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Gene regulatory programs in distinct cell types are maintained in large part through the cell-type–specific binding of
transcription factors (TFs). The determinants of TF binding include direct DNA sequence preferences, DNA sequence
preferences of cofactors, and the local cell-dependent chromatin context. To explore the contribution of DNA sequence
signal, histone modifications, and DNase accessibility to cell-type–specific binding, we analyzed 286 ChIP-seq experiments
performed by the ENCODE Consortium. This analysis included experiments for 67 transcriptional regulators, 15 of which
were profiled in both the GM12878 (lymphoblastoid) and K562 (erythroleukemic) human hematopoietic cell lines. To
model TF-bound regions, we trained support vector machines (SVMs) that use flexible k-mer patterns to capture DNA
sequence signals more accurately than traditional motif approaches. In addition, we trained SVM spatial chromatin sig-
natures to model local histone modifications and DNase accessibility, obtaining significantly more accurate TF occupancy
predictions than simpler approaches. Consistent with previous studies, we find that DNase accessibility can explain cell-
line–specific binding for many factors. However, we also find that of the 10 factors with prominent cell-type–specific
binding patterns, four display distinct cell-type–specific DNA sequence preferences according to our models. Moreover,
for two factors we identify cell-specific binding sites that are accessible in both cell types but bound only in one. For these
sites, cell-type–specific sequence models, rather than DNase accessibility, are better able to explain differential binding.
Our results suggest that using a single motif for each TF and filtering for chromatin accessible loci is not always sufficient to
accurately account for cell-type–specific binding profiles.

[Supplemental material is available for this article.]

Multicellular organisms require mechanisms for maintenance of

cell-type–specific gene expression programs. Chromatin immuno-

precipitation followed by sequencing (ChIP-seq) now enables ge-

nome-wide localization of transcription factors (TFs) and other

regulators that orchestrate these programs. However, a key limi-

tation is that each ChIP-seq assay only captures the binding profile

in a single cell type. Therefore, accurately modeling the DNA se-

quence preferences of TFs and predicting their genomic binding

sites continue to be key problems in regulatory genomics. The

ENCODE Consortium and other groups have undertaken large-

scale efforts to profile the genome-wide binding sites of numerous

TFs across multiple human cell lines using ChIP-seq (The ENCODE

Project Consortium 2011). The ENCODE project also provides

genome-wide data on chromatin state in many of the same cell

lines, including ChIP-seq profiling of histone modifications and

DNase-seq assays to profile chromatin accessibility (Ernst et al.

2011; Thurman et al. 2012). We use this wealth of data to sys-

tematically explore the determinants of differential TF binding

across cell types and further elucidate the underlying TF recogni-

tion code.

Cell-type–specific usage of regulatory elements is frequently

associated with one or more chromatin alterations. These include

histone modifications (Barrera et al. 2008; Heintzman et al. 2009),

DNA methylation status (Deaton et al. 2011; Wiench et al. 2011),

and accessibility of regulatory elements as measured by DNase

sensitivity (Boyle et al. 2011; Thomas et al. 2011). Additionally,

chromatin conformation and DNA looping can also influence TF

occupancy in a cell-type–specific manner (Gheldof et al. 2010).

The question of whether TFs have cell-type–specific DNA binding

site sequences has been less systematically studied. Recent analyses

of TF ChIP-seq profiles across multiple cell types have typically

used motif discovery approaches, searching for proximal cofactors

that may establish a favorable chromatin context or act as recruitment

factors (e.g., Heinz et al. 2010). These motifs are usually represented

as single position-specific scoring matrices (PSSMs) and discovered

through enrichment analysis using tools such as MEME (Bailey and

Elkan 1994). Indeed, most computational methods for learning se-

quence preferences focus on finding motifs one cell type at a time

and modeling regulatory sequences as cis-regulatory modules com-

posed of multiple PSSMs (Bailey and Noble 2003; Zhou and Wong

2004; Sinha et al. 2006, 2008).

Recent work for predicting in vivo binding of a TF in a given

cell type has combined information on the chromatin state with

DNA binding motif scanning or discovery. In particular, chro-

matin marks (Heintzman et al. 2007; Whitington et al. 2009)

and DNase-hypersensitive regions (Hesselberth et al. 2009) have

been used as filters for PSSM motif hits to predict cell-type–

specific gene expression. Several integrative methods have

combined PSSMs and chromatin data in probabilistic models

(Ernst et al. 2010; Won et al. 2010; Pique-Regi et al. 2011) or

identified chromatin states representative of promoters and

enhancers that are enriched for known TF binding sites (Ernst

and Kellis 2010).

We present a novel discriminative framework for learning

DNA sequence and chromatin signals that predict cell-type–specific

TF binding. First we investigated the rules governing TF binding
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irrespective of cell type. While PSSMs are compact and interpret-

able, they can underfit ChIP-seq data by failing to capture subtle

but detectable sequence signals, including direct DNA-binding

preferences of the TF, cofactor binding sequences, accessibility

signals, and other discriminative sequence features. Furthermore,

there has been limited work on extracting more general motif

models, such as the use of boosting with PSSMs (Hong et al. 2005)

or feature motif models (Sharon et al. 2008). Therefore, we used

discriminative sequence models based on support vector machines

(SVMs) and flexible k-mer patterns. This approach allowed us to

better leverage ChIP-seq data to learn in vivo DNA sequence fea-

tures that more accurately discriminate between TF ChIP-seq peaks

and nonpeaks than traditional motif discovery methods that find

enriched PSSMs or k-mers. We also explored what chromatin state

information is most predictive of TF binding by training discrim-

inative spatial chromatin models using histone modification

ChIP-seq or DNase-seq data (Fig. 1A). We found that spatial SVM

DNase models are more accurate than standard methods based on

combining chromatin marks or DNase read counts for identifying

TF-occupied regions. Finally, we found that a simple combination

of sequence and chromatin models strongly improved accuracy

over using either model alone and, for most TFs, enabled ‘‘transfer

learning’’ of a binding model trained in one cell type to make ac-

curate predictions in a second cell type.

We next used our framework to explore the determinants of

cell-type–specific binding. Many TFs bound mostly similar genomic

locations in the two hematopoietic cell lines; however, a handful

bound dramatically different loci. We investigated the extent to

which differentially bound sites could be explained by differences

in chromatin context and/or sequence signal. We were able to

maximize sensitivity to differential sequence signal using a multi-

task learning framework to simultaneously learn from both cell

types (Fig. 1B). Intriguingly, JUND and YY1 both had cell-specific

sequence models that were markedly different and that better

explained differential binding than did DNase accessibility. In

both cases, we found evidence that differential composition of the

TF binding complex may explain the cell-type–specific sequence

signal. For example, in the case of JUND, our analysis points to

differential composition of the AP-1 heterodimeric complex.

Our results suggest a more complicated set of determinants of

cell-type–specific binding than is currently implemented in anal-

yses of high-throughput binding data. In particular, for some TFs,

accurately predicting cell-type–specific binding cannot be achieved

using a single motif coupled with a filter for DNase accessible loci.

Rather, more flexible sequence models that can capture subtle TF

sequence signals are required, and cell-dependent sequence pref-

erences may be important for explaining cell-type–specific binding

rather than chromatin accessibility alone.

Results

Discriminative sequence models better predict TF binding sites
than motif discovery methods

TF binding sites typically contain factor-specific DNA sequences

that enable binding. While some factors have a small set of ca-

nonical DNA sequences they typically bind, many transcriptional

regulators can bind a broader range of DNA sequences. Moreover,

TF-occupied regions may contain other discriminative DNA fea-

tures, including cofactor sequences and subtle sequence signals for

chromatin accessibility, that can be used to predict binding. We

learned TF binding site sequence models from 238 TF ChIP-seq

experiments generated by ENCODE, comprising 67 transcriptional

regulators across two hematopoietic cell lines (GM12878, a lym-

phoblastoid cell line produced from blood of a HapMap donor by

EBV transformation, and K562, an immortalized cell line generated

from a patient with CML in blast crisis) and HeLa cells, with at least

two replicates for all of the experiments (Supplemental Table S1). For

each ChIP-seq experiment, we identified the top 1000 most signifi-

cant peaks (see Methods) and took DNA regions of length 100 bp

centered at these peaks as positive sequence examples and flanking

100-bp regions sampled 200 bp away as negative sequence exam-

ples. The proximity of the negative examples generated sequences

with a similar background composition as the positive data (see

Methods). Positive and negative sequence examples were evenly

divided into training and held-out test sets. We trained sequence

models on peaks versus flanks within a single ChIP-seq experiment

and evaluated accuracy on held-out peaks/flanks from the same

experiment.

We modeled TF-occupied DNA regions with string kernel SVMs.

Specifically, we used the di-mismatch k-mer kernel, which we re-

cently introduced for modeling in vitro TF-DNA binding prefer-

ences (Agius et al. 2010). Briefly, the kernel maps input sequences

into a feature space indexed by a set of informative k-mers, where

each feature is a weighted count of the number of times the cor-

responding k-mer occurs in the input sequence with up to m mis-

matches in the alphabet of dinucleotides (for parameter choices,

see Methods) (Agius et al. 2010). To compare to traditional motif-

discovery approaches, we also used the training data to estimate

Figure 1. Schematic of models to predict transcription factor occu-
pancy from sequence and chromatin. (A) We developed DNA sequence
and chromatin models based on flexible k-mer patterns and spatial or-
ganization of histone modifications and DNase accessibility. The models
were trained to discriminate between regulatory ChIP-seq peaks and
flanking regions within a single cell type using a support vector machine.
(B) To study cell-type–specific DNA sequence preferences, we simulta-
neously train on binding site data from two cell types. This allowed us to
jointly learn the cell-type–specific preferences (top and bottom).
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motif models using MDscan (Liu et al. 2002), cERMIT (Georgiev

et al. 2010), DME (Smith et al. 2005), and Weeder (Pavesi et al. 2004).

The first three methods learn PSSMs that can score sequences via a

log likelihood ratio compared to a background model. Weeder

simply identifies a set of overrepresented k-mers, which we convert

to a scoring function by counting occurrences, allowing up to one

mismatch (see Methods). We note that our problem is not the

typical motif discovery task—where methods are evaluated based

on their ability to find an enriched motif similar to a known motif

in a database—but rather a prediction task, where each method

must discriminate between ChIP-seq defined peaks and nearby

nonpeak regions.

The statistical validity of all methods was evaluated by com-

puting the area under the ROC curve (AUC score) on each test set.

Figure 2A shows an example of the ROC curve comparing the di-

mismatch SVM model against the motif discovery approaches for

BCL11A in GM12878, and Figure 2B reports the mean AUC for

each TF (across cell lines and replicates) of the SVM and motif

methods across all ChIP-seq experiments. The SVM models had

much higher accuracy than all the motif discovery approaches.

Compared with the most accurate motif method, MDscan, SVM

sequence models better capture the underlying sequence content

of transcription binding sites for >90% of TFs (P < 1.3 310�11 by

paired signed rank test), with a mean AUC improvement of 0.07.

To give some intuition about why the SVM sequence mod-

els are able to better capture sequence content than single motifs,

we compare the scores of the cERMIT PSSM to those of our di-

mismatch model for BCL11A on binding sites in the lympho-

blastoid cell line (Fig. 2C). We see that the SVM is able to detect

true binding site sequences that receive low scores by the learned

PSSM. If we select from the SVM-detected binding sites two groups

based on high and low PSSM scores and feed these binding site

sequences into MEME, we obtain two different versions of the motif,

with only the high-PSSM scoring group matching the original

cERMIT PSSM. The SVM is implicitly capturing this range of se-

quence preferences while still accurately discriminating between

bound and unbound loci.

Not all of the transcriptional regulators assayed by ChIP-seq

and included in our comparison are considered to be sequence-

specific TFs. However, we found it interesting that nonetheless all

the factors were partially predicted by underlying DNA sequence

content, and the SVM models outperformed motif methods for

these factors just as they did for classical sequence-specific TFs

(Supplemental Fig. S2).We grouped these ‘‘nonsequence-specific’’

transcriptional regulators into those with low accuracy (AUC # 0.6),

including RDBP (NELF-E), SMARCB1 (INI1), POLR3, XRCC4, and

WRNIP1 (WHIP); fair accuracy (0.6 < AUC < 0.75), including mem-

bers of the POLR3 initiation complex (BDP1, BRF1, BRF2, SMARCA4

[BRG1]), members of the POLR2 complex

(TBP, TAF1, GTF2B), POLR2 itself, and

the histone methyltransferase SETDB1;

and good accuracy (AUC $ 0.75), in-

cluding EP300 (p300), POLR3A (RPC155),

SMARCC1 (BAF155), SMARCC2 (BAF170),

and RAD21. These results show that we

do not need direct interaction with DNA via

a DNA-binding domain to find a sequence

signal. Moreover, both for sequence-specific

TFs and these nonsequence-specific tran-

scriptional regulators, our analysis sug-

gests that the in vivo binding sequence

signal is more of a continuum than a

present/absent call.

Discriminative spatial models better
capture TF chromatin signatures
than read-count methods

We used discriminative training to learn

chromatin signatures that predict TF oc-

cupied or unoccupied regions. Figure 3A

shows the spatial organization of chro-

matin marks in 5000-bp windows cen-

tered at GABPA ChIP-seq peaks. In this

figure, each row shows a single binding

site, and each column shows the ChIP-

seq read information in 100-bp bins from

�2500 to 2500 bp relative to the binding

sites. As can be seen, many chromatin

marks are correlated with the TF binding

sites and display different spatial patterns

relative to the binding peaks; however, all

marks show a depletion at the peak center,

corresponding to a nucleosome-depleted

region at the location of protein–DNA

interaction.

Figure 2. SVM sequence models better predict binding sites than traditional motif approaches. (A)
The accuracy of our method is assessed by the area under the ROC curve, which provides a natural trade-
off between false positives (x-axis) and sensitivity (y-axis). The ROC curve is shown for discriminating
BCL11A ChIP-seq peaks from nonpeaks using four approaches: k-mer SVM, MDscan, cERMIT, and
Weeder. (B) The accuracy (AUC) of k-mer SVM models (y-axis) is compared against motif-based algo-
rithms (MDscan, cERMIT, DME, and Weeder; x-axis) for discriminating ChIP-seq peaks from flanking
regions. We used training and test sets taken from the same experiment; only accuracy on the test set is
shown. Results for transcription factors with multiple ChIP-seq experiments for replicates and cell types
were averaged. The SVM models are significantly more accurate than each of the alternative methods
(P-values inset and color-coded for each method). (C ) The k-mer SVM model is able to learn degenerate
motifs. We show the k-mer SVM scores (y-axis) versus the cERMIT motif score (x-axis) for binding sites of
BCL11A in GM12878. Example binding sites that are detected by the SVM but receive low scores by the
motif are enriched for a more degenerate motif instance, as found by MEME.

Determinants of cell-type–specific binding
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We used these multiple spatially binned histone modifica-

tions for training chromatin signatures of TF binding. That is, we

used the chromatin data from the rows of Figure 3A as feature

vectors to train SVM models to discriminate between the chro-

matin profiles at TF peaks versus nonpeaks. First, we trained a sep-

arate chromatin model for each ChIP-seq experiment. We mea-

sured the extent to which chromatin alone could predict binding,

using the same training and test sets as used for learning the

sequence models. We found that combining histone modifica-

tions using an SVM model was far more accurate than using read-

counts of the best single modification, including H3K4me3 and

H3K4me1, or combining modifications through logistic regression

(Fig. 3B). Of practical interest, we found that an SVM trained on

spatially binned DNase-seq data, used alone, was more accurate

than the combination of histone modifications SVM model.

Therefore, if the main task is to localize potential binding sites, the

single experiment with greatest predictive value is DNase-seq,

which is consistent with recent findings (Pique-Regi et al. 2011).

We also noted that the single chromatin mark with greatest pre-

dictive value, when used as a spatial signature to localize TF

binding sites, was H3K27ac.

Some insight into why the spatial information is so valuable

can be gained by looking at the SVM chromatin model vectors.

When we clustered the SVM model vectors for different TFs using

standard hierarchical clustering, we found that the vectors clus-

tered together based on the TF’s genome-wide binding locations

relative to genes. In particular, we observed three canonical pat-

terns, one for generic TFs that bind the core promoter, one for TFs

with $25% of peaks in the proximal promoters (within 2 kbp from

genes), and one for TFs with distal binding locations (<25% proxi-

mal binding sites). Figure 3C shows the mean chromatin SVM w

vectors for each of these three classes. These signatures are recog-

nizing the nucleosome-depleted region centered at the binding peak

to improve prediction.

Figure 3. SVM spatial chromatin models better predict binding sites than simpler models. (A) The distribution of histone marks over 5000-bp
windows centered at GABPA ChIP-seq peaks in K562 shows spatial organization of multiple correlated signals. (B) The accuracy of multiple
chromatin models suggests that spatial signatures of DNase accessibility better predict binding sites than other methods. The cumulative distri-
butions of prediction accuracy (AUC; x-axis) across a subset of ChIP-seq experiments are shown for multiple chromatin representations. Shown are
an SVM model trained on all spatially binned histone marks (blue), which is more accurate than standard ranking based on best single mark read
counts (black) or a logistic regression combination of read counts (red); similarly, an SVM model trained on spatially binned DNase-seq reads
(brown) better describes binding sites than use of DNase bin counts (purple). Paired signed rank test P-values are shown. (C ) Transcription factors
that bind the core promoter, proximal to transcript start site, or distal to start site have distinctive spatial patterns of histone modifications. The four
plots show spatial coordinates of the learned bin weights arranged along the x-axis, with the values of the weights shown on the y-axis. The bin
weightings are averaged across subsets of core, proximal, and distal binding transcription factors. The valleys at the binding site suggest that spatial
models are capturing predictive information regarding the differential spacing of nucleosome-depleted regions at core, proximal, and distal
binding sites.
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Combining sequence and chromatin signatures improves
binding site prediction and prediction in new cell lines

We observed that ChIP-seq occupancy for some TFs was well cor-

related with SVM sequence signal, while the occupancy of other

TFs was better characterized by DNase accessibility (Fig. 4A). To

quantify the importance of these two signals for predicting TF

binding, we compared the accuracy of the DNase SVM and se-

quence SVM for different TFs (Fig. 4B; Supplemental Table S4).

There are a number of outliers that tend to be much better specified

by either chromatin accessibility or sequence signal. For instance,

REST is known to act as a repressor and bind a long DNA sequence

that provides high specificity (Johnson et al. 2007), so it is unsurprising

that chromatin accessibility is not an ideal predictive signature. In

contrast, factors such as PAX5 and EP300 are much better predicted

by DNase than sequence signal, which is likely due to their ability

to bind indirectly to enhancers and to highly degenerate sequences

(Cobaleda et al. 2007; Visel et al. 2009).

Next we asked whether combining sequence and chromatin

signatures could significantly improve TF occupancy prediction.

We found that a simple sum of normalized prediction scores from

the sequence and DNase SVMs was more accurate than either

model alone. Figure 4C shows that the combined model better

described binding sites than the sequence-only SVM model for all

but a handful of TFs when training and testing in the same cell type

(black dots, P < 2.0 3 10�15, paired signed rank test). Improve-

ments are also obtained when combining sequence with the his-

tone signatures, although the average improvement is smaller

(mean increase in AUC of 0.04 vs. 0.08 for DNase signatures).

We also wanted to transfer TF binding predictions to a new

cell type where there is chromatin data but no TF binding data.

Figure 4C also shows that using a sequence model and DNase

model trained on one cell line gives good generalization to the

other cell line—where for predictions, we used chromatin data

collected in the new cell type—and improved over using sequence

only in almost all cases (red dots, P < 8.3 3 10�3, paired signed rank

test; mean AUC improvement of 0.05). For many TFs, within-cell-

type accuracy (i.e., train and test sites belong to the same cell type)

and the between-cell-types accuracy (i.e., train on binding sites

from one cell type and test on the other) is comparable. A notable

exception is JUND, where the sequence-only model accuracy was

much poorer when trained in one cell line and tested in the other.

Even the combined JUND sequence and DNase model showed a

small reduction in accuracy for the between-cell-types task com-

pared with the within-cell-type task.

TFs can display strong cell-type–specific binding patterns

We next wanted to better understand and quantify cell-type–specific

binding. We first noted that some TFs had high ChIP-seq signal in

one cell line, but very little in the other (Fig. 5A). To accomplish

a genome-wide similarity measure of a TF’s binding profiles across

two cell lines, we determined the top

5000 ChIP-seq peaks in each cell line and

quantile-normalized the log counts of reads

per million aligned (RPM) mapping to

these peak regions in each cell line. We

then assessed the significance of the ob-

served log read ratios, using an intensity-

specific noise model for each TF based on

replicate-to-replicate log RPM ratios

within each cell type (see Methods). We

say that a binding site is cell-type specific if

the log RPM ratio between cell types has a

significance of P < 0.01 based on the rep-

licate noise model. For simplicity, we in-

clude only binding sites that consistently

satisfy this P-value threshold for both

pairs of GM12878 versus K562 replicate

experiments (see Methods).

Figure 5B shows the replicate versus

replicate log read count scatterplot within

a single cell type (GM12878) for the top

5000 ChIP-seq peaks in this cell type for

the TFs REST, MAX, and JUND (top row)

and the corresponding scatterplots be-

tween cell types (K562 vs. GM12878,

bottom row). The top row shows that

replicate-to-replicate noise varies consid-

erably for different TFs. Specifically, we

see that lower intensity binding is subject

to greater variance, suggesting an adap-

tive noise model. In the bottom row, the

boundary of the shaded ‘‘funnel’’ cor-

responds to the P < 0.01 significance

threshold based on replicate-to-replicate

noise, and the points outside the funnel

are the cell-type–specific binding sites.

Figure 4. Combining chromatin and sequence models improves binding site prediction. (A) Binding
sites for REST and PAX5 illustrate loci that have a high sequence signal or DNase accessibility, but not
both. (B) Learning sequence models in a single cell type reveals that some TFs are better predicted by
sequence signals (such as REST), whereas others are better predicted by DNA accessibility (such as EP300
and PAX5). The AUC was determined for each replicate in each cell type and then averaged. (C ) When
DNase accessibility information is added to k-mer SVM models, the combined model is more predictive
of in vivo binding sites. The scatter plot compares the accuracy of a combination of sequence and DNase
SVM signatures with that of the sequence model alone. Models were learned from one cell type and
then used to predict binding sites in the same cell type (black) or a different cell type (red). Accuracy
(AUC) for each TF was averaged across replicates and cell lines (same cell case) or only replicate ex-
periments (transfer learning case). JUND is an outlier, where applying the sequence model across cell
lines is significantly worse than applying it in the same cell line. POLR3 is poorly predicted in all settings
and is not shown.
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In fact, for all three TFs shown in Figure 5B, a large fraction of

the top 5000 binding sites across the two cell types display cell-to-cell

log read ratios that place them outside the funnel (36.1%, 32.0%,

and 31.9% for REST, MAX, and JUND, respectively). However, it is

clear that in the case of REST, most of the binding sites with more

reads in GM12878 actually have low read counts in both cell lines.

In contrast, JUND has a large number of cell-type–specific binding

sites that have high read counts in one cell line and low read counts

in the other. To reflect this difference, we use the term cell-type

exclusive to describe binding sites that are cell-type specific (outside

the funnel) but are also not bound, based on a RPM cut-off of 1, in

the other cell type. By this measure, JUND has a much larger pro-

portion of cell-type–exclusive binding

sites (24.9%) compared with REST (7.4%),

with MAX falling in between (18.3%).

Complete lists of the fraction of cell-type–

specific and cell-type–exclusive binding

sites for the 10 TFs for which high-

quality replicate experiments were avail-

able are provided in Supplemental Table

S6.

We note that cell-type–specific bind-

ing sites, as identified by our statistical

procedure, are correlated with expres-

sion of nearby genes. When we exam-

ined the expression levels as measured

by RNA-seq of genes proximal to cell-

type–specific binding sites, we found

that these genes were significantly dif-

ferentially expressed in GM12878 versus

K562 based on their cumulative distri-

bution of log expression changes relative

to all expressed genes and genes bound

in both cell lines (Fig. 5C).

A subset of TFs display distinct
cell-type DNA sequence specificity

We next wished to learn if TFs can display

cell-type–specific sequence preferences.

To maximize sensitivity to independent

sequence preferences, we learned cell-

type–specific k-mer SVM sequence models

for each TF using multitask learning, and

examined cases where these sequence

models were significantly different. Mul-

titask learning is an attractive framework

for simultaneously training GM12878-

and K562-specific sequence models while

also learning what is shared in both

GM12878 and K562 binding sites. Spe-

cifically, we jointly learn two models,

namely, the GM12878-specific model

w0 + wGM and the K562-specific model

w0 + wK, where the common sequence

signal in both cell lines is given by w0.

The model vectors w0, wGM, and wK are

learned simultaneously and over the same

k-mer feature space. We also confirmed

that the cell-type–specific models learned

through multitask joint training were

more accurate than models individually

trained on cell-type–exclusive sites from a single cell line (Supple-

mental Fig. S3).

We then asked how well differential DNase accessibility and

differential sequence scores correlate with cell-type–specific bind-

ing. The cell-type–specific sequence scores are determined by

(wGM � wK) �x, where x is the vector of k-mer features for a par-

ticular binding site and wGM and wK are the cell-type–specific

k-mer SVMs. We first examined the differential DNase accessibility

and differential SVM sequence scores as a function of K562 versus

GM12878 log read count scatterplots. Figure 6A shows differential

DNase read counts for USF1 (top) and YY1 (bottom), where bins

are colored red if the binding sites inside the bin are more DNase

Figure 5. Cell-type–specific transcription factor binding is measured by ChIP-seq and correlated with
differential gene expression. (A) ChIP-seq of USF1 reveals sites that are bound in both cell lines (left), only
GM12878 (middle), or only K562 (right). Units are reads per million aligned (RPM). (B) We find cell-type–
specific binding sites by measuring replicate-to-replicate noise and comparing it to cell-to-cell variation.
Replicate and cell-specific binding are shown for REST, MAX, and JUND. The top row of scatterplots
shows the ChIP-seq read counts [in RPM, scaled by log(x + 1)] for the top 5000 peaks in two replicate
experiments in the same cell type (GM12878). The bottom row of scatterplots shows the log ChIP-seq
read counts in GM12878 versus K562 for the union of the top 5000 peaks in each cell line. In these plots,
each point is a binding site, and the x- and y-axes show the log read counts aligning to the site in the
respective replicates (top row) or cell types (bottom row). (C ) We find that the most proximal genes near
cell-type–specific binding sites are differentially expressed between cell types. The cumulative distri-
bution of log expression level changes are shown. Expression is estimated by RNA-seq in units of reads
per thousand nucleotides of transcript per million reads aligned (RPKM).
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accessible in K562 and blue if they are more accessible in GM12878.

Figure 6B shows differential k-mer SVM sequence scores, also for

USF1 and YY1. These TFs both display cell-type–specific binding

patterns (fraction of cell-type–specific peaks about the top 5000

peaks in both cell types is 28.4% for USF1 and 38.9% for YY1).

However, for USF1, only the differential DNase accessibility correlates

with differential occupancy, while for YY1, the differential sequence

scores correlate more strongly with differ-

ential binding. It is worth noting that the

examples used to train the SVM models

have been removed in these analyses.

To see the correlation between DNase

and cell-type–specific binding more clearly,

Figure 6C shows the difference in ranks

of DNase log ChIP-seq read counts in

GM12878 versus K562 as a function of

the ranking from most K562-specific bind-

ing site to most GM12878-specific binding

sites, as measured by K562-vs-GM12878

log read ratios for the TFs GABPA, USF1,

YY1, and JUND. In all cases, there is some

correlation between differential ChIP-seq

occupancy and differential DNase acces-

sibility between cell types. The correla-

tion is particularly strong for JUND and

USF1 but only marginal for YY1. Next, we

computed similar line plots but calcu-

lated the difference in ranks of K562-

versus GM12878-specific SVM sequence

scores and a function of the ranking of

binding sites K562-vs-GM12878 log read

ratios (Fig. 6D). Here it is clear that the

differential sequence signal strongly cor-

relates with differential binding for YY1

and JUND, while the differential sequence

signal for USF1 does not correlate with its

differential occupancy.

Cell-type–specific sequence
preferences can be explained
by cell-type–specific
heteromeric complexes

Since cell-specific sequence models for

several TFs correlate strongly with their

cell-type–specific binding, we further ex-

amined the sequence differences between

these models to gain clues about the mech-

anism underlying cell-dependent sequence

signals. A simple visualization of the k-mer

information used to train the cell-type–

specific models is suggestive: When we

clustered the rows and columns of the

k-mer feature matrix for the cell-type–

exclusive binding site examples of either

YY1 or JUND, we identified blocks of co-

occurring k-mers that were strongly en-

riched either in the K562-exclusive sites

or the GM12878-exclusive sites (Supple-

mental Fig. S4). To examine cell-type–

specific information for these two TFs

more carefully, we considered GM12878-

and K562-exclusive binding sites that were not used in training the

sequence models and plotted the Z-transformed k-mer SVM scores

for the K562-specific model (using model vector w0 + wK) against

the k-mer SVM scores for the GM12878-specific model (using

model vector w0 + wGM), as shown in Figure 7, A and B. We

identified examples that received a Z-transformed SVM discrimi-

nant score >1.5 for at least one of the models. We also required that

Figure 6. Cell-type–specific TF binding is associated with differential DNase accessibility, sequence
signal, or both. (A) Differential DNase accessibility (color) is shown for K562 versus GM12878 with
respect to cell-type–specific binding (x-axis for GM12878; y-axis for K562). Each point represents
a single binding site, and if there are a sufficient number of points in a region, their value is averaged and
appears as a square. DNase accessibility, as measured by read-counts, for USF1 (top) correlates with cell-
specific binding. This contrasts with YY1 (bottom), where DNase accessibility is evenly distributed across
cell-type–specific and nonspecific peaks. (B) Differential sequence preference (color) is shown for K562
versus GM12878. k-mer SVM models are learned from K562 and GM12878 binding sites, and their
differential scores are shown by color gradient. For YY1, but not USF1, we see that the differential k-mer
SVM scores distinguish cell-type–specific binding sites. (C ) Binding sites with differential TF occupancy
also have differential DNase accessibility. Each line represents a TF that has been assayed in GM12878
and K562. The x-axis plots a ranking from the most K562-specific binding site to the most GM12878-
specific binding sites, based on cell-to-cell log read count ratios, while the y-axis shows the difference in
DNase-accessibility ranks in GM12878 and K562. The line plot is smoothed using the mean over
a window of 500 binding sites. (D) For the same TFs, we plot the difference in K562- and GM12878-
specific k-mer SVM score ranks (y-axis) as a function of the ranking of cell-to-cell log read count ratios,
from the most K562-specific binding site to the most GM12878-specific binding sites. The line plot is
smoothed using the mean over a window of 500 binding sites.
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the difference between the scores for the cell-type–specific models

be above 1.

This procedure identified a set of binding sites that were exclu-

sively bound in one cell type or the other and also differentially scored

by the two cell-type–specific SVM sequence models. We used these

binding site sequences as input to the MEME algorithm and show the

top extracted motifs (Fig. 7A,B). The K562 and GM12878 motifs for

JUND and YY1 that are derived from this procedure are quite in-

teresting and suggest mechanisms for cell-type–specific binding.

The extracted JUND motifs represent heterodimer motifs with

different spacing. The K562 motif is an octamer, where the two

3-mer motifs are separated by a spacer of 2 nucleotides (nt). The

GM12878 motif is a heptamer, where the spacer separating the

dimeric motifs is a single nucleotide. This difference suggests a cell-

type–dependent change in composition of the AP-1 heterodimeric

complex (van Dam and Castellazzi 2001). To look for additional

evidence in support of this hypothesis, we examined expression

levels of a set of AP-1 cofactors in GM12878 and K562 as measured

by RNA-seq (Supplemental Fig. S5). We indeed found that BATF,

which forms a heterodimer with JUND and acts to negatively

regulate AP-1 targets (Echlina et al. 2000), is more highly expressed

in GM12878 than K562. Potentially, a greater proportion of JUND-

BATF heterodimers in GM12878 relative to K562 may explain the

distinct cell-type–specific sequence preferences of JUND.

We also find that YY1 binds to a longer motif in K562 that

includes at least four additional specificity nucleotides around the

core ATGGC motif (as shown in Fig. 7B). In contrast, sites exclu-

sively bound in GM12878 contain motifs with two different nu-

cleotides around the core YY1 motif. When we searched for the

K562 motif (exact AAGATGGCGG k-mer matches, one mismatch

allowed), we found it in 70% of K562-specific and only 13% of

GM12878-specific sites (odds ratio [OR] of 15, P < 1.1 3 10�35).

Similarly, we found the GM12878 motif (AATGGCT) in 36% of

K562-specific sites and 66% of GM12878-specific sites (OR = 3.6,

P < 1.8 3 10�10). We did not find any significant secondary motifs

that were present in more than 10% of cell-type–specific binding

sites (as determined by MEME). Previously, a similar longer YY1

motif was characterized through a dimeric YY1-DNA crystal structure,

where the first zinc finger of YY1 makes base contact to the ex-

tended nucleotide (Houbaviy et al. 1996). Interestingly, mutation

of the first zinc finger of YY1 also ablates all sequence specificity

outside of the core ATGGC motif (Kim and Kim 2009). We next

examined whether any known cofactors of YY1 are significantly

differentially expressed in the two cell types (Supplemental Fig. S5).

We found that MNDA, which is known to increase YY1 DNA-

binding affinity in vitro but does not have any independent se-

quence specificity in vitro (Xie et al. 1998), is highly up-regulated

in GM12878. Meanwhile, the cofactor CtBP, whose presence in the

nucleus is required for YY1 binding in Drosophila (Srinivasan and

Atchison 2004), is highly expressed in both cell lines but is expressed

higher in GM12878. These previous findings, in combination with

our high-resolution sequence models, suggest that allosteric alter-

ations in one or multiple binding domains, possibly through co-

factor interaction or post-translational modification, may be capable

of altering the genome-wide DNA-binding preferences of YY1.

Cell-type–specific sequence signal, rather than chromatin
accessibility, explains cell-type–exclusive sites
for JUND and YY1

To ask whether cell-type sequence signal influences whether a

locus is bound in a given cell type, we returned to the cell-type–

exclusive binding sites in GM12878 and K562 for three TFs—USF1,

YY1, and JUND—and searched for loci that were chromatin ac-

cessible in both cell types, even though these loci were bound in

only one cell type. Figure 8A shows for each of these three TFs the

number of binding sites across both cell types, the number of K562-

and GM12878-exclusive binding sites, and the number of cell-

type–exclusive binding sites that are also DNase-accessible in

GM12878. The top heatmap in Figure 8B shows all the cell-type–

exclusive binding sites for USF1. For this example, cell-type–specific

DNase accessibility almost perfectly correlates with cell-type–specific

binding, shown by the ChIP-seq read signals, and the GM12878

and K562 sequence scores are well-correlated with each other and

appear to provide no additional discriminative information about

differential binding. In contrast, in the middle and bottom heat-

maps of Figure 8B, we focus on the cell-type–exclusive binding

sites that are also DNase accessible in GM12878 for YY1 and JUND.

In these examples, a subset of the cell-type–exclusive binding sites

are DNase accessible in both cell types but are only bound in K562.

For this subset of sites for YY1 and JUND, the K562-specific SVM

sequence scores clearly correlate with binding, while the GM12878

SVM assigns low scores. Therefore, for these TFs, cell-type–specific

sequence models can explain cell-type–specific binding for loci

that are DNase accessible in both cell types.

In order to better quantify the predictive value of cell-specific

sequence preferences versus chromatin accessibility in this setting,

we evaluated the ability of differential DNase accessibility and cell-

type–specific SVM sequence models to discriminate between

GM12878- and K562-exclusive binding sites. First, we scored each

TF’s cell-type–exclusive binding sites by the difference in log DNase

reads between the two cell types and used the AUC to measure

how well this score discriminated between GM12878- and

K562-exclusive binding sites. Next, for each TF, we used the

previously trained GM12878- and K562-specific SVM sequence

models to discriminate between exclusive sites for each cell

type, and we averaged the AUCs for each model to report a sin-

gle SVM sequence AUC score. Results for this discrimination

task are reported in Figure 8C. Binding site sequences used in

training the SVM sequence models were held out of test sets for

this analysis.

Figure 7. Cell-type–specific sequence models for JUND and YY1 cap-
ture different primary motifs. (A) Cell-type–exclusive JUND sites were
scored by the GM12878- and K562-specific k-mer SVM models (x- and
y-axes, respectively) to identify groups of differentially scored sites. Sites
with high K562 and low GM12878 scores (red) and high GM12878 and
low K562 scores (blue) were used as input to MEME to produce the dif-
ferent sequence motifs shown with significance P < 10�77. (B) Same
as previous panel but using cell-type–exclusive YY1 binding sites with
significance P < 10�21.
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We found that for most TFs, the cell-type–exclusive binding

sites are well-discriminated solely by differential DNase accessi-

bility (region I in Fig. 8C). For JUND and YY1 (region III), differ-

ential DNase is not predictive of cell-type–exclusive binding due to

many sites that are DNase accessible in both cell lines, whereas the

cell-type–specific SVM models do accurately discriminate between

loci bound exclusively in GM12878 and K562 (as described above).

REST (region II) has consistent SVM models between cell types, but

differential DNase also poorly discriminates between its cell-type–

exclusive binding sites, likely due to its enrichment in repressed

regions of the genome. Interestingly, SRF and FOS (c-Fos) are par-

tially predicted by sequence signal in addition to differential

DNase accessibility (region IV). We hypothesized that this may be

a consequence of differential proximal cofactors pre-establishing

differential DNase accessible sites in the cell lines, as has been

previously suggested (e.g., Heinz et al. 2010). We found that an ETS

motif (exact k-mer CCGGA) is weakly more prevalent in GM12878

SRF sites (OR = 2, P < 0.012), suggesting that an ETS family member

may differentially prime sites that are subsequently bound by SRF.

In contrast, the accuracy difference for FOS reflects a depletion of

the primary motif (TGAGTCA, allowing one mismatch) in GM12878

sites (OR = 0.23, P < 0.0014). While unknown cofactors may supply

additional sequence specificity, MEME did not yield any significant

motifs for >10% of the sites. It is also

possible that the depletion may be an

artifact of higher false-positive rate in the

GM12878 ChIP-seq experiments.

Discussion
We have presented a framework for mod-

eling protein–DNA binding sites across

multiple cell types. In using discrimina-

tive sequence models based on k-mer

patterns to capture the cell-type–specific

sequence preferences, we are proposing

that TF ChIP-seq binding profiles contain

much richer and more subtle sequence

information than can be captured by a

single motif. Indeed, we have seen that

our k-mer–based SVM models can capture

a range of high and low information con-

tent binding sites that would need to be

described by several slightly different

PSSMs. In our framework, we find that

DNA sequence signal is quantitative and

varies across regulators; rather than find-

ing sequence-specific and nonspecific fac-

tors, we find a continuum of sequence

specificity and SVM sequence model per-

formance across the factors in our study.

While the cell-type specificity of

a gene expression program may be largely

maintained through chromatin state, TF

complex composition may also control

cell-type–specific expression. In particu-

lar, differential TF binding between cell

lines can be predicted by cell-type–specific

primary sequence preferences, not just

differences in chromatin accessibility.

While differential binding due to com-

plex composition has been observed pre-

viously at specific loci (van Dam and Castellazzi 2001; Saccani et al.

2003; Leung et al. 2004; So et al. 2007), we present the first ge-

nome-wide assessment of how these complexes may contribute to

cell-type specificity. We also note that the sequence preference

differences we find are alterations in binding of the primary factor,

not the binding of proximal cofactors. Naturally, proximal cofactors

can also influence binding through recruitment and chromatin re-

organization (e.g., Mullen et al. 2011); however, the factors in our

analysis that are significantly enriched in cell-type–specific proximal

binding sites of cofactors are better predicted by DNase accessibility.

These observations lead us to believe that TFs should not be

treated as isolated or static, but should be considered in the context

of their heteromeric complexes, their post-translational modifi-

cations, the specific nucleotide sequence they are binding, and

other allosteric alterations, which are all likely to play a role in DNA

binding preferences. These factors also naturally introduce com-

petition into complex formation, as has been explicitly described

for the NFKB complex (Saccani et al. 2003). Furthermore, differ-

ent k-mer patterns not only may recruit different complexes but

may actually allosterically alter the protein function (Meijsing

et al. 2009). Given the massive data sets being generated by the

ENCODE Consortium and other large-scale efforts, there is an

excellent opportunity to learn richer sequence representations to

Figure 8. Cell-type–specific sequence models can predict cell-type–specific binding at loci that are
DNase accessible in both cell lines. (A) The number of binding sites, cell-type–exclusive binding sites,
and exclusive binding sites that are DNase accessible in GM12878. (B) Cell-type–exclusive binding sites
can be explained by cell-type–specific sequence preferences when a binding site is accessible in both cell
lines. Cell-type–exclusive binding sites for USF1, YY1, and JUND are shown. For USF1, all GM12878- and
K562-exclusive binding sites are shown, and DNase accessibility is able to explain cell-type–exclusive
binding. In contrast, for JUND and YY1, there are cell-type–exclusive binding sites in GM12878 and
K562 that are DNase accessible in both cell lines, and only these examples are plotted in the middle and
bottom heatmaps. For these examples, the cell-type–specific SVM sequence scores can explain the cell-
type–specific binding. (C ) AUC values for the task of discriminating between GM12878-exclusive peaks
and K562-exclusive peaks by differential DNase reads (x-axis) or by cell-type–specific SVM sequence
scores. For the SVM models, the GM12878- and K562-specific models were each used to discriminate
between GM12878- and K562-exclusive binding sites, and the mean AUC over both models was
reported. Binding site sequences used in training the models were held out of test sets for this evalu-
ation. For most TFs, the cell-type–exclusive binding sites are well-predicted by differential DNase ac-
cessibility (I, IV). For REST, DNase is not predictive in general and the SVM models are consistent
between the two cell lines (II). For JUND and YY1 (III), DNase is not predictive of cell-type–exclusive
binding, as many sites are DNase accessible in both cell lines; however, the cell-type–specific peaks tend
to have different underlying k-mer sequences, enabling accurate discrimination by cell-type–specific
SVM sequence models.
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more fully understand the sequence information that specifies TF

binding and activity.

Methods

ChIP-seq processing
We obtained raw reads (fastq files) from the ENCODE section of the
UCSC Genome Browser (http://genome.ucsc.edu/ENCODE/). We
aligned reads to the hg19 reference genome allowing one mis-
match and keeping only uniquely aligned reads.

TF binding sites were determined by peak calling using the
SPP (Kharchenko et al. 2008) R package. We estimated DNA frag-
ment size using the cross-strand correlation measure and estimated
FDR q-values using DNA input controls. In all our analyses, we
examined peaks with q < 0.2 or the top n peaks, where n is given in
the main text. The number of reads mapping to peaks was nor-
malized by RPM.

DNase accessibility (from the Stamatoyannopoulos ENCODE
laboratory) and histone modification occupancy (from the Berstein
ENCODE laboratory) were estimated using overlapping read counts.
Histone modification ChIP-seq reads were strand-extended by
150 bp, and the middle 75 bp was used to estimate overlaps. Oc-
cupancy profiles were then binned at 100-bp resolution. We note
that data from an alternative DNase assay (Boyle et al. 2011) gave
highly correlated, though not identical, results (Supplemental Fig.
S6).

Learning DNA sequence models

To learn sequence models, we selected bound (positive) and un-
bound (negative) genomic regions. To select bound examples, we
extracted the 100-nt DNA sequence centered at ChIP-seq peaks.
Unbound examples were selected 200 bp from the flanking regions
of the ChIP-seq peaks. This flanking region is significantly more
difficult to predict correctly than random genomic regions (data
not shown).

For the SVM models, we transformed the positive and nega-
tive examples into features by computing the dinucleotide mis-
match k-mer features of the 100-nt regions (as previously described
by Agius et al. 2010). This feature representation is the set of
weighted counts of selected k-mers allowing for m mismatches in a
dinucleotide alphabet. Each example is represented as the number
of weighted inexact matches with respect to a feature set of the
1000 maximally discriminative individual k-mers. We then trained
support vector classifiers using a slightly modified version of the
LIBSVM package (Chang and Lin 2001). We use parameters k = 8,
m = 2 as these settings are able to capture shorter and longer motifs.

We also assessed the accuracy of PSSM motif discovery
methods (cERMIT, DME, and MDscan) and a k-mer enrichment
method (Weeder). DME and MDscan requires specification of
motif length, which we set to 6, 8, 10, 12, 14, and 16. DME uses
flanking sequences to explicitly discriminate whereas MDscan uses
the flanking sequences to construct a Markov model background.
cERMIT requires a ranking of sequences, which we determined
from the ChIP-seq read counts, and corresponding negative ex-
amples were ranked after all positive sequences and in the same
order as their flanking positive example. By default, we obtain five
motifs for each motif width for MDscan and DME. cERMIT returns
10 PSSMs of variable widths. For cERMIT, MDscan, and DME we
selected the best performing PSSM motif. We also used Weeder to
find the 50 most enriched 6-, 8-, and 10-bp motifs (allowing one
mismatch) using human genome-wide k-mer frequencies as the
background.

When scoring new sequences by PSSMs, we computed the log
ratio of the PSSM with respect to human background nucleotide
frequency. We then scanned the entire 100-nt region with the
PSSM and used the maximum value as the PSSM score. To apply
Weeder k-mers to unseen 100-nt regions, we counted the total
number of occurrences of the enriched k-mers allowing for one
mismatch (weighting k-mers by a linear regression model reduced
accuracy; data not shown). Applying the di-mismatch SVMs to
new sequences required calculation of the 1000 k-mer di-mismatch
counts, weighted by the w vector learned during SVM training.

Learning TF chromatin models

We examined 5-kbp regions and determined overlapping read
counts binned at 100 bp (described above, shown in Fig. 3A). This
resulted in 50-dimensional vectors for each chromatin-related
experiment. To train an SVM classifier, we selected positive ex-
amples centered at TF peaks. Negative examples were sampled
from 6200, 500, 1000 bp away from the peak site, so that each
positive example generated six negative examples. The closely
sampled negatives allowed us to test if it is possible to learn high-
resolution predictors.

We compared the spatial SVM against several simpler methods.
When examining a single histone modification or DNase accessi-
bility, we compared against total read counts mapping to various
window locations and sizes centered at the peak and flanking
negative regions. Specifically, we examined single windows of sizes
100 bp and 200 bp across all possible bins, any two windows of size
100 bp, and symmetric windows around the center of the example
taken at all possible radii. We report results for the most-accurate
set of windows.

When examining a set of histone modifications (with or
without DNase), we compared our spatial SVMs against a logistic
regression combination of the histone marks. Prior to regression,
we reduced the dimensionality of the examples by extracting only
the middle 1000 bp, which greatly increased the hold-out accuracy
of the regression (data not shown).

Identifying cell-type–specific binding sites

To identify cell-type–specific binding sites, we identified peaks in
both of two experimental replicates in each of the two cell lines. To
identify the total set of peaks across replicates and cell lines, we
performed peak calling on each cell line and replicate indepen-
dently (as described above) and examined the top 5000 peaks (or
peaks with q-value <0.2 if less than 5000). We matched overlapping
peaks (within 100-bp radius) to ensure that peaks were not double
counted and also included peaks occurring in only one cell line.
This resulted in a total of 5000–10,000 peaks across the two cell
lines. Next, the number of strand-extended reads whose starting
position fell within a 200-bp window of each peak was determined
(in RPM) was quantile-normalized.

We then estimated a background noise model from the rep-
licates to determine significance of cell specificity. The noise model
was derived from the replicate 1 RPM values x and replicate 2 RPM
values y. We computed the geometric average between the two
replicates a = log(x)/2 + log(y)/2 and the log ratio of RPM m = log(x/y).
We then estimated the standard deviation u(a) of the log ratio at a
given geometric average a and fit this to an exponential noise
model ŝ að Þ;a + begu að Þ. The parameters a, b, g were fit by non-
linear least squares, and we used ŝ að Þ as the estimated standard
deviation of the log ratio at a given RPM level. A normal distri-
bution with zero-mean and standard deviation ŝ að Þ was used to
estimate P-values for cell-to-cell variation in RPM counts at a
given RPM.
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We considered two types of cell-type–specific binding. The
first only required a binding site differential RPM to pass a P < 0.01
significance threshold. The second required that the differential
RPM be significant at P < 0.01 and that the cell line considered
unbound had less than 1 RPM. We call the first definition ‘‘cell-
type specific’’ and the second ‘‘cell-type exclusive.’’ For each defi-
nition, we enforce the conservative stance that the differentially
bound locus must be consistently differentially bound in both
of the replicate comparisons. That is, the differential binding must
be consistent in the two comparisons: (1) replicate 1 of the first cell
line compared with replicate 1 of the second cell line; and (2) repli-
cate 2 of the first cell line compared with replicate 2 of the second cell
line.

Learning cell-type–specific sequence preferences

We used a regularized multitask learning framework (Evgeniou
et al. 2005) to learn cell-type–specific sequence preferences. In this
approach, weight vectors wi, i = 1,2 are learned collectively for each
individual task, and a weight vector w0 is learned on the collection
of features for all tasks; after training, the model vector w0 + wi is
used as the model vector for classification task i. Formally, in the
SVM constrained optimization problem, the objective function to
be minimized is

w0k k2 + l +
i

wik k2;

where the parameter l trades off between the common and specific
tasks; a soft margin constraint is introduced for each training ex-
ample of each task, namely:

yi
k w0 + wið Þ � xi

k $ 1� ji
k; ji

k $ 0;

where xi
k is the kth training example for task i, yi

k is its binary label,
and ji

k is the corresponding slack variable. We found that taking l = 1
gave good performance across TFs, and we assume this parameter
value in the formulation below.

Multitask SVM learning can be reduced to a standard SVM
problem as follows. If FGM and FK represent the feature matrices for
the individual tasks of learning binding preferences for GM12878
and K562, that is, the matrix of di-mismatch k-mer counts for the
training sequences (rows) with respect to the k-mers (columns),
then the multitask feature matrix is defined to be

FGM FGM 0
FK 0 FK

� �
;

and a weight vector (w0, wGM, wK) is learned using a regular SVM.
The set of training sequences for FGM and FK were sampled from
cell-type–exclusive binding site examples. To prevent any biases,
we maintained the same set of k-mers for both cell-type feature
maps, namely, the union of the best 1000 k-mers for each cell
type.

Data access
The code, training, and test sequences for learning sequence
models are available at http://cbio.mskcc.org/leslielab/TFcelltype/.
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