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Abstract 
​ Transcriptome-wide association studies (TWAS) help identify disease causing genes, but 
often fail to pinpoint disease mechanisms at the cellular level because of the limited sample 
sizes and sparsity of cell-type–specific expression data. Here we propose scPrediXcan which 
integrates state-of-the-art deep learning approaches that predict epigenetic features from DNA 
sequences with the canonical TWAS framework. Our prediction approach, ctPred, predicts 
cell-type–specific expression with high accuracy and captures complex gene regulatory 
grammar that linear models overlook. Applied to type 2 diabetes and systemic lupus 
erythematosus, scPrediXcan outperformed the canonical TWAS framework by identifying more 
candidate causal genes, explaining more genome-wide association studies (GWAS) loci, and 
providing insights into the cellular specificity of TWAS hits. Overall, our results demonstrate that 
scPrediXcan represents a significant advance, promising to deepen our understanding of the 
cellular mechanisms underlying complex diseases. 
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Introduction 

​ Transcriptome-wide association studies (TWAS) are a class of methods that nominate 
candidate causal genes for complex traits and diseases by determining associations between 
predicted gene expression and phenotype1–3. Canonical TWAS approaches train a gene 
expression prediction model using tissue-level gene expression from a reference panel of at 
least 100 individuals. While TWAS has been successfully applied to various tissues and traits, 
providing candidate causal gene lists4,5, it is limited by the mismatch between available 
expression panels and disease-relevant cell types or states. Tissues with extensive expression 
panels (e.g., whole blood or lymphoblastoid cell lines) are commonly employed to maximize 
power, but recent studies suggest that context-specific regulation of gene expression is more 
relevant for disease3,6,7.  This is especially true when rare cell types that are underrepresented in 
conventional bulk-tissue expression data drive disease onset. Therefore, a TWAS framework 
with a model that can predict expression from disease-relevant tissues and/or cell types would 
be of great value for uncovering genes involved in the trait etiology. Although our understanding 
of cellular heterogeneity and cell-type-specific regulatory patterns has improved dramatically 
with recent advances in single-cell RNA sequencing (scRNA-seq)8, single-cell data is simply not 
available on the scale required by canonical TWAS frameworks to ensure optimal accuracy and 
power across contexts.  

Recent advancements in deep learning models that predict molecular features based on 
sequence data present a promising solution. While existing deep learning models for gene 
expression predictions are trained on bulk RNA-seq data and are constrained to tissue-level 
predictions, models predicting molecular features (e.g., epigenome) are trained using only a 
reference genome, thus eliminating the need for population-level data9,10,11. To overcome this, 
we employed transfer learning to develop a cell-type–specific gene expression prediction model, 
ctPred, trained from pseudo-bulk scRNA-seq data. This model leverages knowledge from 
pre-trained sequence-to-molecular features models, enhancing convergence, reducing 
overfitting, and improving overall performance. Specifically, we leveraged this advantage by 
utilizing the state-of-the-art sequence-to-epigenomics model, Enformer, as a feature extractor. 
We employed Enformer-predicted features via transfer learning to develop a cell-type–specific 
gene expression prediction model, ctPred, trained from pseudo-bulk scRNA-seq data. By 
building on knowledge from pre-trained sequence-to-epigenomics  models, ctPred enhances 
convergence, reduces overfitting, and improves overall performance. We further developed 
single-cell PrediXcan (scPrediXcan), a  cell-type-level TWAS framework, by leveraging ctPred 
to perform TWAS using single-cell data. While ctPred is theoretically capable of predicting 
context-specific, in-silico expression data at the individual level for TWAS using GWAS data, the 
computational demands remain prohibitive given the current scale of GWAS (i.e., hundreds of 
thousands of individuals). Additionally, access to individual-level GWAS data is often difficult to 
obtain. To overcome these challenges, we introduced a SNP-based linear version of ctPred, 
termed ℓ-ctPred, which is derived from genotype data alongside a ctPred-predicted, in-silico 
expression reference panel. Using ℓ-ctPred’s weights, we can conduct association tests 
between genes and diseases using only summary statistics from GWAS data, thereby enabling 
a TWAS that is fundamentally based on single-cell data.  
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We evaluated scPrediXcan by applying it to two diseases, type 2 diabetes (T2D) and 
systemic lupus erythematosus (SLE). Our comparison of scPrediXcan's performance against 
canonical TWAS models trained using the same datasets reveals that scPrediXcan significantly 
outperforms the canonical frameworks. It identifies a larger number of candidate causal genes, 
explains more GWAS loci, and provides more detailed insights into the cellular specificity of the 
TWAS findings. These results highlight scPrediXcan's substantial improvement in both the 
accuracy and relevance of gene nominations within TWAS, demonstrating its promising 
potential to advance our understanding of the cellular mechanisms that underpin complex 
diseases. 

Results 

Overview of scPrediXcan framework 
The scPrediXcan framework consists of three key steps (Fig. 1, supplementary fig. 2). 

First, we trained a model to predict gene expression from epigenomic data. Second, we 
linearized this deep-learning model into a SNP-based elastic net model, which can be used for 
association tests using GWAS summary statistics. Finally, we tested associations between 
genes and the trait of interest.  

 
In the first step, we established a method to predict the cell-type–specific gene 

expression from the DNA sequences. Because it is challenging for the model to learn genomic 
grammar by training directly on the highly sparse single-cell data, we utilized the genomic 
regulation insights gained from the state-of-the-art sequence-to-epigenomics model trained on 
bulk-level data, Enformer9. We used Enformer as a feature extractor and, through transfer 
learning, we trained ctPred—a lightweight, four-layer multi-layer perceptron (MLP) designed for 
predicting cell-type–specific gene expression at the single-cell pseudobulk level. 

 
Despite ctPred’s ability to predict individual cell-type–specific gene expression from gene 

sequences, the computational expense of such predictions for TWAS association tests across 
large GWAS cohorts remains high, and access to individual-level data is limited. We addressed 
this in our workflow’s second step by transforming the deep learning model into a linear form, 
creating a SNP-based elastic net version of ctPred, termed ℓ-ctPred. This version can predict 
gene expression for specific cell types from SNP dosages. The weights for ℓ-ctPred are stored in 
a database, eliminating the need for end-users to repeat the training steps.   

 
The final step of our workflow tests for associations between genes and traits or 

diseases at the cell-type level using S-PrediXcan12. This step employs the weights from ℓ-ctPred 
along with GWAS summary statistics to estimate gene effect sizes on the trait and to compute 
p-values, thus prioritizing putative causal genes.  
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Figure 1. Overview of scPrediXcan framework. 

ctPred accurately predicts single-cell pseudobulk gene expression across 
the genome in diverse cell types and datasets 

To develop prediction models for different cell contexts and evaluate their performance, 
we trained ctPred and tested its prediction performance on three scRNAseq datasets 
separately: OneK1K dataset13, a T2D islet dataset, and a subset of the Tabula Sapiens 
dataset14. The OneK1K dataset includes 29 cell types from 982 individuals, the T2D islet dataset 
has 11 cell types from 29 individuals, and the Tabula Sapiens dataset contains more than 400 
cell types from 14 different organs of 15 individuals. To conserve computational resources, we 
analyzed a subset of the Tabula Sapiens dataset comprising 6 cell types from 15 individuals.  

 
For each dataset, we tailored ctPred models to individual cell types. To avoid data 

leakage due to sequence overlaps between genes, we randomly divided the datasets by 
chromosomes into training, validation, and test sets (Fig. 2a). We then evaluated the models' 
performance by calculating Pearson correlations between predicted and observed pseudobulk 
gene expressions across the test sets (Fig. 2b). For example, in the OneK1K dataset, Pearson 
correlations for all cell types exceed 0.8, with the highest at 0.892 in CD4+ alpha-beta T cells 
and the lowest at 0.836 in erythrocytes (Fig. 2c). indicating that ctPred accurately predicts gene 
expression across diverse cell types.  
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Further testing the model's robustness, we validated ctPred on 11 cell types from the 
T2D dataset and 6 from the Tabula Sapiens subset. In the T2D dataset, Pearson correlations 
range from 0.753 in epsilon cells to 0.815 in activated stellate cells. In the selected Tabula 
Sapiens cell types, correlations range from 0.823 in mesenchymal stem cells to 0.885 in B cells, 
showcasing the model’s effectiveness across various datasets and cellular contexts.  

 
During our project, we learned of the parallel development of a module within seq2cells15 

called emb2cell, which specifically focuses on single-cell pseudobulk gene expression 
prediction. Similar to our ctPred, emb2cell uses embeddings for prediction, but while ctPred 
utilizes the 5313-dimension output from Enformer, emb2cell leverages 3072-dimension 
intermediate embeddings to train a two-layer MLP model. A key distinction between the models 
is that ctPred is much more parameter-efficient, containing approximately 0.4M parameters 
compared to emb2cell's over 60M. We evaluated both models using CD4+ T cell scRNA-seq 
data, adhering to the training, validation, and testing partitions specified in the seq2cells 
publication. ctPred achieves a Pearson correlation of 0.787 across genes (Supplementary fig. 
1), significantly outperforming the 0.666 correlation reported for emb2cell. 

 
The minimum number of cells per cell type was 125 in OneK1K, 212 in T2D, and 4,539 

in Tabula Sapiens. In general, prediction performance improved with an increasing number of 
available cells within each cell type, underscoring the benefits of our approach, where reads are 
aggregated across individuals (Supplementary Figures 7a, e, and i). This advantage becomes 
even more evident in the following section, where we assess performance across individuals. 

 
Overall, across 46 cell types and three datasets, ctPred not only achieves Pearson 

correlations ranging from 0.753 to 0.892, but also surpasses emb2cell on the CD4+ T cell 
dataset, despite having 150 times fewer parameters. This underscores ctPred's efficiency, 
accuracy, and robustness in predicting cell-type–specific gene expression.  
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Figure 2. a) Data splitting by chromosomes for ctPred training. b) Scatter plot of the predicted 
gene expression and observed gene expression for each gene in a CD4+ alpha-beta T cell from 
OneK1K dataset. c) Bar plot of Pearson correlations between predicted gene expression and 
observed gene expression in various cell types from OneK1K, T2D, and Tabula Sapiens 
datasets. Results for all cell types are listed in supplementary table 3. 

ctPred outperforms SNP-based predictors used in canonical TWAS for 
predicting cell-type–level gene expression across individuals 

To assess ctPred's performance across individuals—crucial for TWAS aiming to discern 
gene expression changes between patients and healthy controls—we compared it with a 
SNP-based approach used in canonical TWAS. This SNP-based method, which we refer to as 
pseudobulk elastic net (PEN), is trained on the same observed single-cell data as ctPred and 
should not to be confused with ℓ-ctPred, which also uses elastic net but is based on in-silico 
gene expression predictions.  

 
We found that PEN fails to converge for the majority of genes attempted, yielding 

predictors for only ~3.5% of expressed genes, whereas the ctPred approach yields predictors 
for all expressed genes (~19,000). Specifically, PEN yields 318–434 (median = 354) and 
504–1784 (median = 707) across cell types in T2D and OneK1K, respectively.  Fig. 3a provides 
examples of ctPred-predicted versus observed gene expressions, highlighting some genes 
missed by the PEN model. 

 
​​​ Next, we assessed the correlation between the predicted and observed gene expression 
across individuals to evaluate predictor performance. Due to the known correlation sign 
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inconsistency in Enformer16,17, we utilized the p-value of correlation as the primary performance 
metric (see Discussion). The histograms of p-values for correlations in alpha cells and memory 
B cells are shown in Fig. 3b-c. However, given the substantial difference in the number of genes 
predicted by each model, caution must be taken to ensure a fair comparison. Since 
convergence and prediction performance are intertwined, focusing solely on genes that 
converge in PEN would introduce bias. One robust metric is the number of 'true positive genes' 
(i.e, m1= * #genes), estimated using the q-value framework18  and represents genes with 
p-values deviating from a uniform distribution (Supplementary Fig. 4). Our ctPred approach 
consistently identifies a larger number of true positive genes compared to the traditional PEN 
method when validated against observed expression, though the total number of genes 
conclusively associated with observed expression is modest, ranging from 0 to 1236, with a 
median of 275 (Fig. 3d).  
 

Since our primary objective is to elucidate how GWAS variants influence phenotypes 
through the regulation of molecular phenotypes like cell-type–specific gene expression (i.e., 
genetically regulated expression, GReX), we also evaluated the performance of ctPred and 
PEN using GTEx-trained bulk predictors19  as proxies for the genetically regulated component of 
expression (GTEx GReX). We predicted gene expression in 400 European individuals using 
1000G cohort20 genotype data and GTEx-trained weights, which we compared against both 
ctPred and PEN predictions in the same cohort. We calculated correlations, derived p-values, 
and estimated  to assess the proportion of genes for each model genuinely associated with 
GTEx GReX proxies. This analysis primarily identifies associations between components of 
GReX shared across cell types and bulk tissues, suggesting that the ability to predict shared 
regulation may indicate potential in predicting cell-type–specific components, despite data 
limitations for direct testing. We evaluated the correlation of our cell-type expression predictors 
with GTEx GReX across 49 tissues, aggregating results into a single p-value per gene per cell 
type using the ACAT method21. Approximately 19,000 genes were tested using ctPred 
predictors, while PEN predictors were used to test between 318 and 1784 genes, constrained 
by the limited predictors this approach yields. Using the  statistic, we estimated 95.3%–96.1% 
(median = 95.7%) of ctPred-predicted genes and 59.2%–95.5% (median = 77.8%) of 
PEN-predicted genes are truly correlated with GTEx GReX. The disparity between model 
performance is even more stark when considering the number of truly correlated genes: ctPred 
predicts 15,339–16,277 (median = 16,206) truly correlated genes, while PEN only predicts 
277–1,646 (median = 458). 

 
These findings confirm that ctPred more effectively predicts shared regulation than PEN 

and suggests that ctPred may also better predict cell-type–specific regulation. Given ctPred’s 
robust performance, we decided to include all genes predicted by ctPred in our phenotype 
association tests. According to recent analysis22, incorporating genes not associated with GReX 
does not compromise the type I error rate, provided that the appropriate adjustments for multiple 
testing are made.  
 

Furthermore, our comparison of performance across individuals and the number of cells 
per cell type reveals a similar trend to that observed for performance across genes. As shown in 
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Supplementary Fig. 7, the number of true positive genes per cell type increases with the total 
number of available cells. The canonical TWAS, which relies on variation across individuals, is 
more sensitive to a low number of cells compared to ctPred, which gains robustness by 
aggregating cells across individuals. 
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Figure 3. a) Scatter plot of ctPred predicted-gene expression and observed gene expression for 
representative genes missed by PEN in Alpha cell and Memory B cell in the test set. b) 
Histogram of the distribution of Pearson correlation p-values between model-predicted gene 
expression and observed gene expression in Alpha cell from T2D dataset. c) Histogram of the 
distribution of Pearson correlation p-values between model-predicted gene expression and 
observed gene expression in Memory B cell from OneK1K dataset. d) Bar plot of m1 values 
between predicted gene expression and observed gene expression of ctPred/PEN in different 
cell types. e) Bar plot of m1 values between ctPred/PEN-predicted gene expression and bulk 
GReX of in different cell types. 

Linear-ctPred enables large-scale context-specific TWAS 
 

Having developed reliable context-specific prediction models, we are theoretically 
equipped to conduct TWAS using single-cell informed expression levels.  However, the 
computational burden using Enformer and ctPred at the scale required is significant; we 
estimate predicting gene expression for 500 individuals across 20,000 genes would require 
~2,700 GPU-hours.  Additionally, individualized data (e.g., raw GWAS data) is difficult to access 
for most diseases. An efficient alternative is to use readily accessible GWAS summary statistics 
for association studies. S-PrediXcan is the commonly used method for performing TWAS using 
GWAS summary statistics12; however, it requires linear gene expression predictors, meaning 
ctPred is incompatible with the framework. To address this incompatibility, we created an in 
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silico reference dataset using ctPred predictions for several hundred individuals and fitted a 
SNP-based elastic net model to this data.  This resulting model, ℓ-ctPred, takes individual 
genotype data and yields predicted expression levels using linear combinations of SNP dosages 
(Fig 1, step 2).  

 
We linearized ctPred models for 40 cell types from T2D and OneK1K datasets using 

genotype data of 462 European individuals from the 1000G project and stored the weights for 
downstream association analysis. We used European ancestry data to better match the 
ancestry of available GWAS. We validated linearization efficiency by calculating the 10-fold 
cross-validated Spearman correlations between predictions from ctPred and ℓ-ctPred across all 
genes (Supplementary Fig. 5). For all cell types, the median correlation is above 0.83, indicating 
that ℓ-ctPred robustly approximates ctPred (Fig. 4). Thus, we integrated ℓ-ctPred as the gene 
expression predictor in the scPrediXcan framework. 

 
While both the canonical TWAS gene expression predictors and ℓ-ctPred use a 

SNP-based elastic net model, ℓ-ctPred has a significantly higher number of genes converged 
during the model training. For example, for the memory B cell type from OneK1K dataset, the 
canonical SNP-based model trained on observed expression data achieved convergence for 
340 genes with a training sample size of 800 individuals and required both genotype and 
scRNA-seq data. In contrast, ℓ-ctPred achieved convergence for 16,892 genes with a training 
sample size of only 462 individuals using solely genotype data. The stark difference in the 
number of converging genes arises because the canonical TWAS prediction model is based on 
observed data, whereas ℓ-ctPred relies on in-silico ctPred-predicted gene expression data. The 
in-silico data contains only the genetic component of expression, while the observed gene 
expression includes both genetic and environmental components, making ℓ-ctPred less 
vulnerable to the noise and sparsity present in observed scRNA-seq data. Furthermore, ℓ-ctPred 
is not limited by the small sample sizes associated with observed scRNA-seq data, as it can 
predict more individual expression as needed from the given genotype data.  
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Figure 4. Bar plot of Spearman correlations between ctPred predictions and ℓ-ctPred predictions 
across individuals in 40 different cell types from T2D and OneK1K datasets. 

scPrediXcan enables TWAS at the single-cell pseudobulk level for type 2 
diabetes and outperforms canonical TWAS methods 
​ Our context-specific TWAS framework, scPrediXcan, utilizes cell-type–specific ℓ-ctPred 
models as the predictive component within the S-PrediXcan framework to explore gene–disease 
associations at the cell-type level (Fig. 1, step 3). To demonstrate the efficacy of scPrediXcan in 
identifying candidate causal genes, we conducted comparisons involving several benchmarks: 
1) a cell-type–specific canonical TWAS method (TWAS-pseudobulk) that uses the same 
scRNA-seq pseudobulk data as scPrediXcan (i.e., PEN predictors); 2) a tissue-level canonical 
TWAS method (TWAS-bulk) that relies on bulk RNA-seq data; and 3) other gene prioritization 
methods for T2D (Methods).  
 

scPrediXcan identifies a larger number of candidate T2D-associated genes across more 
GWAS loci compared to both TWAS-pseudobulk and TWAS-bulk. Specifically, using 
scPrediXcan, we identified 222 candidate causal genes across 108 different linkage 
disequilibrium (LD) blocks from a total of 1703 pre-defined approximately independent LD 
blocks23. In contrast, we identified only 12 candidate genes across 11 LD blocks with 
TWAS-pseudobulk, and 111 genes across 64 LD blocks with TWAS-bulk. Representative results 
for all three frameworks are shown for beta cells (scPrediXcan and TWAS-pseudobulk) and 
pancreas (TWAS-bulk) in Figure 5a. The full set of association statistics are in Supplementary 
tables 4–14. 
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Further, we evaluated the statistical significance of these findings by comparing the 

TWAS p-values of scPrediXcan against those from TWAS-pseudobulk and TWAS-bulk through 
a quantile–quantile plot (QQ-plot, Fig. 5b). Considering that ℓ-ctPred achieves convergence for 
significantly more genes than the SNP-based models used in the other two frameworks, we 
used a uniform distribution of p-values to represent genes absent in the canonical approaches, 
ensuring a comprehensive comparison. The QQ-plot clearly demonstrates that scPrediXcan 
outperforms the canonical TWAS frameworks, consistently showing statistically lower p-values 
for identified TWAS hits.  

 
To evaluate scPrediXcan's efficacy in identifying causal genes for type 2 diabetes (T2D), 

we utilized a curated list of T2D-associated genes from the Common Metabolic Diseases 
Knowledge Portal (CMDKP) database24, which we call T2D 'silver-standard' genes 
(Supplementary table 45). We compared the scPrediXcan p-values for these genes against 
those of the remaining genes predicted by ℓ-ctPred. A QQ-plot against a uniform p-value 
distribution (Fig 5c) demonstrates that the silver-standard genes have significantly lower 
p-values, affirming that scPrediXcan accurately identifies genes truly associated with T2D. We 
also compared these results with those from canonical TWAS frameworks; we show 
representative results for beta cells (Fig 5d). Among 98 silver-standard genes, scPrediXcan has 
24 Bonferroni-corrected significant genes (p < 2.7 x 10-6), whereas TWAS-pseudobulk and 
TWAS-bulk identify only 4 (p < 2.8 x 10-6) and 13 (p < 8.5 x 10-6) significant genes, respectively. 
Notably, both scPrediXcan and TWAS-pseudobulk recognize IGF2BP2; scPrediXcan and 
TWAS-bulk concurrently identify five silver-standard genes, underscoring scPrediXcan’s higher 
sensitivity in detecting T2D-related genes. 

 
To investigate the cell-type specificity of the association with T2D risk, we analyzed the 

scPrediXcan results for all 11 islet cell types in the T2D dataset (Fig. 5e). We observed that 
while most TWAS hits were common across different cell types—48 (9.3%) genes are shared by 
all and 392 (76.1%) appeared in at least two cell types—123 (23.9%) genes are unique to one 
cell type.  

 
To further examine the cell-type specificity of the 121 genes identified in only one cell 

type, we aggregated p-values across all remaining cell types using the ACAT method. After 
aggregation, two genes reached Bonferroni significance. While 118 genes were nominally 
significant (p < 0.05) in other cell types—these are referred to as cell-type–enriched genes. The 
remaining three genes (CYB561, PISD, and RREB1), referred to as cell-type–specific genes, 
did not reach nominal significance in any other cell type (Supplementary Fig. 3a). This suggests 
that associations involving cell-type–enriched genes may not be strictly cell-type–specific, but 
rather enriched in the focal cell type. 

 
Our cell-type–enriched results also highlight several genes previously proposed as 

candidate drivers of T2D that were missed by TWAS-bulk analyses conducted on pancreas 
tissue, illustrating the advantages of performing TWAS at the cell-type level. 
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For example, the gene CASR, which mediates white adipose tissue dysfunction to 
promote the development of obesity-induced T2D25 reached significance only in gamma cells (p 
=  2.3 x 10-6); MSRA, which can cause oxidative stress when down-regulated leading to 
obesity-induced T2D26, is identified only in activated stellate cells (p = 1.6 x 10-7); and LPL, 
associated with a lower risk of T2D when up-regulated27, is found exclusively in quiescent 
stellate cells (p = 7.6 x 10-8). These findings highlight the potential of scPrediXcan to uncover 
nuanced, cell-type–enriched pathways involved in disease processes. The scPrediXcan T2D 
results for all cell types are provided in Supplementary Tables 4-14. 

 
Finally, we benchmarked scPrediXcan, TWAS-pseudobulk, and TWAS-bulk against five 

other gene prioritization methods—Effector Index28, Polygenic Priority Score29, 3D chromatin30, 
CRISPR-screen31, and COLOC32,33—using the T2D 'silver-standard' genes to evaluate each 
method's precision and recall (Methods). Among the eight gene prioritization methods, 
scPrediXcan demonstrates the second-highest recall at 0.439, surpassed only by the Effector 
Index method's 0.561. Although scPrediXcan ranks 4th in precision (0.109), it is noteworthy that 
precision scores are generally low across all computational methods (0.046–0.175), except for 
the CRISPR-screen method (0.40). This pattern suggests that PrediXcan’s limited precision may 
stem from the silver-standard gene list not fully capturing the complex genetic landscape of 
T2D.  The high recall rate of scPrediXcan highlights its robust ability to identify relevant genes, 
demonstrating its effectiveness despite the precision limitations of computational gene 
prioritization methods. 
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Figure 5. a) Manhattan plots of T2D TWAS results for different frameworks. Top: scPrediXcan in 
beta cell from T2D dataset. Middle: TWAS-pseudobulk in beta cell from T2D dataset, Bottom: 
TWAS-bulk in pancreas tissue from GTEx dataset. The red dashed lines are 
Bonferroni-corrected thresholds (p<0.05/number of genes in the association study). b) QQ-plot 
of TWAS p-values in T2D between frameworks. c) QQ-plot of TWAS p-values in T2D of 
scPrediXcan against the null distribution (i.e., uniform distribution). Blue: silver standard genes, 
Orange: other genes. Dashed lines: Bonferroni-corrected thresholds. d) Bar plot of TWAS 
-log10(p) of T2D silver standard genes in different frameworks. Top: scPrediXcan in beta cell 
from T2D dataset. Middle: TWAS-pseudobulk in beta cell from T2D dataset. Bottom: TWAS-bulk 
in pancreas tissue from GTEx dataset. e) UpSet plot of scPrediXcan-nominated candidate 
causal genes for T2D in different cell types. f) Scatter plot of precision and recall of different 
gene-prioritization methods for T2D causal gene nomination.  

 
 

scPrediXcan in systemic lupus erythematosus outperforms canonical 
TWAS methods by identifying promising candidate causal genes in more 
genomic loci 
​ Next, we performed TWAS for systemic lupus erythematosus (SLE) using scPrediXcan 
and benchmarked its performance against the two canonical TWAS methods (pseudobulk and 
bulk, see Methods). scPrediXcan identifies a greater number of candidate causal genes and 
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explains more GWAS loci for SLE than both the TWAS-pseudobulk and TWAS-bulk frameworks. 
Representative results for transitional B cells (scPrediXcan and TWAS-pseudobulk) and whole 
blood (TWAS-bulk) are shown in Figure 6a.  
 

To evaluate the effectiveness of our approach, we conducted a two-step comparison of 
the TWAS p-values. First, for genes predicted by all three models, we directly compared the 
p-values (Supplementary Fig. 6b). For a more fair comparison, we imputed genes that were not 
predicted by the canonical frameworks with uniformly distributed p-values. This comparison 
shows that scPrediXcan significantly outperforms the other methods (Fig. 5b).  

 
Specifically, scPrediXcan identifies 129 candidate causal genes from 24 different LD 

blocks out of 1703 pre-defined LD blocks23, whereas TWAS-pseudobulk only identifies 11 
candidate causal genes from 8 different LD blocks, and TWAS-bulk identifies 54 candidate 
causal genes from 14 different LD blocks. As expected, we noticed that both scPrediXcan and 
TWAS-bulk nominate many candidates at the HLA region on chromosome 6.  scPrediXcan also 
pinpoints significant genes on other chromosomes that the other frameworks miss. For example, 
only scPrediXcan identifies two genes on chromosome 16 that have been implicated in SLE 
pathogenesis: PYCARD (also named ASC) in CD4+ alpha-beta T cell (p=7.8 x 10-48) and 
ITGAM in CD14+ monocytes (p=4.3 x 10-41)34,35. 

 
To investigate the cell-type specificity of the association with SLE risk, we analyzed the 

scPrediXcan results of 12 immune cell types. To simplify interpretation, we aggregated the 
results of the various subtypes of T cells using the ACAT method. Similar to our findings for 
T2D, we found that while most TWAS hits are shared by different cell types, a few are 
cell-type–enriched, which we defined above as Bonferroni significant in one cell-type and 
nominally significant in others (Fig. 6c). Among 243 TWAS hits from the 12 immune cell types, 
27 (11.1%) genes are shared in all cell types, 205 (84.3%) genes are shared in at least two cell 
types, and 38 (15.6%) genes yield significance in a single cell type. The full set of scPrediXcan 
SLE results are in Supplementary Tables 15–43. 

 
To further investigate the cell-type specificity of the 38 genes identified in only one cell 

type, we aggregated p-values across all remaining cell types using the ACAT method. Our 
analysis revealed that 18 of these genes were cell-type–enriched, i.e., nominally significant (p < 
0.05) in non-focal cell types. The remaining 20 genes were cell-type–specific, as the association 
did not reach nominal significance (p > 0.05) even after aggregation across all non-focal cell 
types (Supplementary Fig. 3b). 

 
We identified several potential driver genes for SLE among the cell-type–specific and 

cell-type–enriched associations that were overlooked in the bulk TWAS analysis. One notable 
example is the complement factor B gene (CFB) identified by scPrediXcan as a 
cell-type–specific gene associated with SLE risk36,37 in T cells (p=2.8 x 10-8). Deficiencies in the 
classical complement pathway significantly contribute to SLE predisposition, as its disruption 
impairs the clearance of apoptotic cells and initiates an autoimmune response through the 
recognition of cellular debris by autoantibodies. This leads to a loss of tolerance by 
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antigen-presenting cells and subsequent activation of T cells37,38. Importantly, CFB is part of the 
alternate complement pathway. Genes in these pathways are crucial for cellular clearance and 
immunity, and their upregulation has been reported in other autoimmune diseases like lupus 
nephritis39 suggesting potential therapeutic utility. Another example is CXCR5, identified in 
plasmablast cells (p = 1.4 x 10-6), has been found to be differentially expressed in SLE patients 
compared to healthy controls40. Notably, CXCR5 was reported to be critically involved in the 
progression of lupus41. These examples showcase the ability of scPrediXcan to connect GWAS 
loci with genes known to have roles in SLE and other diseases, but that had been missed by 
canonical TWAS and other expression-based integrative approaches. 
 

 

Figure 6. a) Manhattan plots for different SLE TWAS frameworks. Top: scPrediXcan in 
transitional B cell from OneK1K dataset. Middle: TWAS-pseudobulk in transitional B cell from 
OneK1K dataset. Bottom: TWAS-bulk in whole blood from GTEx dataset. The red dashed lines 
are Bonferroni-corrected thresholds (p < 0.05/number of genes in the association study). b) 
QQ-plots of SLE TWAS p-values between frameworks. c) UpSet plot of scPrediXcan nominated 
candidate causal genes for SLE in different cell types.  

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 4, 2025. ; https://doi.org/10.1101/2024.11.11.623049doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?49Fdnz
https://www.zotero.org/google-docs/?Cg48Lu
https://www.zotero.org/google-docs/?PUzckB
https://www.zotero.org/google-docs/?yXJKbD
https://doi.org/10.1101/2024.11.11.623049
http://creativecommons.org/licenses/by/4.0/


 

Discussion 
In this study, we presented scPrediXcan, a framework designed to perform 

transcriptome-wide association studies (TWAS) at the cell-type level. By leveraging transfer 
learning from a pre-trained deep-learning model and integrating single-cell expression data, we 
trained cell-type–specific gene expression predictors. We applied scPrediXcan to both T2D and 
SLE, benchmarking our results against canonical TWAS frameworks under various training 
conditions. Our findings indicate that scPrediXcan not only identifies a larger number of 
candidate causal genes and explains more GWAS loci, but also exhibits higher power in 
identifying candidate causal genes, especially when tested against a curated set of 
silver-standard T2D genes and genes with prior evidence of involvement in SLE. Moreover, 
scPrediXcan demonstrated enhanced sensitivity in nominating candidate causal T2D genes 
compared to other gene prioritization methods, such as COLOC, PoPS, and Effector index, 
among others.  

 
Three key factors contribute to the enhanced performance of scPrediXcan: First, 

scPrediXcan utilizes a cross-genome deep learning model for gene expression prediction using 
reads aggregated across individuals, effectively reducing the impact of data sparsity and 
leveraging insights from a pre-trained sequence-to-epigenomics model. This strategy enables 
the prediction of a broader array of genes with high accuracy. Second, unlike the canonical 
TWAS framework, which typically operates at the tissue level, scPrediXcan focuses on the 
cell-type level. This granularity provides a more resolved context for identifying putative causal 
genes and captures those that might be overlooked at the tissue level. Third, scPrediXcan's 
lower sample size requirement allows for the utilization of patient data that are often more 
disease-relevant, but less available, than data from healthy controls. This aspect of scPrediXcan 
is particularly advantageous as it can reveal candidate disease drivers that may remain hidden 
in non-disease contexts.  

 
While scPrediXcan presents a robust framework for conducting TWAS at the cell-type 

level, there are certain limitations to consider. Some predictions correlate negatively with 
observed expression levels, a common challenge in deep learning models like ctPred that 
predict molecular phenotypes from reference genomes. Hence, our current analysis focuses on 
the p-values of correlations and associations and does not consider the direction of correlation.  
However, we are still limited in our ability to discern whether disease risk is associated with an 
up- or down-regulation of a nominated gene, a crucial piece of information for drug target 
selection and development. We are actively working to refine this aspect, with improvements 
anticipated as enhanced pre-trained models become available. Moreover, like all TWAS 
frameworks, scPrediXcan primarily focuses on cis-regulatory mechanisms and does not account 
for trans-effects or other regulatory mechanisms, and it is susceptible to linkage 
disequilibrium-induced errors. 

 
In summary, scPrediXcan leverages single-cell RNAseq data and GWAS summary 

statistics to perform TWAS at the cell-type level, offering significant potential to identify putative 
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causal genes in disease-relevant cell types. This capability advances our understanding of 
disease etiology and supports future experimental and clinical research.  

 
To facilitate broad adoption, we make scPrediXcan and its integrated SNP-based linear 

predictors for 46 cell types publicly available at predictdb.org, providing a user-friendly tool for 
nominating context-specific causal genes. This resource can be used by end-users without 
expertise or infrastructure to perform deep learning analysis. 

 
 
 

Methods 

Data 

Single-cell transcriptomics data and genotype data 
​ The raw cell by gene matrices of OneK1K single-cell transcriptomics data12 and 
genotype data were shared by Dr. Joseph Powell. The data was pre-processed by Dr. Powell’s 
team described briefly as follows. The cell-droplets identified as doublets by both Demuxlet42 
and Scrublet43 were removed. For each pool of cells captured, the distributions of total number 
of UMIs, number of genes, and percentage of mitochondrial gene expression were normalized 
using an Ordered Quantile Transformation. Then a generalized linear model with SCTransform44 
method was used to account for batch effects and to get the gene UMI count matrix. Cells were 
classified into the major immune populations in a supervised manner using the gene expression 
data by a digital single cell transcriptional profiling panel53 as a reference. After the 
pre-processing steps done by Dr. Powell’s team, for further quality control, we selected cells 
with ‘nCount_RNA' less than 10000 to avoid potential doublets and multilets, and the 
percentage of mitochondria RNA less than 10%. Then, we used the filtered data with its original 
cell type annotations reference for the downstream analysis.  

The T2D single-cell transcriptomics data and genotype data were shared by Dr. Rohit 
Kulkarni. The data was pre-processed by Dr. Rohit Kulkarni’s team: the UMI count matrix was 
filtered by quality control requirements for cells to express at least 200 gene features and each 
gene feature to be present in at least three cells. Then doublets and triplets were removed using 
DoubletDecon45. Cells were manually annotated using a list of canonical markers from previous 
human islet single-cell RNA-seq studies. After the pre-processing steps done by Dr. Rohit 
Kulkarni’s team, the processed data with its cell type annotations was used for the downstream 
analysis. 

The Tabula Sapiens single-cell transcriptomics data was downloaded online14. The data 
was pre-processed by the Tabula Sapiens Consortium. Briefly, cells that did not have at least 
200 detected genes were removed, and then cells with fewer than 5000 counts and for droplet 
cells with fewer than 2500 UMIs were removed. DecontX46 was used to filter out reads from 
ambient RNA. The dataset was re-filtered by excluding the mitochondrial encoded genes when 
removing cells that did not contain the minimum number of genes and/or minimum of 
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counts/UMIs to get the gene-count matrix. Cells were classified into different cell types using 
annotation methods include random forest (RF)47, support vector machine (SVM)47, scANVI48 , 
onClass49, and k nearest neighbours (kNN) after batch-correction using single-cell 
harmonization methods (scVI50, BBKNN51, Scanorama52). After the preprocessing steps done by 
Tabula Sapiens team, we used the filtered gene-count matrix with cell annotations for the 
downstream analysis. 

 

GWAS summary statistics 
We used the multi-ancestry GWAS meta-analysis summary statistics30 from the 

DIAGRAM (DIAbetes Genetics Replication And Meta-analysis) consortium. We lifted over SNP 
coordinates to hg38 coordinates using UCSCs liftover tool to map variants between genome 
builds. 

We downloaded the GWAS summary statistics of systemic lupus erythematosus35 from 
the GWAS Catalog. 
 

Computational methods 

scPrediXcan framework 

ctPred model training and prediction 

Training data preprocessing 

We used Enformer to predict the epigenomic features surrounding the TSS of each 
gene. We fed Enformer with a sequence length of 196,608 base pairs (bp) centered at the 
transcription-start-site (TSS) and generated an 896 by 5313 matrix representing the central 
114,688 bp window. Within this matrix, each of the 896 bins contained one epigenomic feature 
for a 128-bp segment, encompassing a total of 5313 distinct features.  

 
To reduce the computational burden for the training of ctPred, we averaged the central 

four bins (447-450th) as the local regions of gene TSS into a linear 1 by 5315 vector as the final 
epigenomic representation of the gene. We determined this method maintained the best 
prediction performance through empirical testing, The epigenomic representations of genes 
were used as the inputs for the ctPred model. 

 
For each cell-type–specific gene-by-individual count matrix at pseudobulk level, we 

averaged the read counts of each gene across individuals, ranked the averaged counts for each 
gene across all individuals, and converted the ranks into percentiles ranging from 0 to 1. These 
percentile values were used as the target outputs for the ctPred model (Supplementary Fig. 8). 

 
The minimum number of cells per cell type used for ctPred training was 125, with a 

corresponding minimum total read count of 561,372 reads per cell type. Although increasing the 
number of cells and total read counts generally improves ctPred prediction performance 
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(Supplementary Fig. 7), the chosen thresholds for cell numbers and read counts were sufficient 
to maintain reasonable prediction accuracy. 
 

Fully-connected neural network training 

The model ctPred is a four-layer multi-layer perceptron (MLP) that predicts 
cell-type–specific gene expression levels given their epigenomic representations. The input is 
the reference epigenomic representation of a gene and the output is the rank-based gene 
expression percentile value for a specific cell type. Distinct models were trained for each cell 
type. The whole ctPred model consists of a linear layer that maps the 5313 dimensional 
epigenomic representation to a hidden layer of 64 dimensions, followed by ReLU, dropout, and 
other three identical hidden layers to map to the final predictions. We split the protein-coding 
genes into training (14429), validation (2812), and test (2426) sets by different chromosomes to 
avoid data leakage (Fig. 2a). The MSE (mean squared error) loss was used as the loss function 
of the model. To avoid overfitting, we used dropout layers (dropout rate = 0.05) and applied 
weight decay (L2 regularization parameter = 5 x 10-4). The model was saturated after 50–80 
epochs. Finally, for model evaluation, the Pearson correlation between the observations and the 
predictions across genes in the test set was calculated. 

Personalized gene expression prediction using ctPred 

The personalized gene expression prediction process involves two inference steps: 1) 
Epigenomic Representation Inference: Personal genome sequences centered at each gene’s 
TSS are input into Enformer to generate personalized gene epigenomic representations. 2) 
Gene Expression Prediction: These personalized epigenomic representations are used by 
ctPred to obtain individual predictions of gene expression.  

ctPred model linearization 
​ We generated an in-silico cell-type–specific gene expression reference dataset by 
predicting gene expressions for 462 European individuals from the 1000 Genomes Project. 
Specifically, the DNA sequences centered at each gene's transcription start site (TSS) for 
different individuals were input into Enformer to obtain personalized gene representations. 
These representations were then processed by ctPred to predict individual gene expressions, 
forming the in-silico reference dataset. Subsequently, we linearized ctPred into ℓ-ctPred by fitting 
the genotype data and in-silico gene expressions with an SNP-based elastic net model, 
following the standard PrediXcan pipeline1. For validation, we calculated the 10-fold 
cross-validated Spearman correlations between ctPred predictions and ℓ-ctPred predictions for 
all genes (Fig. 4). 

Performing association test by S-PrediXcan 
​  

We used the GWAS summary statistics of T2D and SLE, as well as the ℓ-ctPred model 
for TWAS. We calculated the z-score introduced by the Summary-PrediXcan method12 to 
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evaluate the associations between genes and the trait. The z-score of gene–trait association is 
calculated:  

   
Where  is the effect of  on the ,  is the estimated variance of , and  is 

the estimated variance of gene expressions of ,  is the estimated effect size of  

on the trait and  is the standard error of the effect size of . The  is from the ℓ-ctPred 
model and the other statistics are calculated from GWAS summary statistics. Moreover, for the 
same gene–trait pair, a two-tailed p-value can be calculated from the z-score. All the 
scPrediXcan results for T2D and SLE in different cell types are attached in the supplementary 
tables.  
 

Canonical TWAS framework 
​ The canonical TWAS frameworks serve as the benchmark against which we evaluate 
scPrediXcan's performance. 

TWAS-pseudobulk 

Pseudobulk elastic net (PEN) training and prediction 

The observed gene expression data at the pseudobulk level (i.e., a gene-by-individual 
count matrix for each cell type) was pre-processed using the same method as for ctPred. We 
averaged the counts for each gene across individuals, ranked the genes based on their 
average, and converted these ranks into percentiles ranging from 0 to 1. For each gene in a 
given cell type, we trained an SNP-based elastic net model by fitting the rank-based gene 
expression and the SNP-dosages at the cis-regions, following the standard PrediXcan pipeline. 

To compare the PEN model against ctPred for personalized prediction in the T2D 
dataset, we divided the 29 individuals into a training set of 20 and a test set of 9. For 
downstream TWAS analysis, we used all 29 individuals for model training. In the OneK1K 
dataset, for model comparison against ctPred for personalized prediction, we randomly selected 
800 individuals as the training set and 100 individuals as the test set. For downstream TWAS 
analysis, we used all individuals for model training. 

Performing association test by S-PrediXcan 
​ We followed the same workflow as the scPrediXcan association test using the 
S-PrediXcan method introduced earlier. 
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TWAS-bulk 

SNP-based elastic net 
For T2D, we directly downloaded the SNP-based elastic net models trained by GTEx 

pancreas bulk gene expression and genotype data (n = 305). For SLE, we directly downloaded 
the SNP-based elastic net models trained by GTEx whole blood bulk gene expression and 
genotype data (n = 670).  

Performing association test by S-PrediXcan 
​ We followed the same workflow as the scPrediXcan association test using the 
S-PrediXcan method introduced earlier. 

T2D-associated gene prioritization methods comparison 
For scPrediXcan and TWAS-pseudobulk frameworks, we applied ACAT p-value 

combination method21 to integrate the TWAS results of all the 11 cell types from islet in T2D 
dataset and used Bonferroni-corrected p values (p < 2.5 x 10-6 for scPrediXcan, p < 1.4 x 10-5 
for TWAS-pseudobulk) as the threshold to obtain the final prioritized gene lists. For TWAS-bulk, 
we directly used Bonferroni-corrected p-values (p < 8.5 x 10-6) as the threshold to obtain the 
final prioritized gene list from GTEx pancreas tissue. For other methods, the prioritized gene 
lists were downloaded from the CMDKP database. The silver-standard T2D-associated gene list 
was used to calculate the precision and recall of all the methods. The precision was defined as 
the number of nominated silver-standard genes divided by the total number of nominated 
genes, and the recall was defined as the number of nominated silver-standard genes divided by 
the total number of silver-standard genes. 
 
 

Code availability 
The code for scPrediXcan is available at https://github.com/hakyimlab/scPrediXcan. Prediction 
models are available at https://predictdb.org.  
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Supplementary information 

Supplementary Figures 

 
Supplementary fig. 1 Scatter plot of ctPred predictions and observations for gene expressions 
in CD4+ T cell dataset. 
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Supplementary fig. 3 a) Quantile-quantile plot of ACAT-aggregated TWAS -log10 (p-value) in 
all non-significant cell types for genes passing the Bonferroni-corrected threshold in only one 
islet cell type from T2D dataset for T2D trait. b) Quantile-quantile plot of ACAT-aggregated 
TWAS -log10 (p-value) in all non-significant cell types for genes passing the 
Bonferroni-corrected threshold in only one immune cell type from OneK1K dataset for SLE trait. 
 
 

 
Supplementary fig. 4 The m1 calculation is based on the histogram of p-values of Pearson 
correlations between predicted gene expressions and observed gene expressions. The blue 
rectangular region shows the genes with p-values following a uniform distribution, and the 
proportion of those genes is denoted as pi0. The pi1 is 1-pi0, and the number of true positive 
genes is calculated by pi1 * total number of genes. 
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Supplementary fig. 5 a) Histogram of Spearman correlations between ctPred-predicted gene 
expressions and l-ctPred-predicted gene expressions in gamma cell as the representing cell 
type from T2D dataset. Other cell types have similar correlation distributions. b) Histogram of 
Spearman correlations between ctPred-predicted gene expressions and l-ctPred-predicted gene 
expressions in natural killer cells as the representing cell type from OneK1K dataset. Other cell 
types have similar correlation distributions. 
 
 
 
 
 

 
Supplementary fig. 6 a) Quantile-quantile plot of T2D TWAS -log10(p) of overlapped genes in 
scPrediXcan in Beta cell and TWAS-bulk in GTEx pancreas. This set of genes will likely favor 
the TWAS-bulk method since only models that performed well enough in this approach end up 
included here. A more fair comparison is shown in Figure 5b where union of genes tested by 
scPrediXCan and TWAS-bulk in GTEx pancreas are shown, imputing the p-values of genes 
missed by TWAS-bulk with uniformly distributed p-values. b) Quantile-quantile plot of SLE 
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TWAS -log10(p) of overlapped genes in scPrediXcan in transitional B cell and TWAS-bulk in 
GTEx blood. 
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Supplementary fig. 7 a)-d) Prediction performance vs number of cells and read counts in 
OneK1K dataset. Scatter plot of ctPred prediction metrics (Pearson r for prediction across 
genes or m1 value for prediction across individuals) and cell numbers or total scRNAseq read 
counts in different cell types from OneK1K dataset. See supplementary table tab. 44. e)-h) 
Prediction performance vs number of cells and read counts in T2D dataset. Scatter plot of 
ctPred prediction metrics (Pearson r for prediction across genes or m1 value for prediction 
across individuals) and cell numbers or total scRNAseq read counts in different cell types from 
T2D dataset. See supplementary table tab. 44. i)-j) Prediction performance vs number of 
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cells and read counts in Tabula Sapiens dataset. Scatter plot of ctPred prediction metrics 
(Pearson r for prediction across genes for prediction across individuals) and cell numbers or 
total scRNAseq read counts in different cell types from Tabula Sapiens dataset. See 
supplementary table tab. 44. 
 

 
Supplementary fig. 8 The scRNA-seq processing into the target for ctPred model training. 
 

Supplementary tables 
Supplementary tables 1: General information (tables 1-3, tables 44-45). Table 1: cell types in 
T2D, OneK1K and Tabula Sapiens datasets. Table 2: number of genes trained and converged of 
PEN in the canonical TWAS framework. Table 3: ctPred prediction performance across genes in 
different cell types of three datasets. Table 44: ctPred prediction performance against the 
number of cells or total read counts per cell type for training in different cell types from T2D, 
OneK1K and Tabula Sapiens datasets. Table 45: Gene names of T2D silver-standard genes. 
 
Supplementary tables 2: T2D TWAS results (tables 4-14). Table 4-14: T2D TWAS association 
z-score, effect sizes and p-values of tested genes in different cell types from T2D dataset.   
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Supplementary tables 3: SLE TWAS results (tables 15-43). Table 15-43: SLE TWAS association 
z-score, effect sizes and p-values of tested genes in different cell types from OneK1K dataset. 
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