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Introduction

During the reproductive cycle, from pregnancy to lactation, 
there is an increased demand for mineral requirements 
to help facilitate fetal development and milk production. 
In order to maintain appropriate mineral requirements, 
apart from exogenous intake, the maternal body exhibits 
an altered calcium homeostasis during this time. This 
increased demand can be partially met with alterations 
in intestinal calcium absorption and renal reabsorption1. 

These compensations alone, however, cannot meet fetal 
developmental requirements.

In order to meet metabolic demands, lactating humans 
exhibit higher serum levels of calcium and PTH during 
lactation compared to their non-lactating counterparts1,2. 
The subsequent increase in PTH results in a variety of 
effects. In particular, there is a significant increase in bone 
resorption during the time period leading up to parturition 
and subsequent lactation1-6. 

A variety of clinical studies have demonstrated a decrease in 
bone mineral density (BMD) during pregnancy, parturition and 
lactation1,2,6-8. However, this substantial decrease has been 
shown to be primarily transient, with no long-term adverse 
effects on bone health9. The only exception to this is when 
pregnancy-associated osteoporosis in humans occurs1,2,6.

Bone loss during subsequent lactation has been 
documented in many other species, including sheep10, 
dogs11, pigs12, monkeys13,14 and humans15,16. Nursing 
humans typically produce 300 mg to 400 mg of calcium 
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in milk on a daily basis1,2,6. During the nine-month period 
of lactation, humans exhibit a four-fold increase in loss 
of calcium greater than the metabolic requirement of a 
fetus during pregnancy17. As a result, women continue 
to lose BMD throughout lactation. In 2014, Tsvetov et 
al. described prolonged breast-feeding duration was 
significantly correlated to a low BMD18. In general, a 
lactating woman will lose 1-3 percent of her BMD per 
month. In comparison, a woman will lose a similar amount 
on a yearly basis following menopause2. 

Bone mineral density begins to increase immediately 
following lactation. In rodents, 20-30 percent of their skeletal 
mass is lost during pregnancy and lactation. That amount is 
regained within four weeks post-weaning19-24. Ardeshirpour 
et al. reported that at 28 days post-weaning, bone mineral 
density in mice had increased by 37 percent in the spine, 27 
percent at the femur and 25 percent throughout the body25. 

Demirtaş et al. documented that grand multiparity had no 
effect on post-menopausal BMD26. Some additional studies 
in humans have supported no correlation between parity 
and post-menopausal BMD27 but other studies have found 
both positive correlations28,29 and negative correlations30,31 
between parity and BMD in humans. The overall effect of 
parity on post-menopausal BMD is unclear. One study has 
suggested an initial increase in post-menopausal hip BMD in 
humans, however, this difference quickly disappears following 
the menopausal transition32. Despite the contradiction within 
the literature, there is a wide consensus that depicts no long-
term impact of parity on post-menopausal fracture incidence. 

Given the lack of consensus regarding effect of multiple 
pregnancies on post-menopausal bone mineral structure, we 
investigated the effect of parity on bone formation in mice. In 
particular, we focused on BMD as well as the trabecular and 
cortical bone compartments in mice that have undergone 
parity 1-5 times. We found that number of parity had 
significant effect on bone formation in middle-aged mice with 
significant correlation between bone density and parity.

Methods

Mice breeding colony and husbandry

C57BL/6J mice were bred and maintained in the Animal 
Facility, Indiana University School of Medicine, Indianapolis, 
IN. Six-week old (±3 days) C57BL/6J mice were obtained 
from Jackson Laboratory (Bar Harbor, ME) and acclimatized 
for at least one week, then breeding pairs were established 
to obtain timed pregnancies. The females were estrus 
synchronized by introducing male bedding materials for 
24 hours, paired with males (1 male: 1 female mating) for 
three days, separated from males, and caged individually 
to determine the exact date of birth of the pups. The non-
pregnant females were identified and mated with different 
males or group housed up to five females/cage. Young mice 
were weaned at three weeks of age. Some first generation 
siblings from the colony were used for subsequent breeding. 
All activities of the breeding colongy were carefully recorded 

to evaluate reproductive performance of females. Females 
were retired from breeding when litter size decreased, which 
was approximately at nine to 12 months of age, and then 
enrolled in the current study. All mice received commercial 
extruded lab rodent chow (Harlan 2018SX, Harlan 
Laboratories Inc., Indianapolis, IN) ad libitum in cage hoppers 
and automated reverse osmosis water. Animal rooms were 
maintained on a 12-h light/dark cycle were maintained at 
21±3oC with 30-80% relative humidity and at least 10 air 
changes per hour of 100% conditioned fresh air. All studies 
were approved by the Indiana University School of Medicine 
Institutional Animal Care and Use Committee.

Analysis of femurs

Mice were euthanized and the right distal femurs were 
analyzed by standard micro-computed tomography 
(microCT, SkyScan 1172, Bruker-microCT, Kontich, Belvium) 
utilizing the procedures and nomenclature recommended by 
Bouxsein and colleagues33. For each femur, the trabecular 
bone compartment was sliced into 50 segments from the 
cortical shell in a region approximately 0.5 mm above the 
most proximal portion of the growth plate. The X-ray source 
was set at 60 keV and 167 μA over an angular range of 
360 degrees with a 6-μm pixel size, and projection images 
were reconstructed using Skyscan and Nrecon. Images 
were binarized, with a threshold of 70 on a 0 to 255 scale. 
The following three-dimensional bone volume parameters 
were calculated: - trabecular bone volume fraction (BV/TV), 
trabecular thickness (Tb.Th), trabecular number (Tb.N) and 
trabecular separation (Tb.Sp). To convert grayscale values 
to density (mg/cm3), standard CTan software was used. Two 
densities were assessed, a 0.5 mm section of the trabecular 
bone compartment and the cortical bone itself. 

Cell isolation and culture

Long bones were isolated from mice and crushed in 
phosphate buffered saline using a sterile mortar and pestle to 
remove bone marrow. Bone fragments were then transferred 
to collagenase and digested twice at 37°C, once for 15 
minutes and once for 30 minutes. Digested cells were counted 
and seeded at 1x105 cells/ml for alkaline phosphatase and 
calcium deposition assays as detailed below.

Calcium deposition

Calcium deposition was assessed by eluting Alizarin Red 
S (Sigma-Aldrich, St. Louis, MO) from cell monolayers34. 
Monolayers were washed twice with PBS and fixed in ice cold 
70% (vol/vol) ethanol for 1 hour. Monolayers were washed 
twice with water and stained with 40 mM Alizarin Red S (pH 
4.2) for 10 minutes. Samples were washed with water to 
remove unbound dye five times and once with PBS. Bound 
dye was eluted by incubating monolayers with 1% (vol/vol) 
cetylpyridinium chloride in 10mM sodium phosphate (pH 7.0) 
for 15 minutes. Absorbance from aliquots was measured at 
562 nm (GENios Plus; Tecan, Männedorf, Switzerland), and 
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Alizarin Red Concentrations were calculated from a measured 
standard curve (Ca/mol of dye in solution). 

Alkaline phosphatase assay

Alkaline phosphatase activity was determined by the 
colorimetric conversion of p-nitrophenol (Sigma-Aldrich) 
and normalized to total protein (bicinchoninic acid or BCA, 
Pierce Chemical. Rockford, IL)34. Cells were washed two 
times with PBS. They were then lysed with 0.1% (vol/vol) 
Triton X-100 supplemented with a cocktail of broad-range 
protease inhibitors (Pierce Chemical), frozen and thawed 
twice and cleared via centrifugation. Lysates were incubated 
with 3 mg/mL p-nitrophenol phosphate in an alkaline buffer 
(pH 8.0) for 30 minutes at 37oC. The reaction was stopped 
by the addition of 20 mM NaOH and read at 405 nM (GENios 
Plus; Tecan). Alkaline phosphatase activity was determined 
by comparison with known p-nitrophenol standards.

Statistics

Unless otherwise stated, data obtained are presented 
as mean plus or minus standard deviation. Pearson 
correlation coefficients (bivariate correlation) were used to 
determine R2 values. Linear regressions using an analysis 
of variance model were performed to compare groups. 
All statistical analyses were performed with Statistical 
Package for Social Sciences (SPSS 21; Norusis/SPSS Inc) 
software and were 2-tailed or ANOVA with Tukey’s test 
with a level of significance set at 0.05.

Results

Analysis of reproductive performance

In this study 63 female mice were used. Numbers of mice 
in each group is as follows: no litters-3mice, 1 litter-6 mice, 2 
litters-5 mice, 3 litters-29 mice, 4 litters-13 mice, 5 litters-2 
mice. Age, mice delivered in each litter, and time between 
litters were tracked for all mice. Averages can be found in 
Table 1. Specifically, the average age of these mice range 
from approximately 9 months to 1 year. The average age 
of the mice in this study ranged from 287±27 days for the 
mice with one litter to 355±35 days for mice with 5 litters. 
The average number of mice per litter was not correlated to 

number of litters and ranges from 6.5±3.5 to 8.0±0.3 pups 
per litter. Time from birth to first litter decreased with number 
of litters (137±0 days for 1 litter to 74±6 days for 5 litters). 
Average time from birth to last litter increased with number of 
litters (137±0 days for 1 litter to 283±24 days for 5 litters.

Analysis of trabecular and cortical bone

The trabecular bone from the distal end of a femur 
for each mouse was analyzed and bone volume/tissue 
volume (BV/TV), trabecular thickness (Tb.Th), trabecular 
number (Tb.N), and trabecular separation (Tb.Sp) were 
determined. BV/TV, decreased as pregnancies increased 
from 1-5 liters (2.05±0.37% for 1 litter to 0.43±0.47 
for 5 litters). Interestingly, mice with no pregnancies had a 
smaller trabecular bone BV/TV than mice with 1 pregnancy 
(1.12±0.77% for no pregnancies vs. 2.05±0.37% for 1 
litter). All groups showed statistically significant differences 
from the mice with 1 litter (p<0.05) (Figure 1a). 

Trabecular number decreased as number of litters 
increased (from 1 to 5 litters). Values ranged from 
0.55±0.20/mm to 0.09±0.25/mm (Figure 1c). Mice that had 
1 litter had significantly higher Tb.N than all other groups, 
including mice with no pregnancies (p<0.05). Analysis of 
trabecular thickness and spacing, as well as tissue mineral 
density, revealed no significant difference with respect to 
number of pregnancies (Figure 1 b,d). 

Mid-shafts of extracted femurs were analyzed. No 
differences were found in BV/TV or in cortical bone area 
(Figure 2 a,b). Observed BV/TV values with respect to age also 
did not indicate significant difference in values. In addition, no 
differences were observed in cortical bone porosity.

Cell function

Osteoblast lineage cells were generated from individual 
mice and were assessed in terms of their functionality by 
determining alkaline phosphatase activity and calcium 
deposition (Figure 3 a-c). Alkaline phosphatase is the major 
enzymatic activity of osteoblasts and calcium deposition 
serves as a surrogate for mineralization. The highest alkaline 
phosphatase level was observed in mice with 4 litters while 
the lowest level recorded was at those with 1 litter. In general, 
alkaline phosphatase levels gradually increased as litters 

Table 1. Number of total litters, average age, mice per litter, age at birth of first litter, and age at birth of last litter.

Number of Litters Number of mice
avg age  
(days)

avg litter size  
(pups.litter)

avg time to first 
litter (days)

avg time to last 
litter (days)

1 6 283 ± 27 6.5 ± 3.5 137 ± 0 137 ± 0

2 5 295 ± 22 7.8 ± 1.3 114 ± 34 155 ± 35

3 29 218 ± 23 7.6 ± 2.0 94 ± 29 219 ± 44

4 13 339 ± 31 6.3 ± 1.3 89 ± 22 272 ± 39

5 2 355 ± 35 8.0 ± 0.3 74 ± 6 283 ± 24

*avg=average.
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Figure 1. Effect of number of litters on trabecular BV/TV (A), Trabecular thickness (B), Trabecular Number (C), and Trabecular Separation 
(D). Bars represents mean ± standard deviation * Indicates statistically significant difference (p<0.05) compared with 1 litter. 

Figure 2. Effect of number of litters on cortical bone area (A), and cortical BV/TV (B), Bars represents mean ± standard deviation.
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increased from 1 to 5 (Figure 3 a,b).
Calcium deposition was highest among mice that had 

4 litters, and lowest in nulliparous mice (Figure 3c). There 
was no significant correlation observed between calcium 
deposition and litter number. 

Next, a BCA assay was utilized to analyze the overall 
protein concentration in cultures (Figure 3d). The highest 
protein concentration noted was in mice with 3 litters. The 
lowest value noted was in mice with 1 litter. There was no 
significant correlation between protein concentration and 
litter number. 

Discussion

During pregnancy, parturition and subsequent lactation, 
numerous species, including humans, mice and rats, undergo 
significant alterations in calcium homeostasis35-39. This 
results in varying bone densities at different stages. While 
it has been shown that multiparity does not affect fracture 
incidence in humans9, its effect on various aspects of bone 
mineral density, specifically cortical or trabecular bone, has 
not been well studied. 

When analyzing the trabecular bone of mice in this study, 
a correlation was observed between parity and bone density. 
As the number of litters increased (from 1 to 5 litters), 
measurements of trabecular bone in BV/TV and Tb.N both 
decreased. These results may suggest that more trabecular 
bone is broken down as number of pregnancies increases. 

However, while Tb.N decreased, there was no correlation 
seen with regard to Tb.Th and Tb.Sp. This indicates that no 
differences exist in the width or spacing of the rods and plates 
that make up trabecular bone. There were also no significant 
differences in tissue mineral density or cortical bone 
parameters. Taken together these data suggest that parity 
in mice affects trabecular bone, but does not impact cortical 
bone or the total density of the bone. These observations are 
similar to findings from a study conducted by MJ de Bakker 
et al.9 where they observed a decrease in trabecular bone 
following multiple gestations when measurements were 
taken following a 6-week post-weaning phase9. With respect 
to cortical bone analysis, no significant change in cortical 
bone measurements was observed with respect to number of 
litters. Of note, Bakker et al9 reported an increase in cortical 
bone following multiple gestations. 

In our study, we noted a similar trend in trabecular bone 
with respect to parity to Bakker et al9. However, we did not 
see any difference in cortical bone. Despite this, our results 
support Bakker et al claim of a decrease in trabecular bone 
with increasing parity. In order to further elucidate the 
presence of cortical bone compensation hypothesized by 
Bakker et al, additional studies are required9. 

Interestingly, trabecular bone volume fraction was 
significantly increased in mice having undergone parity once 
as compared to nulliparous mice. Bone density was also 
observed at its highest level for mice that had undergone 
parity once. This appears to indicate that undergoing 

Figure 3. Effect of number of litters on alkaline phosphatase (A,B), calcium deposition (C), and protein (D). Bars represents mean ± 
standard deviation.
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pregnancy once may positively impact trabecular bone 
volume and bone density later in life for mice, but whether 
this is true for humans remains to be determined. 

Protein concentration and functional analysis of effects 
of parity on osteoblast cultures generated from these mice 
demonstrated that as parity increases, alkaline phosphatase 
enzymatic activity increases, with no change in calcium 
deposition or total protein concentration. However, these 
data must be interpreted cautiously as the sample size was 
smaller for certain parity groups.

There are several limitations with the present study. 
First, while alterations in mouse bones have been shown 
to be indicative of changes seen in human bone, there are 
innate differences between the two species that cannot 
be accounted for. The observations in this study require 
additional confirmation in a clinical study. Notably, the altered 
pattern of trabecular vs. cortical bone requires further 
investigation. Secondly, when observing trabecular bone, 
a decrease was observed with respect to number of litters 
as well as age. The latter has been well documented in the 
literature, with progression of age resulting in a decrease in 
trabecular bone at a post-menopausal phase. However, there 
seems to be a greater decrease in trabecular bone exhibited 
in our study than what would ordinarily be accounted for by 
age alone (as observed in nulliparous mice). Additionally, this 
study primarily focused on analysis at one skeletal site, the 
distal femur. While this location has been frequently utilized 
in prior bone studies, location-specific effects must be taken 
into consideration when applied to other skeletal areas. 

During lactation, humans exhibit higher calcium 
and PTH levels in order to meet the newly established 
homeostasis1,2. While a significant portion is compensated 
by increased intestinal absorption and renal reabsorption, 
bone resorption is still required in order to meet fetal 
developmental requirements. Our observations suggest 
parity affects certain aspects of skeletal homeostasis. 
In particular, trabecular bone and osteoblast enzymatic 
activity seem to be most impacted. Furthermore, it seems 
increasingly likely that there are additional compensatory 
mechanisms at play in order to preserve bone health. 
The increased production of cortical bone during post-
weaning periods could suggest compensation for decreased 
trabecular bone seen with multiparity.
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