs (Figure 2B,D and Table 2) [44]. In mam-
mals, in vitro experiments show that the HORMA domain of HORMAD1 interacts with the
CM on the C-terminus of HORMAD1 and HORMAD2 [40], and that the HORMA domain
of HORMAD2 interacts with a CM on its own C-terminus and to one present in SYCP2 [44]
(Figure 2B). In vivo, HORMAD2 recruitment is largely dependent on HORMAD1 [10], sug-
gesting that HORMAD2 may also bind the CM on HORMAD1’s C-terminus. HORMAD1
is recruited to axial elements in the absence of SYCP2, but not of meiotic cohesin [45],
suggesting that cohesin directly interacts with HORMAD1. The colocalization of meiotic
HORMADs and cohesin on spread nuclei imaged by super-resolution microscopy, as well
as immunoprecipitation experiments, provide further support for an interaction between
cohesin and meiotic HORMADs in worms and mammals [40,45,46]. In C. elegans, which
lack a Red1 homologue, cohesin is required to recruit HTP-3 to axial elements [14] and CMs
on the C-terminus of HTP-3, in turn, recruit HORMADs HIM-3, HTP-1, and HTP-2 to the
axis [40] (Figure 2C). In addition, HTP-1 and HTP-2 are also recruited to a CM on the C-
terminus of HIM-3. Structural studies of the HORMA domain of HIM-3, HTP-1, and HTP-2,
bound to CMs from HTP-3, confirm binding by the canonical safety belt mechanism around
the CMs peptides [40]. Therefore, the main mechanism of recruiting meiotic HORMADs
to axial elements is conserved, involving a closed conformation of the HORMA domain
around a CM present on a chromosome-bound protein. However, the exact mechanism
by which HORMADs, or HORMADs bound to Red1/SYCP2/ASY3, interact with cohesin
has only been reported for S. pombe, where Hop1 binds a CM on Rec10(Red1) [43] and
Rec10 binds to the N-terminus of Rec11 (a meiosis-specific version of the cohesin protein
Scc3) [47].

Hop1 contains a zinc finger motif on its C-terminus, displays DNA binding activity
in vitro [48], and ChIP analysis shows that Hop1 can be recruited to chromatin in complex
with Red1 in the absence of cohesin [49]. This cohesin-independent recruitment of Hop1
is mediated by a predicted PHD domain on Hop1’s C-terminus that encompasses the
previously identified zinc finger motif [50]. A cohesin independent pathway of HORMAD
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recruitment to chromosomes may also operate in plants, as loading of ASY1 is reduced, but
not eliminated, in mutants lacking meiotic cohesin [51]. Therefore, meiotic chromosomes
may contain pools of HORMADs recruited by cohesin-dependent and -independent mech-
anisms, as well as recruited to CMs on different interactors (for example, Hop1 bound to
CMs on Hop1 or Red1). Elucidating all the mechanisms by which HORMADs are recruited
to axial elements, and how pools of HORMADs bound to CMs on different interactors
correlate to specific functions remains an important goal for future studies.

5. Pch2/TRIP13 Regulates the Assembly and Disassembly of Protein Complexes
Containing Meiotic HORMADs

Mutants lacking Pch2/TRIP13 in yeast, mammals, plants and nematodes display
defects in multiple meiotic events, including altered localization of meiotic HORMADs and
impaired checkpoint activity [52–55]. In yeast, mammals, and plants, meiotic HORMADs
bind to axial elements during early meiotic prophase and are then largely removed coin-
ciding with SC assembly. However, in the absence of PCH2/TRIP13, meiotic HORMADs
persist on synapsed regions during the pachytene stage, suggesting that PCH2/TRIP13
promotes HORMAD removal from the axis [54,55] (Figure 3).

Recent studies in Arabidopsis and rice are particularly informative on the effect of
PCH2 in regulating the behavior of meiotic HORMADs. In rice mutants lacking PCH2,
PAIR2 (Hop1) fails to load on axial elements [56], while in Arabidopsis pch2 mutants, a pool
of ASY1 remains in the cytoplasm and axis-associated ASY1 is not removed following SC
installation [55,57]. The C-terminal region of ASY1, containing a CM, also acts to target
the protein to the nucleus; therefore, the binding of ASY1’s HORMA domain to its own
CM would result in a SC-ASY1 that would prevent nuclear import [41] (Figure 3). The
unlocking of this cytoplasmic SC-ASY1 by PCH2 promotes nuclear import, while nuclear
soluble PCH2 maintains a pool of unbuckled ASY1 that can be loaded to the axial elements.
Later in prophase, PCH2 localizes to the SC, presumably unlocking ASY1 bound to the
CM of ASY3, and therefore releasing ASY1 from axial elements. This model is further
supported by the finding that p31comet, a PCH2 cofactor required for opening MAD2 to
release it from the MCC (see above), is also required to promote the nuclear import of ASY1
in early prophase and for its chromosome removal during pachytene in Arabidopsis [58],
and for pairing and recombination in rice [59].

In yeast, Pch2 interacts with Hop1 in vitro [60], and a cytoplasmic pool of Pch2 is pro-
posed to ensure that unbuckled Hop1 is available to associate with Red1 and to incorporate
into the axis [61]. Similar to the situation in plants, yeast Pch2 is proposed to ensure that
soluble unbuckled-Hop1 is available for incorporation into the axis and to induce Hop1
removal from the axis following SC assembly [62]. This process is mediated by the SC com-
ponent Zip1, which recruits Pch2 to chromosomes [63,64]. In worms, meiotic HORMADs
persist bound to axial elements after SC assembly and their localization is not controlled
by PCH-2 [65], suggesting that additional factors may be involved in regulating their
conformational changes. Nonetheless, in the absence of PCH-2 or CMT-1 (p31comet), the
fidelity of SC assembly, a process controlled by meiotic HORMADs (see below), is compro-
mised [65,66], thus, opening the possibility that PCH-2 also regulates meiotic HORMADs
in worms. Overall, the studies mentioned above are consistent with Pch2/TRIP13 acting
as a master regulator of the timely assembly and disassembly of complexes containing
meiotic HORMADs, by unfolding C-HORMADs bound to a CM to produce an unbuckled
intermediate. However, so far, an unbuckled conformation has only been observed for
a version of yeast Hop1 consisting exclusively of its HORMA domain [27]. Clarifying
how Pch2 interacts with full length meiotic HORMADs to regulate their conformation and
functions remains an important goal.

6. HORMADs Roles in Meiotic Recombination

Of the multiple functions exerted by HORMADs during meiosis, their role in pro-
moting DSB formation during the early stages of meiotic recombination is perhaps the
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best understood in terms of protein complex formation. Meiotic DSB formation is initiated
by Spo11 [67], a transesterase that is controlled by multiple cofactors, which regulate its
localization to chromosomes, as well as its timing and levels of activity. Studies in yeast
showed that the MMR (Mre2, Mei4, Rec114) complex is required for Spo11-dependent
DSB formation, that the recruitment of Mei4 and Rec114 to axial elements depends on
Mer2, and that Mer2 recruitment, in turn, depends on Hop1 [68]. Mer2 is evolutionary
conserved [69] and its localization to chromosomes in mammals also depends on HOR-
MAD1 [70], consistent with meiotic HORMADs acting as the platforms for recruiting the
MMR complex to axial elements. Recent studies on S. pombe and S. cerevisiae have provided
important insights into the interaction between Hop1 and Mer2. In S. pombe, sequences on
the C-terminus of Hop1 are required for the interaction between Hop1 and Rec15 (Mer2),
and Hop1 enhances the formation of a complex between Rec10 (Red1) and Rec15 (Mer2)
to promote DSB formation [43]. Pull-down experiments with purified S. cerevisiae Hop1
and Mer2 demonstrated a weak interaction between the proteins, but the amount of Mer2
greatly increased when the pull-down was performed with a Red1-Hop1 complex instead
of Hop1 alone, while no interaction was detected between Mer2 and Red1 alone [71]. An
increase in Mer2 pull-down with Hop1 was also detected using Hop1 with a mutation
in its CM that prevents the acquisition of the self-closed conformation. Finally, crosslink-
ing experiments identified interactions between Mer2, and the C-terminus and HORMA
domain of Hop1. These observations suggest that Mer2 binding to Hop1 occurs in the
context of Hop1 bound to the Red1’s CM (i.e., associated with axial elements), and not with
self-closed soluble Hop1 [71]. Thus, the regulation of the self-closed conformation can be
used as an on–off switch to control the accessibility of domains that recruit interactors on
the C-terminus, for example, by allowing the binding of an interactor only when the CM
on the C-terminus is not bound to the HORMA domain of the same molecule (Figure 4). It
is likely that this on–off switch could similarly regulate the accessibility of surfaces on the
HORMA domain itself, as observed for REV7 [38].
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Figure 4. Graphical representation of a possible self-regulatory pathway utilized by meiotic HOR-
MADs. Interactor 1 represents a canonical safety belt-CM interaction, interactor 2 represents a
binding partner mediated through another interface. Although the additional hypothetical motif is
represented here on the flexible C-terminus, it represents any motif within the protein that could be
affected upon a conformation change.

Although no Mer2 homologue has so far been identified in C. elegans, meiotic HOR-
MADs HTP-3 and HTP-1 have been proposed to promote DSB formation [14–16]. HTP-3
interacts with recombination proteins MRE-11 and RAD-50 [14] and promotes DSB forma-
tion, in a manner that is independent of its role in recruiting HTP-1, HTP-2, and HIM-3 to
axial elements [40]. Therefore, HTP-3 could act as a platform for recruiting DSB-promoting
factors, in a manner analogous to the way in which Hop1 recruits Mer2 in other organisms.
The mechanisms by which HTP-1 could promote DSB formation are not understood, but
the severe reduction in recombination intermediates observed in htp-1 mutants could be
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related to the premature exit from DSB-competent stages in the absence of HTP-1 and to its
potential role in preventing sister-mediated DSB repair [15,16], rather than a direct role of
HTP-1 in recruiting DSB-promoting factors to the axis.

The ability of HORMADs to act as platforms that recruit DSB-promoting factors
to axial elements can explain how DSB formation ceases once HORMADs are ejected
from the axis. In yeast and mammals, DSB formation induces SC assembly, a process
that coincides with HORMAD ejection from axial elements. Therefore, by promoting
DSB formation and subsequent SC assembly, HORMADs set up in motion their eventual
removal from chromosomes. In worms, SC assembly is independent of DSB formation [72]
and HORMADs remain associated with the axis through pachytene. Nonetheless, changes
in SC status, induced by recombination, are proposed to be sensed and/or transmitted
by HTP-1 in a manner that controls the activity of the DSB-promoting CHK-2 kinase [73].
Thus, conceptually, the mechanism that regulates DSB formation competence in worms
appears similar to that of yeast and mammals, in that it may involve SC-triggered changes
in HORMAD behavior.

During meiotic recombination, HORMADs also play an important role downstream
of DSB formation, by promoting the use of a homologous chromosome, instead of a sister
chromatid, as a template for DSB repair. In yeast, the C-terminus of Hop1 recruits the Mek1
kinase to axial elements, promoting Mek1 dimerization and activation, which leads to the
downregulation of the mitotic Rad51 recombinase to favor Dmc1-based DSB repair [5,74].
The recruitment of Mek1 to the C-terminus of Hop1 requires the phosphorylation of this
region by the ATM/ATR kinases [75], evidencing how posttranslational modifications on
HORMADs control protein recruitment to axial elements (see below). In Arabidopsis, ASY1
is not required for DSB formation, but is thought to promote DMC1-dependent DSB repair
to ensure inter-homologue recombination [12] and also controls crossover distribution
across the genome [76]. HORMAD1 and HORMAD2 in mammals [77–80] and HIM-3 and
HTP-1 in worms [15,16,81] are also proposed to prevent inter-sister recombination, but the
precise mechanisms are not understood.

7. HORMADs Involvement in SC Assembly

In all the organisms studied, mutants lacking meiotic HORMADs showed reduced
and/or improper (between non-homologous chromosomes) SC assembly. In yeast and
mammals, where SC assembly depends on DSB formation, meiotic HORMADs mostly pro-
mote synapsis indirectly by ensuring DSB formation. However, HORMAD1 also promotes
SC assembly independently of its role in DSB formation [9]. A requirement for HORMADs
in promoting SC assembly in a DSB-independent manner is clearly established in Arabidop-
sis, where asy1 mutants undergo DSB formation, but show impaired SC assembly [12],
and in C. elegans, where SC assembly is independent of DSB formation and HIM-3 and
HTP-3 are required for SC assembly [14,81]. The role of HTP-3 in this process is exerted
indirectly, by recruiting HIM-3 to four CMs on its C-terminus [40]. In contrast to the role
of HIM-3 in promoting SC assembly, HTP-1 limits this process until homology recogni-
tion, a process also promoted by HTP-1, is satisfied, thus, preventing non-homologous
synapsis [15,16]. In addition, HTP-2 also appears to promote SC assembly, as synapsis
is reduced and delayed in htp-1 htp-2 double mutants compared to htp-1 mutants [15,20].
Super-resolution microscopy shows that the HORMA domain of HIM-3 is situated in the
interface between the axis and SC central region components, while HTP-3 and HTP-1/2
HORMAs localize in the proximity of cohesin [82]. Thus, worm HORMADs could act as
a bridge between cohesin and SC components, in which HIM-3 would mediate the inter-
action with central region proteins. How HORMADs promote SC assembly in organisms
where these proteins are largely removed from axial elements coinciding with the onset of
synapsis is not known, but it could involve a “licensing SC assembly” step, for example, by
promoting post-translational modifications on the axial components that are not removed
during SC assembly.
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8. Checkpoint Regulation of Meiotic Prophase by Meiotic HORMADs

HORMADs implement quality control of meiosis by monitoring meiotic chromo-
some metabolism intermediates and by transmitting signals that regulate the activity of
kinases that orchestrate meiotic progression [83,84]. In yeast, Hop1 is phosphorylated by
Tel1/Mec1 (ATM/ATR) in a DSB-dependent fashion, inducing recruitment and activation
of the Mek1 kinase that prevents progression to the meiotic divisions by inhibiting the
Ndt80 transcription factor [75,85]. In mammals, HORMAD2 is not required to promote
DSB formation or synapsis, unlike HORMAD1, but is required to recruit the ATR kinase
to unsynapsed regions on the sex chromosomes during male meiosis to implement the
transcriptional silencing of these regions, which is needed for meiotic progression beyond
pachytene [10,11]. HORMAD1 is also required for ATR recruitment to unsynapsed regions,
but as HORMAD2 recruitment to axial elements is largely dependent on HORMAD1 [10],
HORMAD1 may ensure ATR recruitment mostly by promoting HORMAD2 loading. In
C. elegans, meiotic HORMADs are required for different quality control mechanisms that
control meiotic progression. HTP-1 is required for the delayed exit from early prophase
triggered by the presence of unsynapsed chromosomes, and to delay SC assembly un-
til homology search is satisfied [15,16]. Similarly, defects in the formation of crossover
precursors induce delayed exit from DSB-competent stages, in a process that requires
HTP-1 and HTP-3 [86,87]. In worms, HORMAD signaling is thought to orchestrate meiotic
progression mostly by regulating CHK-2 activity [73,88]. In addition to delaying early
meiotic progression, the presence of unsynapsed chromosomes or unrepaired DSBs in
pachytene nuclei triggers an apoptotic response via the activity of synapsis and DNA
damage checkpoints [53]. The synapsis checkpoint requires PCH-2, HTP-1, HTP-3, and
HIM-3 [53,89]. How HORMADs are capable of sensing different meiotic defects to generate
signals that control meiotic progression and apoptosis is not well understood, but could
involve changes in HORMA domain conformation, as well as the formation and dissoci-
ation of different protein complexes, as observed for MAD2 and REV7 and as suggested
by recent studies in yeast [62]. Similar to the role of MAD2 in the spindle assembly check-
point, soluble pools of HORMADs are also thought to be important components of meiotic
checkpoints [62,90].

9. Regulation of Meiotic HORMADs by Post Translational Modifications

Phosphorylation events on Mad2 are known to regulate its conformational transition
and to control its affinity for different ligands [91]. Similarly, recent studies show that
phosphorylation events on meiotic HORMADs, and on the CMs that they bind, also regulate
the function of these proteins. Phosphorylation of an [S/T]Q cluster on the C-terminus
of yeast Hop1 by Mec1/Tel1 (ATM/ATR) promotes the recruitment and activation of the
Mek1 kinase to axial elements, ensuring inter-homologue recombination and checkpoint
activation [75]. The PP4 phosphatase also interacts with Hop1 and is proposed to promote
the initial steps of Hop1 loading to axial elements [92]. In C. elegans, phosphorylation
on the short N-terminal region preceding the HORMA domain of HTP-1 and HTP-2
promotes the recruitment of LAB-1 to axial elements to regulate sister chromatid cohesion
release [19]; phosphorylation of S325 by MPK-1 on the C-terminus of HTP-1 regulates SC
assembly and/or stability [93]; and phosphorylation of HIM-3 on the CM at its C-terminus
regulates the binding of HTP-2 and SC disassembly [94]. In Arabidopsis, CDKA;1-dependent
phosphorylation of residues within the HORMA domain promotes ASY1 loading to axial
elements by increasing its binding affinity to ASY3 [57]. In addition to the above functional
studies, phospho-specific antibodies, raised against S375 in a [S/T]Q motif of mouse
HORMAD1, confirm in vivo phosphorylation of this residue [95]. Interestingly, HORMAD1
phosphorylation is detected in the absence of SPO11 activity, suggesting that HORMAD1
is phosphorylated in a DNA damage-independent manner [96]. Thus, phosphorylation
events regulate meiotic HORMADs in at least three of the following ways: (1) by regulating
the affinity of the HORMA domain for CMs; (2) by modifying the affinity of CMs for the
HORMA domain; and (3) by regulating their ability to recruit interactors to their N- and
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C-terminal regions flanking the HORMA domain (Figure 5). Given the central role that
kinases play in HORMAD-controlled events, including recombination and synapsis, it is
likely that the examples discussed above constitute a small subset of the phosphorylation
events that govern meiotic HORMADs functions.
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In addition to phosphorylation, SUMOylation has also emerged as a regulator of
meiotic HORMADs. For example, the RNF212 SUMO ligase is required to ensure that
HORMAD1 reassociates with unsynapsed chromosomes during late meiotic prophase,
suggesting that HORMAD1 behavior at this stage could be regulated by SUMOylation [77].
Recently, proteomic approaches have confirmed that both Hop1 and Red1, including its CM,
are SUMOylated [97]; therefore, it is possible that both Hop1’s function and its recruitment
to Red1’s CM may be controlled by SUMOylation. Clarifying how different functions of
meiotic HORMADs are controlled by post translational modifications is a clear area for
future research.

10. Conclusions

The orderly assembly and disassembly of protein complexes is an essential aspect of
complex biological processes. Protein complexes containing HORMADs are at center stage
of key meiotic events, including recombination, synapsis, and quality control mechanisms.
Given the numerous interactors characterized for REV7 and MAD2, and the additional N-
and C-terminal regions of meiotic HORMADs, it is likely that further uncharacterized inter-
actors that enable meiotic HORMADs to partake in their diverse functions exist. Moreover,
the presence of internal CMs on meiotic HORMADs endows these proteins with an added
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level of control over conformational changes that is not available to REV7 and MAD2.
Understanding how conformational changes, interactor recruitment, and posttranslational
modifications of meiotic HORMADs are integrated to promote recombination, synapsis,
and quality control of meiosis remain important questions.

Table 2. Comparison of protein interactors of well-characterized HORMAD proteins MAD2 and
REV7 with meiotic HORMADs. * Proteins indicated have been suggested to interact via the safety
belt-CM mechanism, based on sequence similarities and evidence of a direct interaction. ‡ Kd
measurements have used truncated proteins, consisting of just their HORMA domain. † Proteins
indicated have been characterized interacting outside of the HORMA domain. # No evidence for
direct interaction. Immunoprecipitation and/or fluorescence colocalization dependency suggests an
interaction. Background color means MAD2 and REV7 are not meiotic HORMADs.

. Protein
Additional
Structural
Features

Interactors
through Safety

Belt-CM
Kd/µM

Interactors through
an Alternate

Interface

Interactors through
an Uncharacterized

Interface
References

H. sapiens MAD2 - MAD1 1.04 MAD2 - [25,37,98,99]
CDC20 0.1 p31comet [26,98,100]
SGO2 0.69 TRIP13 [32,101]

REV3 * BUBR1 [102,103]
RIT1 * WT1 [104,105]

H. sapiens REV7 - SHLD3 0.013 ± 0.0004 REV7 CLTA [28,36,106,107]
RAN 1.85 MAD2 HCCA2 [36,108,109]
REV3 p31comet PRCC [35,36,110,111]
IpaB REV1 SIM2 [28,38,108,112]

CAMP SHLD2 TCF4 [28,39,113,114]
ELK-1 * TRIP13 ADP/E3-11.6K [39,115,116]
MDC9 * CDH1 TF11-1 [102,117,118]

S. cerevisiae Hop1 C-ter CM Hop1 * 6.1 ± 1 ‡ Pch2 Mer2 [27,60,71]
zinc finger Red1 0.34 ± 0.03 ‡ Mek1 † PP4 # [27,92,119]

S. pombe Hop1 C-ter CM Rec10 * Rec15 † [43]
zinc finger

H. sapiens HORMAD1 C-ter CM HORMAD1 * [40]
HORMAD2 * [40]

MCM9 * [120]

M. musculus HORMAD1 C-ter CM TRIP13 # Cohesin # [10,33,45]
IHO1 [70]

HORMAD2 C-ter CM HORMAD2 * 7.1 ± 0.5 ‡ [44]
SYCP2 * [44]

HORMAD1 * [10]

C. elegans HTP-1 C-ter CM HIM-3 0.7 LAB-1 # [19,40,88]
HTP-3 motif #1 0.3 [40,88]

HTP-3 motif #6 * 0.9 [40,88]
HTP-2 C-ter CM HIM-3 3.1 [40]

HTP-3 motif #1 0.2 [40]
HTP-3 motif #6 0.3 [40]

HIM-3 C-ter CM HTP-3 motif #4 0.3 [40,88]
HTP-3 motifs #2,

3, 5 * [40,88]

HTP-3 6 C-ter CM MRE-11/RAD-50 # [14]
Cohesin # [40]

A. thaliana ASY1 C-ter CM ASY1 * COMET [44,57,58]
SWIRM
domain ASY3 * PCH2 # [41,44]

ASY2 [121]

Oryza sativa PAIR2 C-ter CM
SWIRM domain PAIR3 * CRC1 (PCH2) [56,122]
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