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Sudden cardiac death (SCD), which can deprive a person of life within minutes, is a
destructive heart abnormality. Thus, providing early warning information for patients at
risk of SCD, especially those outside hospitals, is essential. In this study, we investigated
the performances of ensemble empirical mode decomposition (EEMD)-based entropy
features on SCD identification. EEMD-based entropy features were obtained by using
the following technology: (1) EEMD was performed on HRV beats to decompose
them into intrinsic mode functions (IMFs), (2) five entropy parameters, namely Rényi
entropy (RenEn), fuzzy entropy (FuEn), dispersion Entropy (DisEn), improved multiscale
permutation entropy (IMPE), and Renyi distribution entropy(RdisEn), were computed
from the first four IMFs obtained, which were named EEMD-based entropy features.
Additionally, an automated scheme combining EEMD-based entropy and classical linear
(time and frequency domains) features was proposed with the intention of detecting SCD
early by analyzing 14 min (at seven successive intervals of 2 min) heart rate variability
(HRV) in signals from a normal population and subjects at risk of SCD. Firstly, EEMD-
based entropy and classical linear measurements were extracted from HRV beats, and
then the integrated measurements were ranked by various methodologies, i.e., t-test,
entropy, receiver-operating characteristics (ROC), Wilcoxon, and Bhattacharyya. Finally,
these ranked features were fed into a k-Nearest Neighbor algorithm for classification.
Compared with several state-of-the-art methods, the proposed scheme firstly predicted
subjects at risk of SCD up to 14 min earlier with an accuracy of 96.1%, a sensitivity
of 97.5%, and a specificity of 94.4% 14 min before SCD onset. The simulation results
exhibited that EEMD-based entropy estimators showed significant difference between
SCD patients and normal individuals and outperformed the classical linear estimators
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in SCD detection, the EEMD-based FuEn and IMPE indexes were particularly useful
assessments for identification of patients at risk of SCD and can be used as novel
indices to reveal the disorders of rhythm variations of the autonomic nervous system
when affected by SCD.

Keywords: sudden cardiac death, heart rate variability (HRV), ensemble empirical mode decomposition (EEMD),
entropy, classical linear features

INTRODUCTION

Sudden cardiac death (SCD) describes the death of a person
who has died from previously known or even unknown cardiac
diseases in an unanticipated and abrupt manner, within no more
than an hour after the first occurrence of symptoms (Zipes
and Wellens, 1998; Chugh, 2001; Myerburg and Castellanos,
2005). Nearly 300,000 lives in the United States and 700,000
lives in Europe are lost because of SCD each year (Lloyd-Jones
et al., 2010; Soliman et al., 2011; Pagidipati and Gaziano, 2013).
Approximately 5–37 out of 1000,000 young people die from
SCD, and the occurrence rate of SCD in men is higher than
that in women (Eckart et al., 2011; Sessa et al., 2018). Despite
the increased usage of public defibrillation devices after collapse,
according to the latest data, out-of-hospital survival is at only
about 10.4% due to the failure to provide patients with timely care
(Vandenberg et al., 2017). These startling figures highlight the
significance of early SCD prediction for improving survival rates.

Most astonishingly, whether a person suffers from SCD
has little to do with their history of heart disease, although
most SCD subjects did have previously diagnosed or even
undiagnosed cardiac abnormality (Jones and Tovar, 2002).
Coronary thrombosis, causing blockages in the walls of blood
vessels, is responsible for a significant number of SCD cases. The
second leading cause of SCD is ventricular fibrillation (VF) in the
adult population. VF is considered to be the potential mechanism
in 20% of SCD episodes; this usually occurs before sudden cardiac
arrest (SCA) and results in failure of the heart to pump blood,
and unattended SCA subsequently leads to death (Pagidipati and
Gaziano, 2013). The survival rates after VF decrease by about 10%
per minute (Rea and Page, 2010). The Public Access Defibrillation
(PAD) technique is usually used to rescue the dying after the
collapse, but for patients outside hospitals it is difficult to provide
timely and effective treatment in a short time, and therefore early
detection of unanticipated SCD in a person suffering from VF
is of vital significance for increasing the survival rate of out-
of-hospital patients. Evaluation of electrocardiogram (ECG) and
heart rate variability (HRV) signals has been regarded as a non-
invasive tool for picking up minute differences among various
classes to diagnose cardiovascular diseases. Along with the fast
development of cloud computing and wearable sensors such as
clothing, caps, watches, shoes, etc., this provides us with the
chance to remotely monitor ECG/HRV signals of patients at high
risk in a real-time, continuous manner (Hasan and Shahjalal,
2019; Steinberg et al., 2019; Toral and Garcia, 2019). Proposing
the automated SCD prediction algorithm and combining the
algorithm with an ECG real-time monitoring system is promising
for providing early warning information so that the clinicians will

have sufficient time to provide timely and effective treatment for
patients at risk of SCD.

In previous studies with ECG and HRV, QT
dispersion/interval, QRS duration, and signal-averaged ECG
(SAECG) extracted from ECG signals by using linear methods
were often used for predicting SCD (Viskin and Barron, 1997;
Lombardi et al., 2001; Huikuri et al., 2003; Yeung et al., 2012;
Bai et al., 2017). However, the assessment of QT interval
showed negative results for its prognostic ability (Statters et al.,
1994). HRV, obtained by computing the time of two successive
R-waves within an ECG signal (Constant et al., 1999), has
proven to be an independent indicator of mortality after MI
(Malik, 1996). There are primarily three methods, namely the
classical linear method (including time domain and frequency
domain), time-frequency, and the non-linear method, that have
been used for the analysis of HRV signals. A study reported
(VanHoogenhuyze et al., 1989) that, compared to normal groups,
the statistic values [e.g., standard deviation (SD) of the mean
sinus R–R intervals (SDANN), mean of SD] obtained from HRV
in SCD groups were lower. Apart from HRV signal analysis in
the time domain mentioned above, Shen et al. (2007) applied
fast Fourier transforms (FFT) to the HRV signals to acquire
the frequency response. Various standard segments, known
as high frequency (HF), low frequency (LF), and very low
frequency (VLF), were found to be strong indicators of SCD
(Shen et al., 2007). In the time-frequency domain, the Wigner–
Ville transform, smoothed pseudo-Wigner–Ville distribution
(SPWVD), and short-time Fourier transform were performed on
the HRV signals to get corresponding time-frequency features
for SCD prediction (Martinmäki et al., 2006; Ebrahimzadeh and
Pooyan, 2011; Ebrahimzadeh et al., 2014; Mirhoseini et al., 2016).
Some research has demonstrated that compared to the classic
methods for HRV signal analysis, the non-linear methods, such
as symbolic dynamic (Maestri et al., 2007), renormalized entropy
(Voss, 1996), conditional entropy (Porta et al., 2000, 2001, 2017),
and mutual non-linear prediction (Faes et al., 2008), were better
able to find the complexities underlying the HRV signals due to
the non-stationary and non-linear characteristics of these signals
(Martis et al., 2012). In addition, the performance of non-linear
features in distinguishing SCD subjects from normal in each
1-min HRV signal is more stable (Ebrahimzadeh et al., 2017).

Acharya et al. (2015a) proposed combined algorithms
with non-linear features and wavelet transform, which were
performed on HRV signals and showed an ability to predict
SCD 4 min before its occurrence (Fujita et al., 2016).
Nevertheless, the selection of a suitable basis function of
wavelet transform for the signal analysis was not easy because
the basis function was not adaptive to decomposed signals.
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Ensemble empirical mode decomposition (EEMD) and empirical
mode decomposition (EMD) are adaptive signal decomposition
methods that decompose the signals into intrinsic mode
functions (IMFs) without prior knowledge and only according to
the characteristics of the signal itself, which is vitally important
for non-linear and non-stationary signal analysis (Wu and
Huang, 2009). These signal decomposition methods have shown
their capacity in various applications, such as the classification of
ECG heartbeats (Rajesh and Dhuli, 2017), detection of shockable
ventricular arrhythmia (Tripathy et al., 2016), and automated
identification of congestive heart failure (Acharya et al., 2016).

In the current study, we explored the performance of EEMD-
based entropy metrics on SCD detection and proposed an
automated SCD scheme based on EEMD and classical linear
methods. Firstly, three time-domain, four frequency-domain,
and 20 EEMD-based entropy features (five entropy indices were
calculated from the first four IMFs obtained by EEMD) were
extracted from HRV beats for early SCD identification. A block
diagram of the proposed scheme is exhibited in Figure 1.
Furthermore, the combination of classical linear and EEMD-
based entropy features was ranked by various methods, i.e., t-test,
entropy, receiver-operating characteristics (ROC), Wilcoxon, and
Bhattacharyya. These ranked features were subjected to k-Nearest
Neighbor (k-NN) classification to differentiate normal patients
and those at risk of SCD.

MATERIALS AND METHODS

Data Acquisition
In the current study, two databases, namely PhysioBank MIT-
BIH Normal Sinus Rhythm (NSR) and MIT/BIH SCD, were
employed to conduct a target assessment for the proposed
method. The SCD database includes 23 24h-ECG recordings
before SCD onset as well as a few seconds later. These patients,
with a history of heart attack or hard tachyarrhythmia, were more
likely to have SCD and to be affected eventually (Ebrahimzadeh
et al., 2019). Details of the data used in this work are shown in
Table 1. Of the 23 SCD subjects, only 20 patients (eight females,
10 males and two of unknown sex, aged 18–89) were used for
further analysis in this work, because the ECG signals of the
other three subjects did not show any VF episodes. A total of
36 ECG recordings from the MIT-BIH NSR and 40 SCD ECG
signals were utilized from the SCD database. With the aim of
maintaining consistent sampling between normal groups and
subjects at risk of SCD, all the ECG signals used in this paper were
resampled at 360 HZ.

HRV Signal Extraction and
Pre-Processing
For 24 h of ECG recordings of the SCD patients, only ECG
signals 14 min before VF onset were used to simulate 14 min
before SCD. For the normal subjects, 14-min durations of ECG
signal were chosen randomly. ECG signal collection contains
interference from various noises, including baseline wander
(<0.5 HZ) and power line interference (>50 Hz) (Zhao et al.,
2013). The DWT with Daubechies order-6 wavelet basis method,

which is applicable to non-stationary signals (Singh and Tiwari,
2006; Elhaj et al., 2016), was used in ECG signal denoising
by setting the first two detail coefficients and the highest-level
approximation coefficients to zero. Then, the denoised ECG
signals were subjected to the Pan Tompkins algorithm, aiming
at QRS complex detection (Pan and Tompkins, 1985), and,
thereupon, corresponding HRV signals were determined. HRV
signal pre-processing was essential before HRV signal analysis
due to the fact that missed/false R peaks brought about ectopic
intervals so as to generate poor quality HRV signals. In this paper,
we removed unexpected data points in which RR intervals were
more than 20% with respect to the median value of the next
five and previous five RR intervals by adopting a median filter
of five width method (Vest et al., 2018; Chen et al., 2015) for
corrected HRV signal acquisition. In this work, the corrected
HRV signals 14 min before SCD were uniformly divided into
seven 2-min intervals (i.e., the 1st 2 min, 2nd 2 min, 3rd 2 min,
etc.), and normal HRV signals of 14 min durations chosen
randomly were similarly, partitioned into seven 2-min intervals.
A 4-min uncorrected and corrected HRV signal before SCD
occurrence (two 2-minute intervals), extracted from lead I of the
ECG recording for patient number 35 are shown in Figure 2.

Analysis of HRV Signals
Time and Frequency Domain Analysis
Frequently used estimators for time-domain analysis of HRV
signals for SCD detection include the square root of the mean
squared differences of adjacent normal-normal (NN) intervals
(RMSSD), standard deviation of NN-intervals (SDNN), and
proportion of NN-interval differences greater than 50 ms
(pNN50). In frequency domain analysis of HRV signals, VLF,
LF, HF, and LF/HF were calculated. The indices VLF, LF, and
HF represent the spectral power in the very-low-frequency
band (0.003–0.04), low-frequency band (0.04–0.15 Hz), and
high-frequency band (0.15–0.4 Hz), respectively (Malik, 1996;
Ebrahimzadeh et al., 2014).

Ensemble Empirical Mode Decomposition-Based
Entropy Analysis
Empirical mode decomposition (EMD)
Empirical mode decomposition (EMD), introduced by Huang
et al. (1998), is an adaptive signal decomposition mechanism
without any prior criteria. A signal is decomposed into
amplitude- and frequency-modulated (AM–FM) oscillatory
components, termed IMFs, by using a sifting process. EMD is a
greedy algorithm and has the ability to detect local information
hidden in the signal. The process of EMD on a signal x(t) is
illustrated as follows:

Step 1: Initialize r0 = x(t) and k = 1
Step 2: Compute the kth IMF;

(1) Initialize bk(i− 1) = r0, where i = 1;
(2) Extract all the local extremes (minima and maxima) of

bk(i− 1);
(3) Interpolate the local minima and maxima based on a

cubic spline function to obtain the corresponding lower
and upper envelopes (ek

min and ek
max);
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FIGURE 1 | Proposed block diagram.

TABLE 1 | Details of the data used in this work.

Database Diagnosis Number of
subjects

Subjects features Number of
leads

Sampling
rate

Number of ECG
signals used

Length of
record

MIT-BIH NSR Normal 18 13 females (age 20–50) 2 128HZ 36 14 min

5 males (age 26–45)

MIT-BIH SCD SCD 23 8 females, 13 males, 2 sex
unknown (age 18–89)

2 250HZ 40 14 min

(4) Compute the mean: mk(i− 1) = (ek
min + ek

max)/2
(5) Let bki = bk(i− 1)−mk(i− 1);

(6) Compute D =
∑n

t=0

∣∣∣ bk(i−1)−bki
bk(i−1)

∣∣∣2; when D is less than a
previously set threshold, set IMFk = bki; when bki is an
IMF, n is the number of samples in total; otherwise go to
step (2), where i = i+ 1;

Step 3 Define rk+1 = rk − IMFk;
Step 4 If rk+1 has at least two extrema, go to step 2, or else rk+1
is the residue

x(t) =
K∑

k=1

IMFk+ rk+1

EEMD
There existss a mode-mixing phenomenon, named an IMF,
including different amplitude oscillations or parallel oscillations
that reside in different IMFs. In the EMD method, due to the
fact that the precondition of reasonable IMFs obtained from the
EMD method is the occurrence of the extreme points and the
distribution of the extreme points, the intermittency of IMFs will
cause an appearance of mode mixing. To deal with the limitation
of the EMD method (Wu and Huang, 2009), EEMD, an EMD
signal decomposition method that is modified through adding
white Gaussian noise with finite amplitude that evenly distributes
the whole time-frequency space, was proposed. The various scale
components of the original signal are mapped to suitable scales
of reference built by the added white noise component. Although
each decomposition trial results in noisy results because of the

decomposed signals constituting the added white noise and
the original signal, evenly distributed white noise is completely
removed by computing the ensemble mean of all trials, while
the original signal is preserved in the ultimate ensemble mean.
Through this method, the mode-mixing phenomenon of EMD
is effectively avoided (Zhao et al., 2013). The exact IMFs are
given by the EEMD, and the calculation of EEMD is illustrated
as follows:

Step 1 Add white Gaussian noises (ni(t), i = 0, · · · , L) with
different SD to the signal x(t)

xi(t) = x(t)+ ni(t)

Step 2 Each ensemble signal xi(t) is subjected to EMD, with
the aim of obtaining the IMFs aik(t) (k = 1, 2, · · · , K).
Step 3 Calculate the Kth IMF of the ensemble signal xi(t)

IMFk =
1
L

L∑
i=1

aik(t)

In the present work, EEMD (D = 0.2) is used to decompose
each HRV signal segment of 2-min intervals into several
IMFs for the subsequent extraction of corresponding features.
We use the first four IMFs obtained from EEMD for SCD
detection. Figure 3 depicts the decomposition of the 1st 2-
min interval HRV signal before SCD occurrence, which was
extracted from a SCD patient (number 35) by using the
EEMD-based technique.
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FIGURE 2 | Two 2-minute (A) uncorrected HRV signals and (B) corrected HRV signals before SCD occurrence extracted from lead I of the ECG recording for patient
number 35.

Entropy feature parameter
It is challenging to extract crucial features from HRV signals
due to their non-linear and non-stationary characteristics. In
this work, five entropy parameters, namely RenEn, FuEn, DisEn,
RdisEn, and IMPE, were applied to the first four levels of IMFs
obtained from EEMD for detecting abnormalities within prone-
to-SCD HRV signals.

Rényi entropy. This parameter is capable of evaluating the
spectral complexity in time series and is a generalized form
of Shannon entropy (Faust and Bairy, 2012). The definition of
RenEn follows as

RenEn =
1

1− q
log2

( n∑
i=1

pq
i

)
, q > 0, q 6= 1

Fourier transformation is performed on HRV signals to
acquire the power spectral density (PSD), and then the Fourier
transforms of HRV signals are calculated, aiming at obtaining
the power level of each frequency denoted by pi. pi is computed
by Pi∑

Pi
, where

∑
pi represents the total power. In this work,

q = 2 was used, which is known as Rényi quadratic entropy
and is widely applied in signal analysis (Kannathal et al., 2005;
Sharma et al., 2015).

Fuzzy entropy. This entropy quantifies the complexity of a
time series. Unlike SamEn with the Heaviside function, the
similarity of vectors using this entropy is calculated on the basis

of soft fuzzy membership functions. FuEn as a measurement
of randomness that has less dependence on data length and
stronger consistency and can achieve satisfying results in
quantifying signals with various irregularities. Larger complexity
within HRV signals results in a larger value of FuEn (Azami
et al., 2017). Considering a time series x(i) of length N, we
construct a-dimensional vectors Xi = {x(i), x(i+ 1), · · · , x(i+
a− 1)} − a−1 ∑a−1

k=0 x(i+ k), {1 ≤ i ≤ N − a+ 1}. The entropy
is computed as

FuEn = − ln(φ
a+1/

φa)

where φa is calculated as

φa
=

1
N − a

N−a∑
i=1

 1
N − a− 1

N−a∑
j=1,j6=i

Da
ij

 , Da
ij = exp(−(da

ij)
p/r)

where FuzEn power p and tolerance r are given in advance,
and the similarity degree da

ij is the maximum distance between
vectors Xi and Xj(i 6= j). Similarly, we compute φa+1 for a + 1-
dimensional vectors (Zhao et al., 2016). a = 2, r = 0.15 × SD
(SD represents the standard deviation of a signal analyzed), and
p = 2 were used in this work since it had been recommended by
previous work (Li et al., 2015).

Dispersion entropy. Dispersion entropy (DisEn), a powerful and
fast algorithm for measuring the randomness of signals, was
introduced by Azami et al. (Rostaghi and Azami, 2016). It can
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FIGURE 3 | Decomposition of the 1st 2-min interval HRV signal before SCD occurrence by using the EEMD-based technique.

simultaneously explore the amplitude and frequency variation
of signals. For time series x(i) of length N, the DisEn index is
computed as follows:

(1) The original time series x(i) of length N map into y from
0 to 1 by the normal cumulative distribution function
as follows:

yi =
1

σ
√

2π

∫ xi

−∞

e
−(t−µ)

2σ2 dt

where µ and σ represent the mean and standard
deviation of time series.

(2) yi is mapped to a group with integer indexes from 1 to a.
To do this, yi is multiplied by a and then summed with 0.5.
Therewith, yi is equal to its nearest integer according to the
rounding method.

za
i = round (a.yi + 0.5)

where za
i is the ith element of the group za

(3) zm,a
j = {za

j , za
j+d, · · · , za

j+(m−1)d} are constituted by m
(embedding dimension) and d (time delay)

(4) Each time series zm,a
j is mapped to a dispersion pattern

πu0u1···um−1

za
i = u0, za

i+d = u1, za
i+2d = u2, · · · , za

i+(m−1)d = um−1

(5) For each of am dispersion patterns πu0u1···um−1 , probability
is computed by

p(πu0u1···um−1)

=

Number{j|j ≤ N − (m− 1)d, zm,a
j has πu0u1···um−1}

N − (m− 1)d

(6) DisEn is calculated with m (embedding dimension) and a
(number of groups) by

DisEn = −
am∑

π=1

p(πu0u1···um−1). ln(p(πu0u1···um−1))

m = 2, s = 6, and d = 1, recommended by reference
(Rostaghi and Azami, 2016), were used in this work.

Rényi distribution entropy. Rényi distribution entropy (RdisEn),
proposed in our previous work (Shi et al., 2019), is computed
on the basis of the empirical probability distribution function
(ePDF) of vector-to-vector distances from a given time series.
Simulation results showed that parameter selection has little
effect on the RdisEn measurement and that it has the reliable
capacity to measure the complexity of short-term RR intervals
data. For time series x(i) of length N, a-dimensional vectors
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Xi = {x(i), x(i+ 1), · · · , x(i+ a− 1)}, {1 ≤ i ≤ N-a}, are
formed, and calculation of this entropy is defined as

RdisEn =
1

(1− q)log(B)
2

log2

( B∑
t=1

pq
t

)

where pb, b = 1, 2, · · · , M is the probability and is obtained
using the following steps.

(1) Compute distance matrix D = {dij}, where dij is the
maximum distance between vectors Xi and Xj{1 ≤ i, j ≤
N − a}.

(2) Measure probability density by applying the histogram
method to the distance matrix D, where M denotes bins of
the histogram (Li et al., 2015). In this work, we use a = 2,
M = 512, and 1.1 < q < 2.

Improved multiscale permutation entropy. Improved multiscale
permutation entropy (IMPE), proposed by Azami and Escudero
(2016), can quantify the dynamics of signals over multiple
temporal scales, in contrast to the conventional entropy
parameters such as sample entropy and permutation entropy, and
it has superior reliability of entropy measurement for short-term
time series. The IMP algorithm is performed as follows:

(1) Construct coarse-grained sequences z(s)
i = {y

(s)
i,1, y(s)

i,2, · · · },

where y(s)
i,j =

∑s−1
f=0 xf+i+s(j−1)

s for time series x(i) of length N.

(2) Compute permutation entropy of each z(s)
i for a s

(scale factor)

IMPE =
1
s

s∑
i=1

PE(z(s)
i , m)

where PE represents permutation entropy and m denotes
embedding dimension. The details of the computing
process of PE are described in Azami and Escudero (2016);
m = 3 and s = 2,3,4,5,6 were used in this work.

RenEn is also called spectral entropy, as its calculation relates
to the power spectrum. FuEn, DisEn, IMPE, and RdisEn are
broadly classified as embedding entropies due to the fact that
their calculations refer to the reconstruction of time series to
measure the amount of randomness (Faust and Bairy, 2012). The
five entropy parameters quantify the complexity and randomness
within HRV signals derived from normal and SCD patients from
different computational perspectives in the time series.

Feature Assessment
Statistical analysis methods, including t-test and receiver-
operating characteristics (ROC) analysis, were employed in this
work, in order to determine the statistical significances and
classification performances of features obtained. Where the
p-value generated from t-test for a feature is less than 0.05,
the feature is considered as of statistical significance, and the
smaller the p-value is, the better the significance (Box, 1987).
In ROC analysis, area under the curve (AUC) is used as an
index to evaluate the classification ability of a feature. An AUC
value is closer to 1 suggests better differentiation ability of

the feature, whereas an AUC value closer to 0.5 implies worse
separation ability.

Feature Ranking
A total of 27 features (seven time-frequency domain and 20
EEMD-based entropy features) were obtained from the above
steps, however, not all the features acquired are crucial for
differentiating normal from SCD classes. Manual identification
of features with significant contributions to SCD detection
is extraordinarily tedious work. In this paper, four ranking
methodologies, namely t-test, entropy, ROC, Wilcoxon, and
Bhattacharyya, are utilized for ranking features. The t-test
technology and ROC methods have been described in section
“Feature Assessment.” In the entropy method, the features
are ranked by relevance in descending order; the method is
proposed based on the fact that lower irregularity corresponds
with low entropy and vice versa. The Wilcoxon method evaluates
the difference between the two correlative samples and is
suitable for analyzing two different assessment sets derived from
the same data. Bhattacharyya determines divergence between
statistical populations by probability distributions; the features
are ranked by their capacity to discriminate the training data
(Acharya et al., 2015c).

Classification
In order to separate the SCD and normal subjects, two
types of k-NN (Mitchell, 1997) where k = 1,10, that is, 1-
NN and 10-NN, were used in this study. With the aim of
evaluating the performance of the two classifiers, three evaluators
called accuracy, sensitivity, and specificity were calculated by
using formulas introduced in Ebrahimzadeh et al. (2018b).
Additionally, the 10-fold cross-validation method was employed.
The dataset used in this method was randomly divided into
10 mutually exclusive parts with the same samples, where nine
datasets were utilized for training and the remaining one was
for testing. This calculation process was repeated 10 times. The
three evaluators were computed for each calculation process. The
average values of the three evaluators were obtained for the 10-
times calculation process at the end, and we used these average
values to assess the performance of the classifier used.

RESULTS

We computed the FuEn indexes of different IMFs obtained
from EEMD decomposition for uncorrected and corrected
1st 2-min interval HRV signals, respectively, as shown in
Figure 4 (FuEn1, FuEn2, FuEn3, and FuEn4 represent the
FuEn features extracted from the first to fourth IMF obtained
from EEMD decomposition. This notation also applies to other
entropy features such as DisEn, IMPE, RdisEn, and RenEn
in the following section. For example, RdisEn3 represents the
RdisEn feature extracted from the third IMF obtained from
the EEMD decomposition). There were significant differences
between FuEn1, FuEn2, and FuEn3 computed from uncorrected
and corrected HRV signals, and the mean values of the FuEn
indexes obtained from uncorrected HRV signals were higher than
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FIGURE 4 | Boxplot of the FuEn indexes computed from the first four IMFs from the 1st 2-min uncorrected and corrected HRV beats, respectively (**P < 0.01 and
***P < 0.001, respectively).

these from corrected HRV signals. The reason behind this was
that unexpected data points in RR intervals increase the non-
stationarities and complexities of signals analyzed, as shown in
Figure 2, and thus distort the measurement reliability of entropy
indices, which had been proved by previous research (Magagnin
et al., 2011). Pre-processing of HRV signals is thus very necessary
for the reliability of the scheme proposed in this work.

As far as we know, the performance of RdisEn and IMPE was
affected by the selection of parameter q for RdisEn and parameter
s for IMPE (Azami and Escudero, 2016; Shi et al., 2019). To find
the optimal parameter values for the entropy algorithms for SCD
identification, the p-values of RdisEn and IMPE with changing
parameter q (1.1 to 2 with a step of 0.3) and s (2 to 6 with a
step of 1), respectively, for the first four IMFs for the 1st 2-min
HRV signals of normal and SCD subjects were computed by using
Student t-test. It can be observed from Table 2 that the p-value of
RdisEn from the first IMF was lowest at q = 2 and the p-value
of IMPE from the fourth IMF is lowest at s = 2, so we adopted
q = 2 and s = 2 for the RdisEn and IMPE evaluations in the
following study.

A total of 40 HRV signals with varying lengths from 50 to
500 with a step of 50 were extracted from SCD HRV signals
to evaluate the sensitivity of the entropy algorithms to the data
length. The performances of approximation entropy (ApEn),
sample entropy (SamEn) (Porta et al., 2017), and the five entropy
indexes aforementioned were assessed as a function of the length
of HRV signals, illustrated in Figure 5. The curve of the ApEn
value monotonically incremented with data length, and there
was an undefined value for SamEn at the data length of 50, as
shown in Figures 5A,B, suggesting the instability of the ApEn
measurement and failure of the SamEn measurement to quantify
the complexity of short-term HRV signals, which was consistent
with the previous study (Li et al., 2015). Additionally, another
study reported that ApEn easily brought about a biased estimator
due to the effect of self-matches when applied to the analysis
of a short-term time series (Porta et al., 2007). Figures 5C–G

demonstrates that the five entropy indicators used in this work
still remain stable at a data length greater than 100 and that there
were no undefined values for measuring the irregularity of short-
term HRV signals, indicating that the five entropy indicators
were insensitive to the data length and suitable for the following
analysis of short-term HRV beats.

Table 3 presents the values (mean and SD) of the 20
EEMD-entropy features acquired from the first 2-min and 5-
min intervals of normal and SCD HRV signals. There were
noticeable differences among most of the EEMD-based entropy
measures for distinguishing between the normal patients and
those at risk of SCD for the first 2-min HRV beats. Similar
results were obtained by these entropy metrics in assessing
disorder of the first 5-min HRV beats of the two groups, implying
the reliability of the EEMD-based entropy metrics. For most
entropy features, where the performance of the entropy features
extracted from the lower IMFs was better, the features with
significant difference between normal subjects and SCD patients
were mostly extracted from the first third of IMFs, implying that
the selection of the first four IMFs for the following analysis
was appropriate (Table 3). Seven time/frequency-time features
and 20 EEMD-based entropy features were computed from the
1st 2-min HRV beats and ranked by various methods such as
t-test, entropy, ROC, Wilcoxon, and Bhattacharyya. The ranked
features were fed into 1-NN and 10-NN one by one to obtain the
highest accuracy. Figure 6 showed classification performances by
using the entropy ranking method for 1st 2-min intervals. It is
obvious from Figure 4 that, in distinguishing normal from SCD-
affected HRV signals, the highest accuracy of 96.1% was achieved
using the 1-NN classifier with 11 features. The classification
results with the highest accuracy by using the various ranking
methods are tabulated in Table 4 for the 1st 2-min. It was not
difficult to find that the best classification was achieved by the
entropy method, so we adopted the ranking method of entropy
in the following six cases for SCD classification. Furthermore,
the SCD detection scheme was also implemented by using
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TABLE 2 | p-values computed from the first four IMFs obtained from the 1st 2-min HRV signals of normal and SCD subjects with varying parameter q for RdisEn and
parameter s for IMPE.

q 1.1 1.4 1.7 2 s 2 3 4 5 6

RdisEn1 2.7e−5 1.9e−5 1.44e−5 1.08e−5 IMPE1 0.396 0.039 0.019 0.0476 0.145

RdisEn2 0.035 0.0358 0.0359 0.036 IMPE2 2.1e−7 8.08e−4 0.0038 0.3235 0.967

RdisEn3 7.1e−4 7.8e−4 8.03e−4 8.0e−4 IMPE3 1.3e−7 1.4e−7 1.0e−4 0.7536 0.0097

RdisEn4 0.0018 0.0022 0.0026 0.0028 IMPE4 1.4e−4 3.02e−5 9.17e−5 7e−4 0.006

FIGURE 5 | Errorbars of (A) ApEn, (B) SamEn, (C) FuEn, (D) DisEn, (E) IMPE, (F) RdisEn, and (G) RenEn computed from SCD HRV signals with varying length (red
mark represents undefined value).

TABLE 3 | Twenty EEMD-based entropy features extracted from normal and SCD HRV signals 1st 2-min and 1st 5-min before SCD occurrence.

Feature 1st 2-min P-Value 1st 5-min P-Value

Normal SCD Normal SCD

FuEn1 0.0021 ± 0.0023 0.027 ± 0.025 6.6e−6 0.0023 ± 0.003 0.018 ± 0.023 9.3e−5

FuEn2 0.0018 ± 0.0016 0.0051 ± 0.005 3.35e−4 0.0017 ± 0.004 0.004 ± 0.005 4.15e−4

FuEn3 7.8e−4 ± 5.8e−4 0.0046 ± 0.008 0.005 7.8e−4 ± 6.4e−4 0.0033 ± 0.004 9.3e−4

FuEn4 4.9e−4 ± 7.1e−4 0.0027 ± 0.004 0.002 4.8e−4 ± 5.5e−4 0.0023 ± 0.004 0.003

DisEn1 3.311 ± 0.71 2.793 ± 0.466 2.15e−8 3.33 ± 0.194 2.916 ± 0.419 6.67e−7

DisEn2 3.029 ± 0.15 2.99 ± 0.479 0.6926 3.06 ± 0.217 3.067 ± 0.402 0.913

DisEn3 2.683 ± 0.11 2.61 ± 0.443 0.279 2.711 ± 0.114 2.634 ± 0.353 0.021

DisEn4 2.294 ± 0.13 2.33 ± 0.234 0.403 2.301 ± 0.128 2.336 ± 0.278 0.495

IMPE1 1.742 ± 0.034 1.75 ± 0.0203 0.3961 1.75 ± 0.026 1.762 ± 0.081 0.024

IMPE2 1.708 ± 0.045 1.76 ± 0.0273 2.1e−7 1.73 ± 0.048 1.767 ± 0.018 3.4e−5

IMPE3 1.416 ± 0.084 1.52 ± 0.073 1.3e−7 1.45 ± 0.048 1.523 ± 0.051 4.2e−8

IMPE4 1.089 ± 0.078 1.17 ± 0.109 1.4e−4 1.15 ± 0.053 1.211 ± 0.0822 3.0e−4

RdisE1 0.885 ± 0.051 0.778 ± 0.1275 1.08e−5 0.843 ± 0.065 0.76 ± 0.135 0.003

RdisEn2 0.857 ± 0.04 0.815 ± 0.113 0.036 0.818 ± 0.06 0.795 ± 0.117 0.3

RdisEn3 0.897 ± 0.03 0.83 ± 0.111 8.07e−4 0.848 ± 0.04 0.789 ± 0.111 0.003

RdisEn4 0.916 ± 0.025 0.878 ± 0.073 0.003 0.857 ± 0.043 0.835 ± 0.102 0.238

RenEn1 13.204 ± 1.29 11.92 ± 1.21 2.66e−5 14.95 ± 1.76 13.61 ± 1.442 4.8e−4

RenEn2 10.961 ± 1.46 12.08 ± 1.81 0.004 12.83 ± 1.41 13.74 ± 1.401 0.006

RenEn3 8.948 ± 1.73 9.36 ± 1.57 0.278 11.59 ± 1.49 12.445 ± 1.73 0.025

RenEn 4 5.996 ± 1.31 6.96 ± 1.84 0.011 9.5 ± 1.49 9.88 ± 1.643 0.405
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FIGURE 6 | Plot of number of features ranked by the entropy method versus accuracy using the 1-NN and 10-NN classifiers by using combined features,
respectively.

TABLE 4 | Classification of highest accuracy for the 1st 2-min interval by using various domain features.

Feature Ranking method Classifier Number of features Accuracy Sensitivity Specificity

Combined features Entropy 1-NN 11 96.1% 95% 97.2%

t-test 10-NN 10 92.1% 85% 100%

ROC 10-NN 10 94.7% 92.5% 97.2%

Wilcoxon 1-| NN 11 93.47% 92.5% 94.4%

Bhattacharyya 1-NN 10 90.8% 90% 91.6%

EEMD-based entropy features t-test 1-NN 10 94.7% 92.5% 97.2%

Time and frequency domain features t-test 10-NN 7 86.8% 100% 72.2%

EEMD-based and classical linear estimators, respectively, for
comparison. Obviously, Table 4 shows that the performance
of SCD detection by using the EEMD-based entropy of HRV
signals was superior to that by using the classical linear method
(94.7% vs.86.8%). Furthermore, the performance by using the
combination of parameters performed better than the other two
methods, suggesting that classical linear domain metrics for SCD
identification are an important complement to the non-linear
analysis of HRV signals proposed in this paper; this is consistent
with previous research (Voss, 1996; Guzzetti et al., 2005).

Figure 7A illustrates the ROC curves of three features
obtained using ROC analysis for the 1st 2-min, where the AUC
values of these features were ranked top three among all the
27 features. Notably, FuEn1, IMPE2, and IMP3, derived from
the EEMD-based entropy features, outperformed all classical
linear features and showed a superior capability to distinguish
normal from SCD HRV signals. To further verify the reliability
of these three features, the ROC curves of the three features
when computed from the 1st 5-min HRV signals are exhibited
in Figure 7B. We can observe that the AUC values of FuEn1 and
IMPE3 remain almost constant.

Table 5 showed the maximum accuracies based on the
integrated features on all seven cases (i.e., the 1st 2-min, 2nd 2-
min, 3rd 2-min, 4th 2-min, 5th 2-min, 6th 2-min, and 7th 2-min)
were achieved using different classifiers with different numbers

of features. It deserved mentioning that we achieved a higher
accuracy of 96.1%, sensitivity of 97.5%, and specificity of 94.4%
using the 10-NN classifier with 10 features for SCD detection
14 min before SCD onset.

DISCUSSION

Table 6 clearly shows that two different prediction time
resolutions (1-min and 2-min intervals) have been adopted for
SCD prediction. As this interval is over 2 min, it would result
in too small a prediction resolution and thus will influence the
efficiency of the prediction.

In studies on the use of ECG/HRV with a 1-min interval
for SCD prediction, Ebrahimzadeh et al. have done much and
acquired great achievements (Ebrahimzadeh and Pooyan, 2011;
Ebrahimzadeh et al., 2014, 2017, 2018a, 2019; Ebrahimzadeh
and Araabi, 2016). They used a total of 20 features extracted
from time, frequency, and time-frequency domains and classified
the SCD and normal subjects with an accuracy of 99.16 and
91.23% for the first and the second minutes, respectively,
prior to SCD onset (Ebrahimzadeh and Pooyan, 2011). The
combination of non-linear and time-frequency features coupled
with the KNN and MLP classifiers resulted in accuracies of
99.73, 96.52, 90.36, and 83.93% for the first to fourth 1 min
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FIGURE 7 | ROC cures of FuEn1, IMPE2, and IMPE3 extracted from (A) 1st 2-min and (B)1st 5-min HRV signals.

before SCD onset (Ebrahimzadeh et al., 2014). In 2017, they
proposed a local feature subset selection method to extract
the best combination of features from a total of 24 combined
features, and therefore the selected features in each 1-min HRV
interval were different. The proposed method had the ability
to predict SCD 12 min before occurrence and reported 82.67%
sensitivity, 85.09% specificity, and 83.88% accuracy for the 12th
1-min. The experimental results in the study indicated that time-
frequency and non-linear features performed better in separating
normal from high-risk SCD HRV signals compared to classical
features including time and frequency features. Recently, in 2019,
they introduced a combined model with a local feature subset
selection method and the Mixture of Expert (ME) classifier,
which can predict SCD 13 min prior to the onset with 84.24%
sensitivity, 85.71% specificity, and 82.85% accuracy. Several
automated SCD detection models were introduced by Acharya
et al. (2015a,b), Fujita et al. (2016). Based on DWT and non-
linear features, namely Detrended Fluctuation Analysis, Fractal
Dimension, Hurst’s exponent, ApEn, SampEn, and Correlation
Dimension, an automated SCD detection scheme was designed
to differentiate normal and pre-SCD events by using ECG
signals and achieved 92.50% sensitivity, 91.67% specificity,
and 92.11% accuracy for the 4th minute before the onset of

TABLE 5 | Maximum accuracy obtained on all seven cases by using
combined features.

Cases (Classifiers) Features Accuracy Sensitivity Specificity

First two minutes (1-NN) 11 96.1% 95% 97.2%

Second two minutes (10-NN) 11 90.8% 92.5% 88.9%

Third two minutes (10-NN) 10 97.4% 97.5% 94.4%

Fourth two minutes (1-NN) 4 94.7% 95% 94.4%

Fifth two minutes (10-NN) 5 94.7% 95% 94.4%

Sixth two minutes (1-NN) 8 93.4% 95% 91.7%

Seventh two minutes (10-NN) 10 96.1% 97.5% 94.4%

Average 94.7% 95.5% 93.6%

SCD (Acharya et al., 2015a). Fujita et al. introduced a novel
SCD prediction algorithm by using non-linear features (RenEn,
FuEn, Tsallis entropy, Hjorth’s parameters and energy of DWT
coefficients) and were capable of discriminating a person at risk
of SCD from normal subjects with 94.7% accuracy for the 4th
minute prior (Fujita et al., 2016).

In a study on HRV in 2-min intervals for SCD prediction,
Shen et al. (2007) applied fast Fourier transforms to 2-min
duration HRV signals before the onset of SCD and then
extracted frequency domain features from the corresponding
standard segments. The proposed method achieved an accuracy
of 67.44% for distinguishing SCD risk groups from normal
groups. Murukesan et al. performed SCD prediction 2 min before
the incident with the help of a total of 34 features, including 13
frequency domains, 15 time domains, and 6 non-linear domains,
and obtained accuracies of 96.36 and 93.64% for SVM and PNN,
respectively (Murukesan et al., 2014).

From Table 6, it is evident that the prediction time of most
studies is 4 min at the most. The clinician has insufficient time
to provide timely and efficient therapy for patients at risk of
SCD outside a hospital. The prediction time of individual studies
is extended from 4 to 13 min, but using more a short-term
interval (1-min) may result in unreliability of frequency domain
and entropy features, so the recommended duration of short-
term recording is 2 to 5 min (Malik, 1996). Synthesizing the
prediction resolution and reliability of the SCD detection scheme,
we selected HRV signals with a 2-min interval for analysis.

It has been reported that SCD is a fatal cardiovascular
disease that can involve abnormality of the autonomic nervous
system (ANS), and frequency domain analysis of HRV signals
is widely employed to evaluate the activity of ANS for SCD
risk stratification (Wellens et al., 2014; Malik, 1996). In this
paper, we investigated the performance of EEMD-based entropy
indexes extracted from HRV beats on SCD identification for the
following reasons. Firstly, the superiority of the EEMD method
is that it decomposes time series into IMFs in a data-dependent
and adaptive manner, making it suitable for the analysis of
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TABLE 6 | Summary of previously reported early SCD detection using ECG/HRV signals.

Author (year) Data (ECG or HRV) Total no. of
features

Method (features) Classification Results

Early SCD detection using 1-min interval ECG/HRV signals

Ebrahimzadeh and
Pooyan (2011)

35 normal and 35 SCD (HRV)
Source: Normal Sinus Rhythm
(NSR) database and Sudden
Cardiac Death Holter (SCD)
database

20 Linear and non-linear methods
(time-domain features (5);
frequency-domain features (4);
time-frequency domain features (11))

KNN, Multilayer
perceptron (MLP)

Acc = 91.23%
(2nd 1 min before)

Ebrahimzadeh et al.
(2014)

35 normal and 35 SCD (HRV)
Source: NSR database
and SCD database

24 Linear and non-linear methods
(time-domain features (5);
frequency-domain features (4);
time-frequency domain features (11);
non-linear features (4))

KNN, Multilayer
Perceptron
Neural Network

Sen = 83.75%
Acc = 83.93%
(4th 1 min before)

Acharya et al., 2015a 36 normal and 40 SCD (ECG)
Source: NSR database
and SCD database

18 DWT, non-linear methods
(non-linear features (6))

SVM, DT, KNN Sen = 92.50%
Spe = 91.67%
Acc = 92.11%
(4th 1 min before)

Acharya et al., 2015b 36 normal and 40 SCD (HRV)
Source: NSR database
and SCD database

10 Recurrence Quantification Analysis,
non-linear methods
(RQA parameters (10))

SVM, PNN, KNN,
DT

Sen = 85%
Spe = 88.8%
Acc = 86.8%
(4th 1 min before)

Mirhoseini et al.
(2016)

18 normal and 19 SCD (HRV)
Source: NSR database
and SCD database

22 Linear and non-linear methods
(time-domain features (5);
frequency-domain features (4);
time-frequency domain features (10);
non-linear features (3))

SVM Spe = 89.5%
Acc = 83.24%
(1st 1 min before)

Fujita et al. (2016) 18 normal and 20 SCD (HRV)
Source: NSR database
and SCD database

9 Wavelet transform, non-linear methods
(non-linear features (9))

DT, SVM, KNN Sen = 95%
Spe = 94.4%
Acc = 94.7%
(4th 1 min before)

Ebrahimzadeh et al.
(2017)

35 normal and 35 SCD (HRV)
Source: NSR database
and SCD database

24 Linear and non-linear methods
(time-domain features (5);
frequency-domain features (4);
time-frequency domain features (11);
non-linear features (4))

MLP Sen = 82.67%
Spe = 85.09%
Acc = 83.88%
(12th 1 min before)

Ebrahimzadeh et al.
(2018a)

35 normal and 35 SCD (HRV)
Source: NSR database
and SCD database

24 Linear and non-linear methods
(time-domain features (5);
frequency-domain features (4);
time -frequency domain features (11);
non-linear features (4))

MLP, KNN Acc = 83.96%
(4th 1 min before)

Ebrahimzadeh et al.
(2019)

35 normal and 35 SCD (HRV)
Source: NSR database
and SCD database

28 Linear and non-linear methods
(time-domain features (5);
frequency-domain features (4);
time-frequency domain features (11);
non-linear features (8))

MLP, SVM, KNN Sen = 85.72%
Spe = 82.86%
Acc = 84.28%
(13th 1 min before)

Early SCD detection using HRV signals of 2-min interval

Shen et al. (2007) 20 normal and 23 SCD
Source: NSR database
and SCD database

4 Non-linear methods
(time-frequency domain features (4))

Artificial neural
networks (ANN);
back
propagation (BP)

Acc = 87.5%
(1st 2 min before)

Murukesan et al.
(2014)

18 normal and 20 SCD
Source: NSR database
and SCD database

34 Linear and non-linear methods,
Poincaré plot analysis
(time-domain features(15);
frequency-domain features(13);
non-linear features (6))

SVM, PNN Sen = 93.33%
Spe = 100%
Acc = 96.36%
(1st 2 min before)

Current Study 36 normal and 40 SCD
Source: NSR database
and SCD database

27 EEMD, linear and non-linear methods
(time-domain features(3);
frequency-domain features (4);
non-linear features (5))

KNN Sen = 95%;
Spe = 97.2%
Acc = 96.1%
(1st 2 min before)
Average acc = 94.7%
(14 min before)

Sen, sensitivity; Spe, specificity; Acc, accuracy.
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unstable and non-linear HRV signals (Sharma et al., 2015),
unlike the DWT method, in which decomposition is related to a
predetermined wavelet basis function. Secondly, IMFs obtained
by EEMD are representative of the intrinsic oscillatory and
frequency modes; the fast oscillation modes are contained by the
lower-order IMFs, and the slow oscillation modes are captured
by the higher-order IMFs, that is to say, the lower IMFs contain
more energy. We therefore selected the first four IMFs obtained
by EEMD for HRV analysis since the first four IMFs occupied
almost all the energy of signals analyzed, as shown in Figure 3.
Studies have reported that the frequency components of IMFs are
arranged in descending order: the lower IMFs capture higher-
frequency components and vice versa (Sharma et al., 2015).
Moreover, entropy, a powerful tool for quantifying the disorder
and irregularity of dynamic systems, has been widely used for
HRV signals recently, as tabulated in Table 6. Therefore, EEMD-
based entropy HRV signals analysis provides a new way of
assessing the complexity of the rhythm variation of ANS so as
to unearth significant clinical information related to diseases. Li
et al. (2019) proposed a novel descriptor, namely sliding trend
fuzzy approximate entropy (SITr-fApEn), based on the empirical
mode decomposition (EMD) method for analyzing ANS with
obstructive sleep apnea (Li et al., 2019), and Pan et al. (2019)
introduced a multi-frequency components entropy (MFC-En)
based on EMD for CHF classification. MFC-En was verified to be
a useful tool for CHF measurement by evaluating the irregularity
of rhythm variations of the ANS.

In this paper, considering that there were undefined values
or computation instability as some entropy measures were
performed on short-term series, we first tested the reliability
of the ApEn, SamEn, RenEn, FuEn, DisEn, RdisEn, and IMPE
measures for short-term time series. Figure 5 shows that the
RenEn, FuEn, DisEn, RdisEn, and IMPE measures performed
stably in contrast to the ApEn and SamEn measures; therefore,
the RenEn, FuEn, DisEn, RdisEn, and IMPE measures were
adopted in the subsequent analysis. Table 3 illustrates that most
of the EEMD-based entropy measures computed from IMFs
could significantly distinguish patients affected by SCD from
normal subjects on the basis of 2-min interval HRV beats. The
FuEn1, IMPE2, and IMPE3 measures, among all of the HRV
measures including seven time-frequency and 20 EEMD-based
entropy indexes, achieved the top three AUC values of 0.862,
0.828, and 0.831, respectively, for 2-min HRV beats, and the
mean values of the three entropy metrics in patients affected
by SCD were higher than those in normal subjects, as shown
in Figure 7A and Table 3, suggesting that SCD patients had
more disorder of ANS than normal subjects. In a study on HRV
analysis, 5-min RR intervals were considered to be more suitable
for autonomic nerve assessment (Li et al., 2019). We also assessed
the performances of the EEMD-based entropy metrics on 5-
min HRV beats, and the simulation results showed that these
EEMD-based entropy metrics achieved comparable performance
(Table 3 and Figure 7B), further suggesting that the FuEn1 and
IMPE3 measures can be used as novel descriptors for quantifying
disorder of ANS affected by SCD.

Classical time and frequency indexes such as RMSSD, SDNN,
PNN50, VLF, LF, HF, and LF/HF were used for SCD detection

in this paper. These indexes have been proved to be useful
tools by previous studies (Voss, 1996; Guzzetti et al., 2005;
Sammito and Bockelmann, 2016). In this paper, we achieved an
accuracy of 94.7 and 86.8% by using EEMD-based entropy and
classical linear methods, respectively, for 1st 2-min HRV beats,
implying the superiority of the EEMD-based entropy methods
proposed for SCD detection (Table 4). Subsequently, a novel SCD
detection technique was developed based on classical linear and
EEMD-based entropy methods to analyze 14-min HRV signals
and achieved an average sensitivity of 93.6%, specificity of 95.5%,
and accuracy of 94.7% (Table 4). The novelty of our proposed
methods was that the prediction time was firstly extended from
4 min to 14 min by analyzing 2-min interval HRV signals with
a high average accuracy, and the FuEn1, IMPE2, and IMPE3
indexes from the EEMD-based entropy indexes were proved to
be powerful descriptors for measuring the complexity of ANS
in SCD patients (Table 3 and Figure 7). Additionally, a 10-
fold cross-validation algorithm made our proposed system more
robust and reliable.

This work has some limitations, in that important
confounding factors such as age, sex, and pathological
condition were not taken into account because of the small
amount of data available for SCD detection. There is therefore
a great necessity that the proposed SCD detection algorithm
be applied to a large data set before its implementation for
clinical purposes. Secondly, some useful methods such as
symbolic dynamics, renormalized entropy (Voss, 1996) and
conditional entropy (Porta et al., 2001, 2017) for HRV signals
analysis were not used in this paper. In the future, we will
consider these limitations to improve the SCD detection
scheme proposed.

CONCLUSION

In the area of early SCD detection, providing clinical early
warning information is the biggest challenge in cardiology. In this
work, we have proposed novel algorithms based on classical linear
and EEMD-based entropy methods, which have the capacity to
predict SCD occurrence up to 14 min prior, with an average
accuracy of 94. 7%, sensitivity of 95.5%, and specificity of 93.6%.
Moreover, the EEMD-based entropy estimators proposed in this
paper showed significant differences between SCD patients and
normal individuals. The results also showed that the EEMD-
based FuEn1 and IMPE3 indexes were particularly suitable
measurements for SCD identification, and these indexes, as
novel indices, can be used to quantify the complexity of the
rhythm variations of the autonomic nervous system when
affected by SCD.
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