
ORIGINAL RESEARCH
published: 04 June 2020

doi: 10.3389/fneur.2020.00422

Frontiers in Neurology | www.frontiersin.org 1 June 2020 | Volume 11 | Article 422

Edited by:

Moussa Antoine Chalah,

Hôpitaux Universitaires Henri

Mondor, France

Reviewed by:

Mathieu Gruet,

Université de Toulon, France

Michele Dileone,

Hospital Virgen del Puerto, Spain

*Correspondence:

Michelle Ploughman

michelle.ploughman@med.mun.ca

Specialty section:

This article was submitted to

Multiple Sclerosis and

Neuroimmunology,

a section of the journal

Frontiers in Neurology

Received: 19 February 2020

Accepted: 22 April 2020

Published: 04 June 2020

Citation:

Chaves AR, Devasahayam AJ,

Riemenschneider M, Pretty RW and

Ploughman M (2020) Walking Training

Enhances Corticospinal Excitability in

Progressive Multiple Sclerosis—A Pilot

Study. Front. Neurol. 11:422.

doi: 10.3389/fneur.2020.00422

Walking Training Enhances
Corticospinal Excitability in
Progressive Multiple Sclerosis—A
Pilot Study
Arthur R. Chaves 1, Augustine J. Devasahayam 1, Morten Riemenschneider 2,

Ryan W. Pretty 1 and Michelle Ploughman 1*

1 Recovery and Performance Laboratory, Faculty of Medicine, L. A. Miller Centre, Memorial University of Newfoundland,

St. John’s, NL, Canada, 2 Section for Sports Science, Department of Public Health, Aarhus University, Aarhus, Denmark

Background: Inflammatory lesions and neurodegeneration lead to motor, cognitive, and

sensory impairments in people with multiple sclerosis (MS). Accumulation of disability

is at least partially due to diminished capacity for neuroplasticity within the central

nervous system. Aerobic exercise is a potentially important intervention to enhance

neuroplasticity since it causes upregulation of neurotrophins and enhances corticospinal

excitability, which can be probed using single-pulse transcranial magnetic stimulation

(TMS). Whether people with progressive MS who have accumulated substantial disability

could benefit from walking rehabilitative training to enhance neuroplasticity is not known.

Objective: We aimed to determine whether 10 weeks of task-specific walking training

would affect corticospinal excitability over time (pre, post, and 3-month follow-up) among

people with progressive MS who required walking aids.

Results: Eight people with progressive MS (seven female; 29–74 years old) with

an Expanded Disability Status Scale of 6–6.5 underwent harness-supported treadmill

walking training in a temperature controlled room at 16◦C (10 weeks; three times/week;

40min at 40–65% heart rate reserve). After training, there was significantly higher

corticospinal excitability in both brain hemispheres, reductions in TMS active motor

thresholds, and increases in motor-evoked potential amplitudes and slope of the

recruitment curve (REC). Decreased intracortical inhibition (shorter cortical silent period)

after training was noted in the hemisphere corresponding to the stronger hand only.

These effects were not sustained at follow-up. There was a significant relationship

between increases in corticospinal excitability (REC, area under the curve) in the

hemisphere corresponding to the stronger hand and lessening of both intensity and

impact of fatigue on activities of daily living (Fatigue Severity Scale and Modified Fatigue

Impact Scale, respectively).

Conclusion: Our pilot results support that vigorous treadmill training can potentially

improve neuroplastic potential andmitigate symptoms of the disease even among people

who have accumulated substantial disability due to MS.

Keywords: transcranial magnetic stimulation, neuroplasticity, rehabilitation, exercise, progressive multiple

sclerosis, corticospinal excitability, fatigue
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INTRODUCTION

Multiple sclerosis (MS) is a chronic neurodegenerative disease
that causes structural (i.e., brain lesions and atrophy) and
functional (i.e., neuronal connectivity and conduction
alterations) central nervous system dysfunction (1). Most
people with MS are initially diagnosed with the relapsing–
remitting form of the disease (RRMS). RRMS is considered to be
the inflammatory phase of MS with unpredictable development
of central nervous system lesions that result in physical,
sensory, and/or cognitive symptoms (i.e., relapses) (2). About
80% of people diagnosed with RRMS will eventually develop
secondary progressive MS (SPMS), which is considered to be
less inflammatory and more neurodegenerative (2, 3). As well,
∼10% of people with MS present with primary progressive MS
(PPMS), in which there is a steady disease progression from
initial diagnosis of MS (2, 3). Several lines of evidence suggest
that accumulation of disability in progressive MS is related to
diminished capacity for neuroplasticity (2–4). Because most
disease-modifying drugs act by reducing neuroinflammation,
these same treatments do not seem to be as effective during
progressive stages (5). Treatments that provide neuroprotection
and enhancement of neuroplasticity to recover function and halt
MS progression are highly warranted (6–10).

Animal and human research has shown that exercise
enhances neuroplasticity by upregulating neurotrophins that
facilitate cerebral gliogenesis, neurogenesis, synaptogenesis, and
angiogenesis [for reviews see (11, 12)]. In some neurological
conditions, such as Alzheimer’s disease (13), stroke (12, 14),
and spinal cord injury (15), exercise has also been shown
to promote neuroplasticity. In MS, studies have shown that
engagement in physical exercise training improves aerobic
capacity (16, 17), physical function (e.g., walking capacity) (18),
and mitigates physical symptoms (e.g., reduce fatigue, muscle
weakness) (17, 19, 20). Recent studies support that a high degree
of task practice (e.g., constraint-induced movement therapy)
can enhance neuroplasticity in people with progressive MS (21),
suggesting that there is continued capacity for plasticity even in
later stages of the disease.

In humans, rehabilitation-induced neuroplasticity is
typically measured using functional brain imaging (22, 23)
and transcranial magnetic stimulation (TMS) (24). TMS
generates a brief magnetic field through an insulated coil placed
on the participant’s scalp that induces neuronal activation
of the primary motor cortex resulting in a motor-evoked
potential (MEP) traveling through the corticospinal tract (24).
Studies using TMS in healthy individuals have shown that
exercise training promotes corticospinal excitability changes
that are related to enhanced neuroplasticity (25–28). Typical
TMS biomarkers that demonstrate exercise training-induced
changes in corticospinal excitability include lower motor
thresholds (29) and higher input-to-output MEP amplitudes
responses (28), which are biomarkers mediated by increased
glutamatergic (excitatory) neurotransmission (30). As well,
in healthy individuals, exercise training has shown to reduce
cortical silent period (CSP) duration (27, 31), an interruption of
the electromyographic activity of a sustained muscle contraction

after TMS-elicited MEP, suggestive of less activity of the
inhibitory neurotransmitter gamma-aminobutyric acid (GABA)
(24, 32).

Excessive GABAergic-mediated intracortical inhibition
and lower corticospinal excitability measured with longer
CSP and higher motor thresholds and lower input-to-output
MEP amplitudes, respectively, are biomarkers of neurological
impairment (e.g., stroke and MS) (10, 33–38) and reduced
neuroplastic potential (39, 40). In MS, demyelination causes
delay of the onset latency of the TMS-elicited MEP (41).
Since MEP latency shortening is associated with recovery of
physical function after stroke (42) and is faster in physically
active individuals (29), in addition to excitatory and inhibitory
TMS variables, MEP latency could also be altered by exercise
(43). Although evidence from cross-sectional studies suggest
a possible link between greater physical fitness and enhanced
neuroplasticity in MS (44), no study has investigated the
long-term effects of exercise training on neuroplasticity-like
mechanisms using TMS, particularly in progressive stages of MS.

The primary aim of the present study was to investigate
whether a rehabilitative walking training program induced
corticospinal excitability changes related to enhanced
neuroplasticity in people with progressive MS with severe
MS-related walking disabilities. Since excessive fatigue is
among the most disabling symptoms in progressive MS (18)
and previous research has demonstrated the link between
corticospinal excitability, fatigue (44–46), and fitness levels
(44, 47), our secondary aim was to investigate whether exercise
training-induced corticospinal excitability changes were
associated with changes in physical fitness (cardiorespiratory
fitness, body fat) (48) and subjective levels of fatigue (49, 50).

MATERIALS AND METHODS

Experimental Design
This study was part of a feasibility and proof-of-principle
interventional study aiming at restoring walking function
among patients with MS-related walking disability (51). The
data on feasibility and restoration of walking have been
reported elsewhere (51). This interventional study (10 weeks,
3×/week exercise training) with TMS assessment pre, post,
and 3-month follow-up was approved by the local health
ethics board prior to initiation (Health Research Ethics Board,
#2019.0225, NCT04066972).

Participants
Ten participants were recruited via referral from neurologists
and physiotherapists in the local MS clinic, as well as from
an outpatient rehabilitation service discharge database. All
participants signed informed consent prior to study inclusion.
Recruitment and screening details have been described elsewhere
(51). Participants were included if they (1) were diagnosed
with progressive MS (SPMS or PPMS), (2) reported no relapses
3 months prior to inclusion, (3) presented with walking
impairments (e.g., use of bilateral or unilateral gait aids),
(4) had disability level ≥6.0 on the Expanded Disease Status
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TABLE 1 | Participants’ demographics, body composition, and fitness.

ID MS Type MS Severity Walking Aid Age Range DD Lean mass (Kg) VO2peak (mL.min−1kg−1
LM) Body Fat %

(EDSS 0–10) (years) (years)
Pre Post 3-mo Pre Post 3-mo Pre Post 3-mo

1 PPMS 6.5 Walker 55–60 10 57.22 58.47 59.88 20.05 21.71 19.48 45.6 46.6 46.5

2 SPMS 6.5 Walker 55–60 33 43.26 44.64 – 22.61 20.75 – 44.8 44.5 –

3 PPMS 6.5 Walker 40–45 19 54.99 57.06 57.63 24.79 34.28 29.74 35.1 35.4 34.6

4 SPMS 6.0 Cane 45–50 28 29.47 31.18 33.56 41.84 36.98 36.50 39.1 39.6 36.9

5 SPMS 6.5 Cane 35–40 19 54.31 56.05 54.52 33.31 37.87 41.17 39.1 40.0 37.8

6 SPMS 6.0 Cane 70–75 18 32.87 32.32 33.12 31.61 37.69 41.28 34.4 37.4 33.1

7 PPMS 6.5 Walker 70–75 10 – – – 27.31# 21.69# 18.09# – – –

8 SPMS 6.0 Cane 25–30 2 41.74 43.56 42.62 48.28 48.66 48.13 44.7 40.8 39.9

DD, disease duration; EDSS, Expanded Disability Status Scale; MS, Multiple Sclerosis; PPMS, primary progressive MS; SPMS, secondary progressive MS; 3-mo, 3-month follow-up.
#Participant 7 declined to undergo Dual Energy X-ray Absorptiometry, and the maximal (peak) volume of oxygen uptake (VO2peak [mL.min

−1Kg−1
LeanMass(LM) ] was calculated by diving this

participant’s VO2peak (mL.min
−1 ) by the LM (kg) of total sample mean. 3-mo, 3-month follow-up.

Scale (EDSS), (5) were capable of participating in physical
exercise [as per Physical Activity Readiness Questionnaire
(PAR-Q) screening form (52)], and (6) were eligible to
undergo TMS (53) and dual energy X-ray absorptiometry
(DEXA) (54) as per screening procedures. Written informed
consent was obtained from participants for the publication
of any potentially identifiable images or data included in
this article.

Two participants dropped out during the intervention (51),
reporting not being able to commit to the proposed frequency
of exercise sessions (3×/week). Eight participants (seven female)
completed the intended exercise training, and pre–post data
were collected. One participant (number 2) could not be
reached during follow-up assessment. Participant demographics
are presented in Table 1.

Exercise Intervention
Participants underwent 10 weeks (3×/week) of vigorous
treadmill walking exercise training in a temperature-controlled
room (16◦C) (51). The treadmill was equipped with a harness
to prevent falls and to support ≤10% of participants’ body
weight. The dosage target of the exercise was 40min (5min
warm-up and cool down) at a moderate-high intensity (40–65%
heart rate reserve), which was adjusted throughout the training
by increasing the speed and incline of the treadmill and/or
reducing body weight support. Manual assistance to advance
legs and resting breaks of ≤2min were provided whenever
necessary (51).

Outcome Measures
All outcomemeasures were assessed before the intervention (n=
8), after the 10-week period intervention (n= 8) and at 3-month
follow-up after the exercise intervention had ended (n= 7).

Cardiorespiratory Fitness
Levels of cardiorespiratory fitness were assessed as the peak rate
of oxygen uptake (VO2peak expressed in ml O2 min) during a
graded maximal exercise test performed on a recumbent stepper
(NuStep, Ann Arbor, MI, USA) as described elsewhere (14, 43,
44, 51, 55). Briefly, participants exercised at a cadence of 80

strides per minute while the equipment resistance level (1–10,
beginning at level 3) was increased by one level every 2min.
If exhaustion was not reached at resistance level 10 (maximal
NuStep resistance), the cadence was increased by 10 strides per
minute every 2min. Heart rate was continuously monitored
during the test (H10, Polar Electro Inc., Kempele, Finland).
The maximal and resting heart rate were used to calculate the
proposed intensities of the exercise sessions [e.g., intensity target
= 60%× (heart rateMax – heart rateRest)+ heart rateRest]. Fitness
levels were calculated as the absolute VO2peak (ml O2 min)

relative to the total lean body mass (kg) (VO2peak =ml O2 min−1

kg−1
leanmass). The latter has been shown to be a more accurate

measure of cardiorespiratory fitness in populations with a high
body fat percentage (56).

Body Composition
Participants’ total body weight (kg), body fat percentage (%), and
lean body mass (kg) were assessed using whole-body dual energy
X-ray absorptiometry (Discovery-A Densitometer, Hologic Inc.,
Bedford, MA, USA). Trained technicians calibrated the system
prior to each assessment, and built-in software was used to
analyze the data (v.12.6.1:3, Hologic Inc., Bedford, MA, USA).

Total Amount of Workload Performed During the

Exercise Sessions
Total amount of workload performed was estimated using
standardized equations (48). First, the VO2 (ml O2 min−1 kg−1)
uptake during the exercise was calculated using the equation VO2

(ml O2 min−1 kg−1) = {resting component (3.5ml O2 min−1

kg−1) + horizontal component [speed (m/min) × 0.1ml O2

kg−1 m–1] + vertical component [1.8ml O2 kg
−1 m–1 × speed

(m min−1) × inclineFractionalGrade]}; adjustments for treadmill
changes in speed and incline throughout the exercise were taken
into consideration. The averaged VO2 (ml O2 min−1 kg−1)
was transformed into metabolic equivalents. The kilocalorie
(kcal)/minute was calculated using the equation kcal/min =

(metabolic equivalents × 3.5 × total body weight in kg)/200.
Finally, the total amount of workload performed was calculated
by multiplying the kcal/minute by the total time in minutes that
the participants exercised. These data were calculated from the
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first and the last exercise session participants performed during
the exercise training and from the exercise session performed
during the follow-up visit.

Levels of Fatigue
The intensity of fatigue perceived by the patients was assessed
by the Fatigue Severity Scale (FSS) (49), whereas the impact of
fatigue on activities of daily living was measured by the Modified
Fatigue Impact Scale (MFIS) (50, 57) [for more details, see (51)].

Transcranial Magnetic Stimulation
Monophasic magnetic pulses were delivered to the right and
left brain hemispheres using a BiStim 2002 stimulator (Magstim
Co., Whitland, UK). With participants seated, a coil (70mm
figure-of-eight coil; Magstim Co. Whitland, UK) was positioned
tangentially to the scalp with the handle pointing backwards
and laterally at an 45◦ angle from the midline perpendicular to
the central sulcus to deliver posterior–anterior directed pulses in
the area of the primary motor cortex (58). Electromyographic
(EMG) activity and MEPs were collected by surface electrodes
(Kendall 200 Coviden, Mansfield, MA, USA) placed on the
contralateral first dorsal interosseous hand muscle. Assessing
corticospinal excitability on a non-exercised muscle (i.e., FDI
rather than leg muscles) was considered important in order
to more accurately investigate widespread effects on central
nervous system mechanisms involved in brain plasticity (59, 60).
A neuronavigation system (Brainsight, Rogue Research Inc.,
Montreal, QC, Canada) was used to ensure consistency of the coil
position (i.e., angle and orientation) on participants’ scalp during
the TMS assessment. The Montreal Neurological Institute brain
template was rendered in the BrainSight software and used as a 3-
D stereotaxic template (61). The same system was used to collect
EMG muscle activity and record MEPs with its built-in EMG
system. The system collects at a sample rate of 3 kHz and uses a
2,500 V/V amplification and a gain of 600 V/V with a bandwidth
of 16–550Hz. Stronger and weaker hands were determined
during baseline assessment (pre) by EMG recorded in the FDI
muscle while participants performed a pinch grip maximal
voluntary contraction (MVC) {mean EMG activity during MVC
[stronger vs. weaker hand (mean ± SD)]: 106.07 ± 79.3 µV
vs. 51.49 ± 45.12 µV; Z = −2.34, p = 0.018}. In order to be
more precise when differentiating between stronger and weaker
sides’ brain-to-muscle connectivity (potentially less and more
affected sides, respectively), EMG signal was prioritized over
force production, since EMG represents the electrical activity
frommotor units firing action potentials generated by the central
nervous system.

Motor thresholds and MEP latency
Suprathreshold TMS stimulations were delivered at different
locations around the hand primary motor area. The location with
the highest average peak-to-peak MEP amplitude was chosen as
the hotspot. The hotspot was reassessed at pre, post, and follow-
up, since it can show variability (62) and changes following
interventions [e.g., exercise (63)]. The relative frequency method
was used to determine resting motor thresholds (RMTs) and
active motor thresholds (AMTs) (24, 64) and were determined
as the minimum TMS intensity (maximal stimulator output

percentage, MSO%) required to elicit peak-to-peak MEP
amplitudes of ≥50 µV at rest (RMT) and ≥200 µV with
participant performing 10% of pinch grip MVC (AMT) in at least
5 out of 10 trials. RMT and AMT are reported as MSO% (0–100).
MEP latencies were determined from the valid MEPs collected
during the RMT experiment and were calculated as the time [in
milliseconds (ms)] between the TMS artifact and the MEP onset;
the timepoint where the MEP amplitude surpassed ±2 standard
deviation from the mean EMG background activity (100ms prior
to the TMS stimulation).

Excitatory and inhibitory recruitment curves
To create recruitment curves, TMS stimulation intensities of
105–155% of AMT (increments of 10%) were employed in
randomized order with participants performing a pinch grip
at 10% of MVC (47). Three to six stimulations (28, 65, 66)
were delivered at each intensity, and the averaged peak-to-peak
MEP amplitude (µV) and CSP time (ms) were recorded. CSP
was defined as the time between the MEP onset to the return
of EMG activity (≥±2 standard deviation from background
EMG activity) (24). MEP amplitudes were normalized to the
largest peak-to-peak amplitude (25) collected during baseline
assessment (i.e., first TMS session; prior to beginning of the
exercise training). A linear relationship between the normalized
MEP amplitudes against the used TMS intensities (105–155% of
AMT) determined the excitatory recruitment gain and accuracy
(slope and R2 of the linear relationship, respectively) of the
corticospinal tract in recruiting neurons (25, 34), both previously
reported potential biomarkers of corticospinal tract integrity
(67). Similarly, the inhibitory recruitment curve slope and R2

was calculated by plotting the CSP time against the TMS
intensities. As an estimate of overall corticospinal excitation
(MEP amplitudes) and inhibition (CSP time), the area under the
curve was calculated using the trapezoid rule1X × (Y1+ Y2)/2,
with X being the TMS intensity used (105–155% of AMT) and
Y being the normalized MEP amplitudes (% of largest baseline
MEP) or the recorded CSP time.

Statistical Analysis
A priori, we planned to use a one-way repeated measures
analysis of variance and Friedman test when testing normal
and non-normally distributed data, respectively. Because tests
of normality (e.g., Shapiro–Wilk) typically require samples
sizes of n ≥ 10 to generate reliable results (68), the more
robust non-parametric alternative (i.e., Friedman test) (69) was
preferred (70) to determine changes in TMS variables [RMT,
AMT, and excitatory and inhibitory recruitment curves (MEP
amplitudes105−155%AMT, CSP time105−155%AMT, slope, R

2, and
area under the curve)], fitness (ml min−1 kg−1

LM, body fat %),
and workload performed (kcal/session), at the different time
points (pre, post, and follow-up). Analysis between time points
(pre vs. post vs. follow-up) is reported as χ2

(degreesoffreedom)
=

test statistic, p-value. When statistically significant (p < 0.05),
Bonferroni-corrected pairwise comparisons were performed to
identify the difference across time points, and the adjusted
p-value for multiple comparisons is reported. All data in the text
are presented as median (Mdn).
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FIGURE 1 | Effects of 10-week treadmill walking exercise training on active and resting motor thresholds. (A,B) Increased corticospinal excitability (CSE) was noted

during active motor threshold (AMT) assessment in both brain hemispheres (i.e., corresponding to the weaker and stronger hands) as lower values of the maximal

stimulator output (MSO%) were needed to elicit motor-evoked potentials (MEPs) in the contralateral first dorsal interosseous muscle (200 µV amplitude MEPs

collected during 10% of pincer grip maximal voluntary contraction). AMT returned to baseline during the 3-month follow-up period assessment (3 mo). (C,D) There

was no difference in MSO% between time points (pre, post, 3-month follow-up) for resting motor threshold (RMT) (i.e., MEPs collected during resting) measured in the

hemisphere corresponding to the weaker hand. Because the absence of MEPs is an outcome that represents too low CSE (i.e., 100% of MSO not eliciting MEPs)

(71), participants in this condition are represented as open circles. Preintervention, too low CSE (i.e., no MEPs) was noted in participant 2’s stronger and weaker

hands during RMT assessment. This participant’s weaker hand demonstrated some recovery of CSE post-intervention as RMT’s MEPs could be elicited at 92% of

MSO. Lowered CSE (no MEPs) at 3-month follow-up was noted in participant 8’s weaker hand as AMT and RMT could not be recorded.

Relationships between changes in cardiorespiratory fitness
(ml min−1 kg−1

leanmass), lean mass (kg), body fat (%), levels
of fatigue (FSS, MFIS), workload performed (kcal/session), and
TMS changes were investigated with Spearman’s coefficient (rho)
at the unadjusted significance level of p < 0.05. Change scores
were calculated as % changes= post – pre/pre.

Differences between TMS values of the stronger and weaker
hand were investigated separately for each time point (pre, post,
follow-up) with Wilcoxon non-parametric paired t-tests.

RESULTS

Exercise Training Increased Corticospinal
Excitability in Both Hemispheres
Friedman’s test showed a significant difference for AMT between
time points (pre, post, follow-up) in both stronger and weaker

hands [χ2
(2) ≥ 8.27, p≤ 0.016]. Pairwise analysis revealed higher

corticospinal excitability (i.e., lower AMT) in participants post-
compared to pre-intervention in both stronger [MSO%; Mdn
(pre vs. post) = 33 vs. 27, p = 0.033] and weaker hands [MSO%;
Mdn (pre vs. post) = 41 vs. 37, p = 0.013), which returned
to baseline at follow-up (Figures 1A,B). Higher variability was
found for RMT; no change, increases, and decreases of RMT
were noted across participants in both hemispheres (stronger
and weaker hands), and no statistically significant changes were
observed in either hemisphere (Figures 1C,D).

Corticospinal gain (excitatory recruitment curve slope) was
statistically different between time points in both stronger and
weaker hands [χ2

(2) ≥ 8.40, p≤ 0.015]. Pairwise analysis revealed
increased capacity to recruit excitatory neurons with increased
TMS stimulation intensities (i.e., higher slope) post- compared
to pre-intervention [Mdn = (pre vs. post) = stronger: 1.33 vs.
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FIGURE 2 | Effects of 10-week treadmill walking exercise training on corticospinal gain. After 10 weeks of exercise training, availability to recruit corticospinal tract

neurons with increased transcranial magnetic stimulation intensities was increased (i.e., higher slope) in both brain hemispheres corresponding to the stronger and

weaker hands and returned to baseline at 3-month follow-up (3-mo), although, two participants (numbers 6 and 8) continued to increase corticospinal gain in the

hemisphere corresponding to the weaker hand during follow-up. The recruitment curve as collected using transcranial magnetic stimulation intensities of 105–155% of

the active motor threshold (AMT) (increments of 10%) and the slope was determined from a linear regression between the normalized MEP amplitudes [% of the

largest baseline motor-evoked potential (MEP)] against the TMS intensities performed (105–155% of AMT).

2.20, p= 0.013; weaker: 0.67 vs. 2.08, p= 0.028], which returned
to baseline at follow-up (Figure 2). Recruitment curve accuracy
(R2) did not change in neither stronger or weaker hand [χ2

(2) ≤

4.00), p ≥ 0.135].
For MEP amplitudes, statistical significance between time

points were noted at the intensities of 135% [χ2
(2) = 7.00, p

= 0.030] and 145% [χ2
(2) = 9.33, p = 0.009] of AMT in the

weaker hand and at 145% of AMT in the stronger hand [χ2
(2) =

6.00, p= 0.050]. In all cases, pairwise analysis revealed increased
corticospinal excitability (higher normalized MEP amplitudes)
post- compared to pre-intervention with return to baseline at
follow-up [% of largest baseline MEP; Mdn (pre vs. post): weaker
hand: 135% of AMT: 85.49 vs. 111.39, p = 0.028; 145% of AMT:
85.78 vs. 151.66, p = 0.012; stronger hand: 145% of AMT: 88.73
vs. 127.05, p= 0.048; Figure 3].

Exercise Training Reduced Intracortical
Inhibition in the Hemisphere
Corresponding to the Stronger Hand
In the stronger hand, differences between time points were noted
for CSP investigated in all TMS intensities [105–155% of AMT;
χ2

(2) ≥ 6.00, p < 0.050]. Pairwise analysis revealed reductions
in CSP time post- compared to pre-intervention across all
intensities used (p ≤ 0.048), which returned to baseline level at
follow-up (Figure 4A). In the hemisphere corresponding to the
weaker hand, there was a statistically significant difference for
CSP time at the different time points at lower TMS intensities
{105–125% of AMT [χ2

(2) = 6.33, p = 0.042]}; however,

statistical significance was not reached during pairwise analysis
(p ≥ 0.063; Figure 4B).

Changes in Body Composition, Fitness,
and Exercise Performance
Lean body mass of the participants increased from pre- to post-
intervention and from post-intervention to follow-up; however,
only the change from pre to follow-up was statistically significant
[χ2

(2) = 7.00, p= 0.030; Mdn, lean mass (kg) (pre vs. follow-up):
41.74 vs. 48.57, p = 0.028] (Figure 5A). Body fat also decreased
during follow-up, and a statistical significance was noted from
post to follow-up [χ2

(2) = 8.33, p= 0.016; Mdn, body fat % (post
vs. follow-up): 40.00 vs. 37.35, p= 0.012; Figure 5B].

Although four out of eight participants improved their
cardiorespiratory fitness (ml min−1 kg−1

leanmass), no overall
statistical change was reached (p ≥ 0.368; Figure 5D). However,
an increased capacity to perform exercise were noted as
participants were able to perform a higher exercise workload
(kcal/session) in the last compared to the first exercise session
[χ2

(2) = 7.14, p = 0.028; Mdn, kcal/session (pre vs. post) =

121.39 vs. 70.24, p = 0.023], and this capacity was maintained
during follow-up (Figure 5C).

Overall Corticospinal Excitation Increased
Post-intervention in the Stronger Hand and
Was Associated With Reductions in
Fatigue
In the stronger hand, overall corticospinal excitation [area under
the curve (AUC), normalized MEP amplitudes] differed between
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FIGURE 3 | Effects of 10-week treadmill walking exercise training on motor-evoked potential (MEP) amplitudes. (A) Higher normalized MEP amplitudes (% of largest

baseline MEP) demonstrate higher corticospinal excitability after the exercise training (ET) with return to baseline at 3-month follow-up (3-mo) in the hemisphere

corresponding to the stronger hand at a transcranial magnetic stimulation (TMS) intensity of 145% of the active motor threshold (AMT) and (B) in the hemisphere

corresponding to the weaker hand at the TMS intensities of 135 and 145% of the AMT.

time points [χ2
(2) = 11.14, p= 0.004]. Pairwise analysis revealed

increased overall corticospinal excitation (higher AUC) post-
compared to pre-intervention [Mdn, AUC105−155%ofAMT (pre vs.
post)= 3,237 vs. 3,947, p≤ 0.016) with returned to baseline level
at follow-up (Figure 6A). Relationship analysis demonstrated
that greater increases in overall corticospinal excitation in the
stronger hand were associated with greater reduction in fatigue
severity levels measured with the FSS (rho = 0.762, p = 0.028;
Figure 6B) and fatigue impact measured with the MFIS (rho =

0.962, p= 0.001; Figure 6C).
Nerve conduction speed (MEP latency) did not change in

either side [χ2
(2) ≤ 1.14, p ≥ 0.565; Mdn, milliseconds (pre

vs. post vs. follow-up): stronger hand, 24.17 vs. 24.51 vs. 22.12;
weaker hand, 26.26 vs. 25.94 vs. 25.97].

All the TMS values (median and range), differences between
stronger and weaker hands across time points, and reasons for
missing values across time points are reported in Table 2.

DISCUSSION

We undertook this study to determine whether a 10-week,
3× /week walking exercise training program would alter
corticospinal excitability among people with walking disability

due to progressive MS. We report four main findings.
First, exercise training resulted in short-term enhancement of
corticospinal excitability in both brain hemispheres, which was
lost when reassessed during follow-up 3 months later. Second,
participants’ intracortical inhibition was decreased after training;
however, this effect was also short term (lost at follow-up) and
was restricted to the hemisphere corresponding to the stronger
hand. Third, the training augmented lean mass and reduced
body fat, and although there was no change in cardiorespiratory
fitness measured as peak of oxygen consumption, capacity
to perform exercise (workload) was increased after training
and sustained at follow-up (51). Finally, enhancement in
corticospinal excitability in the hemisphere corresponding to
the stronger hand was correlated with reductions in both
severity and impact of fatigue on everyday life (FSS and
MFIS, respectively).

Physical Exercise Training to Enhance
Corticospinal Excitation in Progressive MS
Motor thresholds and MEP amplitudes are considered indicators
of corticospinal excitation, mediated by glutamate and its activity
on N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid (AMPA) receptors (24, 30). In
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FIGURE 4 | Effects of 10-week treadmill walking exercise training on cortical silent period (CSP) time. (A) In the hemisphere corresponding to the stronger hand,

shorter CSP time (ms) at all transcranial magnetic stimulation intensities used [105–155% of active motor threshold (AMT)] suggested less GABAergic-mediated

intracortical inhibition post-exercise training (ET), with return to baseline at 3-month follow-up (3-mo). (B) In the hemisphere corresponding to the weaker hand,

although statistical significance was reached for the TMS intensities of 105, 115, and 125% of AMT between the different time points [Friedman’s test: pre vs. post vs.

3-mo; χ2
(2) = 6.33, p = 0.042], there was no statistical significance during pairwise analysis.

FIGURE 5 | Effects of 10-week treadmill walking exercise training on body composition and physical fitness. (A) Amount of lean body mass (kg) measured using dual

energy X-ray absorptiometry (DEXA) was higher at 3-month follow-up (3-mo) compared to pre-exercise training. (B) Body fat percentage (%) measured using DEXA

was lower at 3-month follow-up compared to post-exercise training. (C) Participants were able to perform a higher exercise workload (kcal/session) at their last

exercise session compared to the first. Total amount of workload performed was estimated using standardized equations (49). (D) No change was noted for

cardiorespiratory fitness measured as peak rate of oxygen uptake during a graded maximal exercise test [VO2peak = ml min−1 kg−1
ofleanmass(LM) ].

fact, higher glutamatergic receptor activity is associated with
greater capacity for synaptic plasticity (72, 73), and disruption
of this excitatory circuitry is responsible for diminished

neuroplasticity and lower capacity to learn new tasks and recover
from neurological damage (e.g., aging, stroke, MS) (4, 7, 71).
Therefore, there are important initiatives underway to develop
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FIGURE 6 | Ten weeks of treadmill walking exercise training induced increased overall corticospinal excitation that was associated with reductions in subjective

fatigue. (A) In the hemisphere corresponding to the stronger hand, higher overall corticospinal excitation was noted post-exercise training, with complete return to

baseline during 3-month follow-up (3-mo). Overall excitation was calculated as the area under the curve (AUC) using the trapezoid rule 1X × (Y1 + Y2)/2, with X

being the transcranial magnetic intensities used (105–155% of AMT; increments of 10%) and Y being the normalized motor-evoked potential (MEP) amplitudes (% of

largest baseline MEP). (B) Increases in overall excitation (AUC) in the hemisphere corresponding to the stronger hand were associated to reductions in subjective

levels of fatigue measured using the fatigue severity scale (FSS) and (C) the modified impact scale (MFIS).

new treatments (e.g., exercise, pharmacological, non-invasive
brain stimulation) aimed at increasing glutamatergic-mediated
brain excitation in the injured brain to enhance neuroplasticity
and recover function (9, 45, 71, 74–76). For instance, studies
using TMS have confirmed that, in comparison to those
who are less physically active, individuals with higher fitness
have lower motor thresholds and higher MEP amplitudes
(29) (i.e., higher corticospinal excitability) and demonstrate
superior increases in MEP amplitudes (i.e., greater neuroplastic
response) following paired associative stimulation to induce
neuroplasticity (28, 77).

We have previously shown that acute exercise increases
corticospinal excitation (i.e., higher MEP amplitude) and reduces

intracortical inhibition (i.e., shorter CSP) among people with
walking disability due to progressive MS (47). Importantly, this
effect was noted only in the stronger hand (47), likely due
to a more intact (i.e., less affected) contralateral corticospinal
representation (33). Here, we showed bilateral reductions in
AMT, increases inMEP amplitudes, and superiormotor neuronal
recruitment (higher recruitment curve slope) after 10 weeks
of aerobic exercise training. This suggests that the stimulus
from regular exercise training may have led to the chronic
enhancements in excitatory synaptic transmission noted in
these participants. Moreover, even though the hemisphere
corresponding to the weaker hand, whichwas likelymore affected
by MS (33, 78), was unresponsive after one exercise session
(47), in this longer term exercise training, it demonstrated
capacity to improve in synaptic excitatory transmission. It is
interesting to observe that Nicoletti et al. (9) recently reported
enhanced corticospinal excitation in people with progressive MS
after 4 weeks of D-aspartate treatment, which aimed to enhance
NMDA receptor activity (9). They also showed increases in MEP
amplitudes following intermittent theta burst stimulation (i.e.,

enhanced neuroplasticity) (9). It appears that exercise training
has comparable benefits in terms of enhancing capacity for
neuroplasticity in progressive MS. It is important to note that the
corticospinal excitability enhancements reported here and those
by Nicoletti et al. (9) were short term and disappeared 3 months
after cessation of the intervention. Therefore, we suggest that
treatments that enhance neuroplasticity, such as physical exercise
training, should be prescribed continuously in progressive MS to
protect the brain, improve brain function, and likely to potentiate
the effects of treatments (e.g., drugs) and other neuroplasticity-
inducing protocols (e.g., non-invasive brain stimulation).

Physical Exercise Training to Reduce
Intracortical Inhibition in Progressive MS
When applying suprathreshold TMS stimulations to the primary
motor cortex with participants performing a tonic muscle
contraction of the contralateral target muscle, the length of the
period of cessation of muscle activity (CSP) is an indicator of
intracortical inhibition mediated by the activity of the inhibitory
neurotransmitter GABA on its ionotropic and metabotropic
receptors (GABAA and GABAB, respectively) (24, 32). Although
the cortical and spinal contribution to the CSP length is still
unclear (24, 79), it is generally accepted that the cortex is themain
modulator of CSP change (32). Because excessive GABAergic-
mediated intracortical inhibition is considered pathological (80,
81), detrimental to neuroplasticity (39, 40, 81, 82), and is
associated with disease progression in MS (36) and stroke (83),
decreasing its activity is an attractive treatment strategy to boost
neuroplasticity (40, 81).

In healthy people and people with stroke, studies have
confirmed that even a single bout of aerobic exercise is
able to acutely reduce short intracortical inhibition (59, 83–
86) assessed with TMS paired pulse, a TMS biomarker of
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TABLE 2 | Transcranial magnetic stimulation values between stronger and weaker sides.

Median (range) Pre training Post training 3-month follow up

TMS variable Stronger Weaker Sig. Stronger Weaker Sig. Stronger Weaker Sig.

RMT (MSO%) 40 (28–68)a 45 (30–73)a 0.618 37 (22–76) 48 (26–92) 0.205 43 (24–56)d 40 (29–81)f 0.138

AMT (MSO%) 33 (20–64) 42 (27–100) 0.058 27 (17–45) 37 (18.76) 0.042* 30 (20–60)e 31 (21–64)f 0.307

MEP105%AMT 231.13 (186.67–331.17) 415.5 (181.5–464.25)b 0.046* 477.18 (243.50–1097.17) 222.50 (124.17–1072.20) 0.012 374.60 (91.50–634.40)e 295.88 (165.33–358.67)f 0.116

MEP115%AMT 310.00 (96.75–1398.00) 593.05

(174.00–1130.00)b
0.463 621.21 (319.00–1422.75) 320.75 (172.75–1720.80) 0.050 430.75

(146.25–1360.50)e
370.42 (153.00–860.33)f 0.600

MEP125%AMT 344.92 (199.50–2640.00) 818.47

(161.00–1365.77)b
0.753 740.50 (209.47–1592.00) 510–13

(226.60–3030.33)

0.779 597.40

(213.20–2100.00)e
772.17

(228.67–1453.75)f
0.753

MEP135%AMT 672.58 (248.00–3546.00) 550.23

(206.00–1483.67)b
0.345 1348.75

(353.33–1722.25)

665.50

(237.75–3587.33)c
0.237 724.20

(117.00–4664.40)e
994.67

(232.67–2159.67)f
0.463

MEP145%AMT 568.00 (334.50–3727.80) 564.63

(248.00–1812.67)b
0.345 1784.88

(430.33–4608.00)

765.67

(310.50–3998.00)c
0.128 1065.67

(272.00–4634.00)e
1165.08

(260.33–2814.80)f
0.345

MEP155%AMT 1037.55

(357.00–3771.33)

870.67

(468.50–1933.00)b
0.686 2047.85

(373.75–4031.20)

892.50

(232.33–4268.00)c
0.091 1346.17

(98.00–4669.00)e
1252.75

(257.20–2798.00)f
0.249

eREC slope

(gain)

14.80 (3.53–77.38) 3.14 (−1.83–30.00)b 0.075 28.41 (3.22–82.06) 10.18 (1.70–66.77)c 0.091 15.51 (0.90–49.28)e 19.11 (2.24–59.03)f 0.686

eREC R2

(accuracy)

0.77 (0.51–0.97) 0.35 (0.00–0.97)b 0.173 0.76 (.042–0.96) 0.82 (0.66–0.99)c 0.499 0.78 (0.05–0.87)e 0.91 (0.82–0.95)f 0.043*

eREC AUC

(overall excitation)

25852 (13182–126385) 30498 (7558–65129)b 0.463 58744.17

(16940.42–108246.00)

30189.83

(11258.50–150065.17)c
0.176 34050.50

(8432.00–154112.00)e
40965.42

(10859.33–83448.00)f
0.463

CSP105%AMT 89.56 (34.65–177.40) 72.47 (50.61–249.76)b 0.249 33.35 (16.17–91.63) 82.77 (31.92–279.04) 0.012* 49.66 (32.80–269.32)e 75.26 (37.17–229.93)f 0.249

CSP115%AMT 118.31 (45.06–181.49) 102.27 (84.86–266.75)b 0.345 62.34 (19.35–219.98) 112.16 (40.96–271.27) 0.036* 98.03 (18.88–279.07)e 108.28 (55.22–229.40)f 0.046*

CSP125%AMT 138.49 (58.90–233.98) 128.85 (101.84–255.44)b 0.116 71.41 (44.46–190.77) 148.58 (52.44–307.23) 0.017* 124.91 (45.60–186.06)e 169.13 (87.86–259.93)f 0.046*

CSP135%AMT 151.60 (67.87–237.88) 150.01 (121.46–272.03)b 0.345 83.57 (40.51–201.44) 140.24 (73.29–292.23)c 0.018* 142.76 (47.85–304.16)e 170.69 (77.56–225.96)f 0.173

CSP145%AMT 157.33 (82.26–282.32) 151.81 (139.38–325.93)b 0.173 137.96 (67.22–238.43) 159.61 (94.94–347.51)c 0.018* 167.32 (123.66–316.11)e 175.15 (83.65–252.69)f 0.345

CSP155%AMT 174.75 (101.28–294.92) 158.33 (146.92–187.09)b 0.893 143.82 (66.13–257.88) 156.08 (129.73–233.08)c 0.028* 156.71 (121.33–179.94)e 169.94 (149.51–293.69)f 0.046*

iREC slope

(Gain)

1.88 (0.91–3.68) 1.84 (0.83–2.19)b 0.893 2.04 (0.89–2.56) 1.97 (0.29–2.88)c 0.866 2.17 (0.75–2.73)e 1.76 (1.03–2.27)f 0.345

iREC R2

(accuracy)

0.94 (0.75–0.99) 0.88 (0.84–0.99)b 0.893 0.88 (0.67–0.97) 0.87 (0.01–0.95)c 0.237 0.90 (0.73–0.93)e 0.70 (0.54–0.79)f 0.028*

iREC AUC

(overall Inhibition)

6975.5 (3262.0–11718.0) 6531.5

(5823.00–12450.30)b
0.249 4369.13

(2271.20–10254.75)

6666.25

(3601.05–13043.85)c
0.018* 5857.20

(3397.85–7825.15)e
7482.20

(3976.30–12292.90)f
0.116

MEP latency (ms) 24.17 (21.38–43.15)a 26.26 (20.45–35.52)a 0.866 24.51 (19.48–43.78) 25.95 (20.36–38.02) 1.000 22.12 (21.88–29.69)e 25.97 (20.26–28.20)f 0.686

AMT, active motor threshold; CSP, cortical silent period; eREC, excitatory recruitment curve; iREC, inhibitory recruitment curve; MEP, motor evoked potential; MSO%, maximal stimulator output percentage; RMT, resting motor threshold;

eREC Slope = MEP Amplitude (µV) by TMS intensity105−155%AMT ; iREC Slope = CSP time (ms) by TMS intensity105−155%AMT ; Area under the curve (AUC) was calculated for both excitatory and inhibitory RECs using the trapezoid

rule ∆X x (Y1+Y2)/2, whereby X were the MSO% used (i.e., X axis values, 105–155% of AMT) and Y are the recorded CSP lengths (ms) or the MEP amplitudes (µV).

*Difference between stronger and weaker hand is statistically significant at α < 0.05.
aMissing data from participant 2 due to too low corticospinal excitability (i.e., no resting MEPs).
bMissing data from participant 2 and 7 due to too high AMT (AMT = 100 and 82%, respectively), thus the required increases in MSO% based on AMT to assess the REC could not be performed).
cMissing data from participant 7 due to high AMT (AMT = 76%), thus the required intensities of 135–155% of AMT could not be performed, and the slope, R2 and AUC could not be calculated).
dTime point with n = 5 (participant 2 could not be reached during follow-up assessment, missing data from participant 7 and 6 due to too low corticospinal excitability (i.e., no resting MEPs) and overheating of equipment (i.e., stimulator).
eMissing data from participant 2 (could not be reached during follow-up).
fMissing data from participant 2 (could not be reached during follow-up) and 7 [too low corticospinal excitability (i.e., no resting or contracting MEPs (RMT and AMT)].
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GABAA-receptor activity (24). We recently reported a similar
effect after acute aerobic exercise in people with progressive MS
(47). Interestingly, here, we showed that after 10 weeks of exercise
training, CSP duration was reduced at all TMS intensities,
indicating reductions in both GABAA and GABAB-mediated
intracortical inhibition. This result aligns with findings in healthy
individuals demonstrating that 4–12 weeks of strength exercise
training reduced both GABAA- and GABAB-receptor activity,
as decreasing in short-intracortical inhibition and duration
of the CSP elicited at higher TMS intensities, respectively
(26). We have previously shown that among people with
MS, superior cardiorespiratory fitness was related to shorter
CSP (44). In our present findings, although there were no
significant improvements in cardiorespiratory fitness measured
as the peak of oxygen consumption (VO2peak), there were other
indicators of improved physical health (48) such as higher
capacity to perform exercise (i.e., kcal/session), greater lean
mass, and lower body fat percentage, and increases in other
parameters of cardiorespiratory fitness such as the oxygen uptake
efficiency slope [for details, see (51)]. The fact that the beneficial
reduction (acute and long term) in intracortical inhibition was
only observed in the brain hemisphere corresponding to the
stronger hand may suggest a greater neuroplastic potential of
inhibitory mechanisms in the hemisphere thought to be less
affected by MS. Furthermore, our walking training provided
a high degree of task-specific training (18, 87, 88). Ziemann
et al. has shown that less GABAergic-mediated intracortical
inhibition, assessed with TMS, was essential for motor learning
processes from task-specific training to occur (89). Decreasing
GABAergic-mediated intracortical inhibition has also been
proposed to be an important factor initiating increases in
muscular strength (26, 27, 31). Although we did not measure
muscular strength (e.g., MVC pre–posttraining), we did note
increases in lean mass at post and follow-up as well as
improvements in walking function [e.g., walking speed; see (51)].
Altogether, this indicates that long-term physical exercise that
utilizes task-specific training in highly disabled people with
progressive MS reduces intracortical inhibition and possibly
improves and restores physical function through enhanced
neuroplasticity. Although, because no correlation between
changes in intracortical inhibition, body composition, and
walking function was noted, it remains to be answered whether
decreasing intracortical inhibition would lead to improvements
in learning and restoration of function in people with MS.
Future research should examine whether such effects would take
place in a larger sample with different walking abilities using
a randomized controlled design. As well, because we measured
overall gains in walking function (51) and body composition,
future research should examine whether the enhanced plasticity
(reduced inhibition) measured in the hemisphere corresponding
to the stronger side of the body indeed translates into global
brain function improvement (60) (e.g., bilateral and cognitive
function) or whether it is restricted to the contralateral
representation. This would be an important discovery for
interventions aiming at improving function of the most
affected side.

It is interesting that, when compared to healthy controls, some
studies have shown reduced intracortical inhibition (shorter
CSP) in MS patients (90, 91). Nantes et al. reported that shorter
CSP correlated with lower whole brain cortical volume (MRI,
magnetic transfer ratio) in progressive MS and that, interestingly,
longer CSP was a predictor of upper extremity motor dysfunction
(92). Therefore, when compared to the healthy central nervous
system (CNS), the CNS affected by MS may display decreased
activity of inhibitory mechanisms that, curiously, may work as
a compensatory mechanism during brain disease. The concept
that there are compensatory mechanisms that increase brain
excitation and decrease brain inhibition in order to preserve
brain function in CNS disease has been recently proposed by
other authors (7, 33, 44, 93–95). However, these processes are
certainly not uniform across CNS disorders. For instance, in
Parkinson’s disease, Fisher et al. (96) showed that high-intensity
treadmill exercise program improved walking performance and
lengthened CSP time (96), which is typically shortened in people
with Parkinson’s disease (97). Thomas et al. (98) also showed
lengthening of CSP in people with incomplete spinal cord injury
after a regimen of treadmill training. Although the mechanisms
are not entirely clear, our work and the work of others suggests
that rehabilitation and exercise prime the CNS as measured by
shifting of the CSP.

Corticospinal Excitability and Fatigue in
MS
Fatigue is one of the most disabling symptoms in MS (44–46).
Although the etiology of MS-related fatigue is not completely
understood, neuroimaging studies [e.g., MRI, functional MRI
(fMRI)] have proposed that its development and progression is
due to structural and functional abnormalities in both cortical
and subcortical areas (45). Previous studies have shown that
10–12 weeks of physical exercise training can lessen subjective
fatigue in people with MS (99), including progressive MS
(51, 100). Based on previous findings showing an association
between shorter CSP and lowered levels of subjective fatigue in
a cohort of people with MS (44), we proposed that improving
fitness through exercise training could mitigate fatigue by
decreasing GABAergic-mediated intracortical inhibition (i.e.,
shortening CSP). In this current pilot study, we reported a
strong association between increases in corticospinal excitation
(recruitment curve; AUC) and reductions in subjective fatigue
(FSS and MFIS). Nicoletti et al. (9) also demonstrated reductions
in subjective fatigue (FSS) and increases in corticospinal
excitation (intracortical facilitation) after D-aspartate treatment
in people with progressive MS (9). Furthermore, Créange et al.
(101) have also shown increases in corticospinal excitation
(e.g., RMT reduction) and reduction in levels of fatigue after
erythropoietin treatment to improve walking in people with
progressive MS. Our results and the results of others support
that there is a link between corticospinal excitation/inhibition
and fatigue, which should be examined in larger trials. In
fact, non-invasive brain stimulation methods (repetitive TMS,
transcranial direct current stimulation), which aim to increase
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cortical excitation and treat MS fatigue, have been recently
proposed (45). It is important to note that the abovementioned
experiments, and the present study, measured perceived (i.e.,
subjective) fatigue and not fatigability (i.e., muscle/performance
fatigability measured during contraction). Nonetheless, because
perceived fatigue and fatigability closely associate (102), our
results showing reduced levels of perceived fatigue and improved
fitness suggests that following training, subjects required less
physical effort to perform activities of daily living, suggesting
superior energy availability and reduced fatigability (102).
Therefore, we propose that exercise training might be able
to mitigate symptoms of fatigue possibly by acting through
increases in excitatory circuitry.

Limitations
There are some important limitations to consider when
interpreting the results of the present study. First, this was a
small pilot study, and no statistical sample size calculation was
conducted for the outcomes presented in this manuscript, which
limits the statistical power to obtain conclusive results. Second,
no control group was included, which limits the conclusion on
the true effect of the intervention. Third, as only patients with
progressiveMS and severeMS-related walking disabilities (EDSS,
6.0–6.5) were included, the findings may not be applicable for
relapsing–remitting and/or less disabled MS patients. Despite
these limitations, the novel insights from this study may serve
as a rationale for larger studies and continued efforts in
investigating the effects of exercise and physical rehabilitation on
neuroplasticity and functional recovery in MS.

As for considerations for future studies, although the aim
of this study was to investigate changes in corticospinal
excitability in a non-exercised hand muscle to demonstrate
widespread effects of exercise training on global brain plasticity
(59, 60), investigating muscles that were more involved in
the walking training (e.g., lower limb muscles) could provide
more insight regarding the link between the trained muscle
and cortical function (TMS) (27). Moreover, having participants’
neuroimaging data (e.g., magnetic resonance imaging) could
help to better understand the role of lesion volume and
location on exercise-induced corticospinal excitability changes.
We determined averaged MEP amplitudes and CSP times from a
small number of trials (three to six) as done previously by others
(28, 65, 66), and with participants performing tonic contraction,
in order to reduce intrasubject variability (27). Future studies
should examine the optimal number of stimulation trials (103)
in order to produce reliable MEP/CSP data. With respect to the
TMS recruitment curve parameters, we used linear regression
(TMS intensities by MEP amplitudes), as done by others (25, 34),
in an attempt to assess the corticospinal tract recruitment gain
(slope) and accuracy (R2); biomarkers were previously proposed
by Potter-Baker et al. (67) to reflect morpho-physiological
integrity of the corticospinal tract in stroke. However, more
studies are necessary in order to understand what the best model
is [e.g., sigmoidal (67) or linear (25, 34)] when calculating these
parameters while taking into consideration the different TMS

methodologies (e.g., range of TMS intensities employed), the
clinical population (e.g., stroke, MS), and lesion profile (e.g.,
lesion volume, location).

CONCLUSION

To our knowledge, this is the first study to investigate longer
term effects of exercise on corticospinal function using TMS
in patients with progressive MS. This exploratory pilot study
provides evidence that a neuroplastic potential still exists in
patients with progressive MS and severe MS-related walking
disability. Specifically, we found that 10 weeks of vigorous
treadmill training reduced intracortical inhibition and increased
corticospinal excitability. These corticospinal adaptations were
predominately found in the brain hemisphere corresponding to
the stronger hand, suggesting a greater neuroplastic potential
in the hemisphere that may be less affected by MS. Moreover,
the exercise-induced enhancement in cortical excitation was
associated with reductions in fatigue, suggesting this as a
potential mechanism involved in the effects of exercise on fatigue.
The novel findings from this pilot study highlight the importance
of long-term exercise efforts—even in patients with progressive
MS—and can serve as a rationale for future studies and continued
efforts in investigating the effects of exercise on the brain.
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