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Abstract

The early detection of acute myocardial infarction, which is caused by lifestyle-related risk

factors, is essential because it can lead to chronic heart failure or sudden death. Echocardi-

ography, among the most common methods used to detect acute myocardial infarction, is a

noninvasive modality for the early diagnosis and assessment of abnormal wall motion. How-

ever, depending on disease range and severity, abnormal wall motion may be difficult to dis-

tinguish from normal myocardium. As abnormal wall motion can lead to fatal complications,

high accuracy is required in its detection over time on echocardiography. This study aimed

to develop an automatic detection method for acute myocardial infarction using convolu-

tional neural networks (CNNs) and long short-term memory (LSTM) in echocardiography.

The short-axis view (papillary muscle level) of one cardiac cycle and left ventricular long-

axis view were input into VGG16, a CNN model, for feature extraction. Thereafter, LSTM

was used to classify the cases as normal myocardium or acute myocardial infarction. The

overall classification accuracy reached 85.1% for the left ventricular long-axis view and

83.2% for the short-axis view (papillary muscle level). These results suggest the usefulness

of the proposed method for the detection of myocardial infarction using echocardiography.

Introduction

Acute myocardial infarction (AMI) is a disease in which myocardial cells become necrotic due

to thrombus formation or blood vessel occlusion. AMI causes severe chest pain and requires

immediate treatment, such as percutaneous transluminal coronary recanalization or coronary

artery bypass grafting. It is important to diagnose AMI as early as possible because it can lead

to heart failure, arrhythmia, or sudden death.

Echocardiography, a noninvasive imaging modality used to diagnose AMI, enables the real-

time assessment of cardiac function and complications and evaluation of regional abnormal

wall motion in patients with AMI. Therefore, it is widely used in cardiology. However,

depending on disease range and severity, regional abnormal wall motion can be difficult to

recognize. Moreover, the accuracy of its recognition depends on sonographer experience.
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Deep learning, an artificial intelligence technique, was recently confirmed to have excellent

processing power. Convolutional neural networks (CNNs), which are deep learning models,

have been widely applied in various fields such as medical image analysis [1–12]. In the

domain of echocardiography, Kusunose et al. proposed a method for detecting regional abnor-

mal wall motion on echocardiography images and obtained a high detection accuracy with an

area under the curve of approximately 0.9 [7]. Huang et al. proposed a technique for the visual-

ization of AMI on echocardiography, and their results showed a Dice index of approximately

0.8 [9]. Thus, CNN is a highly accurate technique for AMI detection and classification.

Deep learning has also been widely applied for the multi-classification of video datasets.

Recurrent neural networks (RNNs), which are also deep learning models, are particularly

effective at predicting and classifying sequential data such as wave signals, natural language,

and video [13–16]. RNNs have a recursive structure, meaning that they analyze and produce

outputs based on previous time-series and sequential data. Long short-term memory (LSTM),

which was recently developed, can be used to analyze even larger and longer-term datasets

than RNNs can process [17, 18]. Methods based on LSTM have been widely applied, and Ullah

et al. proposed a multi-classification method for video images in large video datasets that

obtained a classification accuracy of> 90% [19]. Zhou et al. proposed a natural language clas-

sification method based on LSTM and obtained a classification accuracy of>80% [20]. In

addition, there has been considerable research done on combining CNNs and RNNs [21].

Kusunose et al. conducted a study on a novel detection method using deep learning tech-

niques for abnormal regional wall motion noted on echocardiography. Multiple deep learning

models were utilized to classify echocardiography into routine normal cases and those with

abnormal regional wall motion. They adopted the ROC curve as an evaluation method and

compared the classification accuracy of the clinical technologists to that of the proposed deep

learning model. This comparison resulted in the AUC of the proposed method (0.97) and the

AUC of the clinical technologists (0.95) being virtually equivalent, confirming the effectiveness

of the proposed method. However, the study had a few limitations. The first limitation was the

use of short-axis echocardiogram views only at the level of the papillary muscle. Second, the

deep learning input data were limited to only three images per case: end-diastolic, mid-sys-

tolic, and end-systolic. Therefore, we attempted to detect AMI by analyzing the wall motion

temporal changes and inputting the echocardiograph of one cardiac cycle into deep learning,

which can then analyze time series. In addition to the short-axis papillary muscle (PM) level

view, we used another view that is easy to use, the left ventricular long axis view, to detect

AMI. We believe this method could be integral to the development of detection support tech-

nology so that non-specialist physicians in their clinics can accurately detect an AMI. In this

study, we focused on CNN and LSTM, which have been widely applied to medical image anal-

ysis and can be used for video processing and analysis. Specifically, we aimed to develop an

automated detection scheme for AMI using CNN and LSTM in echocardiography.

Materials and methods

Overview of the proposed method

An overview of the proposed method is presented in Fig 1. Echocardiography images were

loaded into VGG16 [22], a CNN model, to extract the features. The obtained features were

then analyzed using LSTM for the classification of AMI and normal myocardium.

Echocardiography

For this study, we collected short-axis PM level and left ventricular LX view images taken with

ultrasound equipment (Vivid E9 and Vivid E95, GE Healthcare) at Fujita health university
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hospital. A total of 202 cines were collected as inputs: 99 diagnoses of acute anteroseptal infarc-

tion of the proximal left anterior descending artery in the American Heart Association Com-

mittee Report and 103 normal cases. Cardiologists and experienced sonographers usually

estimate the culprit coronary artery in patients with myocardial infarction using left ventricu-

lar long-axis, left ventricular short-axis, apical four-chamber, apical two-chamber, and apical

long-axis views. Here we employed the short-axis PM level and left ventricular long-axis views

because it is relatively easy to detect anteroseptal infarction of the proximal left anterior

descending artery, which can be used to evaluate abnormal wall motion in cases of anteroseptal

infarction. Moreover, all cases of anteroseptal infarction used in this study underwent coro-

nary angiography, and occlusion of #6 was observed by examination. In addition, patients who

underwent percutaneous coronary intervention after coronary angiography and had abnormal

wall motion on echocardiography were included. Fig 2 shows the views used. Table 1 and Fig 3

show the baseline clinical characteristics of this cohort and the selection of the study

Fig 1. Overview of the proposed method.

https://doi.org/10.1371/journal.pone.0264002.g001

Fig 2. Left ventricular long-axis view and short-axis papillary muscle level view (left: views of anatomy; right: normal

views).

https://doi.org/10.1371/journal.pone.0264002.g002
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Table 1. Baseline clinical characteristics of the study cohort.

Characteristic Control (n = 103) AMI (n = 99) P value

Age, mean (SD) 66.7(12.1) 69.4 (11.6) 0.21

Female sex, no. (%) 38(38.4) 24 (24.2) 0.051

Body mass index (kg/m2), mean (SD) 22.4(4.2) 21.3(7.9) 0.07

Systolic blood pressure (mmHg), mean (SD) 127.3(21.5) 149.9 (29.6) <0.001

Diastolic blood pressure (mmHg), mean (SD) 75.23(13.9) 88.6 (20.8) <0.001

Cardiac rhythm 76.7(13.5) 84.1 (19.9) 0.026

Sinus rhythm, mean (SD) 83.1 (21.6)

Atrial fibrillation, mean (SD) 85.1 (20.6)

Site of AMI

Anterior/lateral/inferior (%) Anterior (100)

Coronary risk factors

Hypertension, no. (%) 4(4.04) 58 (58.6) <0.001

Diabetes, no. (%) 30 (30.3)

Dyslipidemia, no. (%) 47 (47.5)

Smoking, no. (%) 57 (57.6)

Laboratory data

White blood cell count, mean (SD) 6.7(3.5) 10.1 (7.0) <0.001

Hemoglobin (g/dL), mean (SD) 10.8(2.5) 13.7 (12.9) <0.001

Creatinine (mg/dL), mean (SD) 1.2(1.7) 1.2(1.3) <0.001

eGFR (mL/min/1.73 m2), mean (SD) 78.4(32.1) 82.3 (36.6) 0.41

BNP (pg/mL), mean (SD) 85.8(144) 391.8 (738.6) 0.009

CK-MB (ng/ml), mean (SD) 5.8(5.9) 280.9 (452.1) <0.001

TnI (ng/ml), mean (SD) 0.2(0.6) 89.3 (226.1) <0.001

Medications

β-blocker, no. (%) 16(15.1) 63 (63.6) <0.001

ARB /ACE-I, no. (%) 8(7.8) 65 (65.6) <0.001

https://doi.org/10.1371/journal.pone.0264002.t001

Fig 3. Selection of the study population.

https://doi.org/10.1371/journal.pone.0264002.g003
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population, respectively. P values indicate differences between patients who have normal myo-

cardium and AMI. P< 0.05 was considered statistically significant.

The image preprocessing involved electrocardiogram (ECG) removal, cropping, and frame

interpolation of the views. On echocardiography, a two-lead ECG is drawn to identify indica-

tors during the cardiac cycle such as end-diastole and end-systole. Fig 4 shows the preprocess-

ing of the input images. In this study, to recognize the cardiac wall motion on each view, the

ECG was removed and trimmed to form a bounding rectangle. To consider differences in

heart rate between patients, one cardiac cycle was extracted from each image and the number

of frames was interpolated to 30. Interpolation means that if the number of frames in the video

image for one cardiac cycle was 50–60, they were interpolated at equal intervals so that the

number of frames was 30, whereas if the number of frames was 10–20, they were interpolated

so that the total number of echocardiography images for all patients was 30. Linear interpola-

tion was used as the complementation method, and each of the images for one cardiac cycle

was extracted based on the length between the peaks (R-R interval) of the simultaneously

recorded ECG. This study was approved by an institutional review board of Fujita Health Uni-

versity and informed consents were obtained from patients subject to the condition of data

anonymization (No. HM19-345).

Feature extraction

The features of the interpolated images were extracted for input into the classification model

[23]. CNNs can extract features simultaneously as the final outputs or extract parameters as

intermediate outputs from individual layers. Varshni et al. used CNNs to extract features from

chest radiographs [24]. Hyeon et al. used CNNs to extract features from cytology images and

used conventional machine learning methods to differentiate between benign and malignant

cells [24, 25]. By using CNNs as feature extractors and other models as output layers, new

inputs can be added and the accuracy further improved compared to CNN use alone. There-

fore, we focused on this method and adopted VGG16 and global pooling [26], another CNN

model, as feature extractors. Using these feature extraction methods, we extracted features

from all frames of the interpolated echocardiography images.

VGG16 model. This study used VGG16, a CNN model developed by the Visual Geometry

Group at the University of Oxford in 2014, for the feature extraction. The structure of VGG16

is shown in Fig 5. It consists of 13 convolutional layers, 5 pooling layers, and 3 fully connected

layers [27]. We introduced the VGG16 pretraining network using the large natural ImageNet

image dataset. From the second fully connected layer of VGG16, 4096 features were extracted

and input into the classification model.

Fig 4. Preprocessing of the input data. All frames of one cardiac cycle taken from the original echocardiography

image were interpolated to 30 frames, and the ECG in the image was removed and trimmed.

https://doi.org/10.1371/journal.pone.0264002.g004
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Global pooling. Global average pooling (GAP) and global max pooling (GMP) are 2 compres-

sion methods for feature maps extracted from images by CNNs. These compression methods select

only the maximum or average values from the last feature map of the CNN and pool all of the fea-

ture maps. Fig 6 shows a simplified diagram of the GAP and GMP methods. These compression

methods were applied to the feature maps after completion of the convolutional and pooling pro-

cesses until just before the fully connected layer of the CNN. GAP, shown in the upper part of Fig

6, extracts the average value from each feature map and outputs only the extracted value as an inter-

mediate output. GMP, shown in the lower part of Fig 6, extracts the maximum value from each fea-

ture map and outputs it as an intermediate output. This process significantly reduces the number of

dimensions from the original feature map parameters and prevents overfitting. In this study, we

performed global pooling of the 7 × 7 × 512 feature maps extracted by VGG16 and output the aver-

age or maximum value from each feature map, which resulted in a total of 512 parameters.

LSTM networks

Because the detection of AMI on echocardiography requires the evaluation and analysis of

wall motion over time, two-dimensional images with different time phases were input into the

CNN. We also focused on RNNs, which are excellent tools for processing sequential data and

effective for time-series information such as cine images and wave signals as well as text data

and natural language. Therefore, this model is characterized by its ability to control sequential

information. Fig 7 demonstrates the principle of RNN, where x, y, and h are the input, output,

and weight of the hidden layer, respectively.

The RNN connects the layer at time (t) with the previous layer (t−1) and calculates the

parameters in the hidden layer (h(t)) and the output according to the following equations:

hðtÞ ¼ f ðUxðtÞ þWhðt � 1ÞÞ ð1Þ

yðtÞ ¼ gðVhðtÞÞ ð2Þ

U, W, and V denote the weights calculated during training, and f(z) and g(zm) denote the sig-

moid and softmax functions, respectively. The equations for the respective activation functions

are as follows:

f zð Þ ¼
1

1þ e� z
ð3Þ

g zmð Þ ¼
ezm

P
k þ ezk

ð4Þ

Fig 5. VGG16 structure.

https://doi.org/10.1371/journal.pone.0264002.g005
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However, because RNNs theoretically store all past data during training, the vanishing gra-

dient problem arises due to the divergence and disappearance of weights. Therefore, we

focused on LSTM, an improved RNN model. The principle of the LSTM is shown in Fig 8.

The difference between LSTM and RNN is that LSTM features a mechanism of information

selection called “gate” and “cell.” There are 3 types of gates: “input,” “output,” and “forgetting.”

Eq (i) shows the formula for the forgetting gate (ft):

f t ¼ sðWxfxt þWhfht� 1 þWCfCt� 1 þ bf Þ ðiÞ

From the input information, the output of the LSTM layer at (t−1) and the cell, the informa-

tion that is unnecessary in the learning at (t), is selected and “forgotten.” Eq (ii) is used to

determine the input gate (It):

It ¼ sðWxIxt þWhIht� 1 þWCICt� 1 þ bIÞ ðiiÞ

The output of the last LSTM layer and the value of the cell are used to determine the new value

Fig 6. Simplified diagram of the global average pooling and global max pooling compression methods. Pooling is

performed to extract the maximum or average values from the last feature map of the CNN.

https://doi.org/10.1371/journal.pone.0264002.g006
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to be updated. The value of the updated cell (Ct) is then determined by Eq (iii):

Ct ¼ f tCt� 1 þ IttanhðWxcxt þWhCht� 1 þ bCÞ ðiiiÞ

The value of the cell determined by the above equation is propagated to the next LSTM layer,

and the output (Ot) of the LSTM layer at (t) is determined by Eqs (iv) and (v) in the output

Fig 7. Schematic diagram of a recurrent neural network. In the diagram, x is the input, h is the hidden layer, and y is

the output. The RNN learns by passing the weights of the hidden layer to the next hidden layer in the forward

direction.

https://doi.org/10.1371/journal.pone.0264002.g007

Fig 8. Diagram of the long short-term memory principle. Input, forgetting, and output gates are used to determine

the information to be input into, retained, and output from the cells, enabling the learning of sequential data over a

long period of time.

https://doi.org/10.1371/journal.pone.0264002.g008
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gate section:

Ot ¼ sðWxOxt þWhOht� 1 þWCfCt� 1 þ bOÞ ðivÞ

ht ¼ OttanhðCtÞ ðvÞ

Using this gating mechanism, LSTM can analyze long-term series data and solve the vanishing

gradient problem of conventional RNNs. We introduced these mechanisms to analyze the wall

motion over time using echocardiography.

Finally, as shown in Fig 9, the features extracted by the VGG16 method were input into the

LSTM to classify the normal and AMI cases. For the hyperparameters, we set the learning rate

to 1 × 10−5, the number of epochs to 50, the batch size to 30, and the input data size to

4096 × 30.

Evaluation

Cross-validation method. The cross-validation method was used to evaluate the classifi-

cation accuracy of the constructed model. Fig 10 shows a simplified diagram of the cross-vali-

dation method. All datasets were initially divided into several groups, one of which was used as

the test group for the evaluation, while the remaining data were used for training. Thereafter,

the accuracy was comprehensively calculated by repeating the process such that all data are

test data. In this study, we used a five-fold cross-validation method in which the 202 echocardi-

ography images were divided into 142 cases for training, 20 cases for evaluation during train-

ing, and the remaining 40 cases for testing, with random sampling so that all cases were used

as test data.

Comparison with conventional artificial neural network. To demonstrate the effective-

ness of our method, the classification accuracy was also evaluated using five-fold cross-valida-

tion on a normal artificial neural network (ANN), which does not feature a mechanism to

handle time-series relations separately from LSTM [28, 29]. A schematic of the ANN is shown

in Fig 11, in which all features extracted by the VGG16 method for each frame were combined

Fig 9. Classification of myocardial infarction and normal myocardium cases. LSTM, long short-term memory.

Features from 1 to 30 frames were input to each LSTM, and the classification was performed using the softmax

function based on the LSTM output.

https://doi.org/10.1371/journal.pone.0264002.g009

PLOS ONE Deep learning for acute myocardial infarction

PLOS ONE | https://doi.org/10.1371/journal.pone.0264002 February 25, 2022 9 / 22

https://doi.org/10.1371/journal.pone.0264002.g009
https://doi.org/10.1371/journal.pone.0264002


and used as input to the neural network to classify the normal and AMI cases. For the hyper-

parameters, we set the learning rate to 1 × 10−5, the number of epochs to 50, the batch size to

30, and the input data size to 4096 × 30.

Results

Tables 2 and 3 show the confusion matrices and overall classification accuracies of LSTM and

ANN for the LX images, while Tables 4 and 5 show the results for the PM images. Table 6

shows the classification accuracy for the LX and PM images for the given parameters and clas-

sifiers. Tables 7 and 8 show the sensitivities, specificities, and area under the curves (AUC) for

Fig 10. Simplified diagram of the cross-validation method (number of folds = 5).

https://doi.org/10.1371/journal.pone.0264002.g010

Fig 11. Schematic representation of the artificial neural network classification of myocardial infarction and

normal cases. Features from 1 to 30 frames were transformed into one-dimensional data and input into an ANN.

https://doi.org/10.1371/journal.pone.0264002.g011

Table 2. Overall classification accuracy of long short-term memory for long-axis view images.

Estimated Overall accuracy

Normal myocardium Myocardial infarction

Actual Normal myocardium 89 14 0.851

Myocardial infarction 16 83

https://doi.org/10.1371/journal.pone.0264002.t002

Table 3. Overall classification accuracy of the artificial neural network for the long-axis view images.

Estimated Overall accuracy

Normal myocardium Myocardial infarction

Actual Normal myocardium 78 25 0.772

Myocardial infarction 21 78

https://doi.org/10.1371/journal.pone.0264002.t003
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Table 4. Overall classification accuracy of the long short-term memory for the short-axis papillary muscle level images.

Estimated Overall accuracy

Normal myocardium Myocardial infarction

Actual Normal myocardium 89 14 0.832

Myocardial infarction 20 79

https://doi.org/10.1371/journal.pone.0264002.t004

Table 5. Overall classification accuracy of the artificial neural network for the short-axis papillary muscle level images.

Estimated Overall accuracy

Normal myocardium Myocardial infarction

Actual Normal myocardium 85 18 0.802

Myocardial infarction 22 77

https://doi.org/10.1371/journal.pone.0264002.t005

Table 6. Overall classification accuracy with changing parameters.

View Classifier Input parameters for the classifier

Output of FC2 GAP GMP

LX LSTM 0.851 0.896 0.896

ANN 0.772 0.817 0.817

PM LSTM 0.832 0.867 0.817

ANN 0.802 0.797 0.837

ANN, artificial neural network; FC2, second fully connected layer of VGG16; GAP, global average pooling; GMP,

global max pooling; LSTM, long short-term memory; LX, long-axis view; PM, short-axis papillary muscle level

https://doi.org/10.1371/journal.pone.0264002.t006

Table 7. Results of long-axis view images.

View Classifier Input parameters for classifier Sensitivity Specificity AUC

LX LSTM Output of FC2 0.838 0.864 0.870

GAP 0.879 0.913 0.943

GMP 0.889 0.901 0.871

ANN Output of FC2 0.788 0.757 0.737

GAP 0.788 0.845 0.871

GMP 0.768 0.864 0.830

https://doi.org/10.1371/journal.pone.0264002.t007

Table 8. Results of short-axis papillary muscle view images.

View Classifier Input parameters for classifier Sensitivity Specificity AUC

PM LSTM Output of FC2 0.798 0.864 0.883

GAP 0.879 0.854 0.943

GMP 0.808 0.825 0.891

ANN Output of FC2 0.777 0.825 0.796

GAP 0.717 0.874 0.901

GMP 0.818 0.854 0.869

https://doi.org/10.1371/journal.pone.0264002.t008

PLOS ONE Deep learning for acute myocardial infarction

PLOS ONE | https://doi.org/10.1371/journal.pone.0264002 February 25, 2022 11 / 22

https://doi.org/10.1371/journal.pone.0264002.t004
https://doi.org/10.1371/journal.pone.0264002.t005
https://doi.org/10.1371/journal.pone.0264002.t006
https://doi.org/10.1371/journal.pone.0264002.t007
https://doi.org/10.1371/journal.pone.0264002.t008
https://doi.org/10.1371/journal.pone.0264002


the LX and PM images for the given parameters and classifiers. The accuracy of LSTM was the

best when GAP was used for both the LX and PM images. The accuracies for the LX and PM

images were 0.896 and 0.867, respectively.

Figs 12–15 compare the ROC curve. Figs 16–23 show representative correctly and incor-

rectly classified cases on echocardiography.

Discussion

In this study, we proposed an automated classification scheme for AMI and normal cases on

echocardiography images using deep learning. The VGG16 method was used to extract fea-

tures from the echocardiography images, while LSTM was used for the classification. The com-

parison of the classification models (Tables 2 and 3) shows that the results obtained with

LSTM were better than those obtained using the ANN. The overall classification accuracy

using LSTM was 0.852 for the LX images and 0.832 for the PM images. These results suggest

that LSTM can classify AMI and normal cases with higher accuracy than ANN and analyze

and classify useful features over time. In addition, the classification accuracy of LSTM suggests

that the image information of one cardiac cycle (consisting of 30 frames) is useful for analyzing

myocardial motion, thereby distinguishing AMI from normal myocardium. Unlike ordinary

ANNs, LSTMs have a mechanism known as “gates,” optimizing them for time-series

Fig 12. ROC curves of the LSTM versus ANN in long-axis view.

https://doi.org/10.1371/journal.pone.0264002.g012
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information analysis. The results showed that the LSTM can detect AMI on echocardiography

with better accuracy than ANN by analyzing time series information; moreover, the results

confirmed the superiority of the proposed LSTM method. Further, an AI-based study on lar-

yngitis pathology classification showed that the LSTM classification accuracy was 15% higher

than regular ANNs [30]. Other studies using AI-based solar radiation prediction have also

shown that LSTM has superior accuracy in predicting solar radiation [31]. In this study by

comparison, the classification accuracy was improved using LSTM, resulting in more effective

use of time series data, once again confirming the effectiveness of this method.

Table 4 shows that the overall classification accuracy of LSTM was best on the LX and PM

images when GAP was used. The classification accuracy on the LX images was 0.896, while that

on the PM images was 0.867. These results suggest that GAP extracts more useful features for clas-

sification than GMP. In addition, the results of the comparison between the features extracted

from the fully connected layer and the 512 features extracted by GAP showed that the classifica-

tion accuracy of LSTM increased when GAP was used. This finding suggests that GAP reduces

the number of unnecessary features for classification and achieves more efficient learning by

reducing the number of parameters. The reason for the lack of change in classification accuracy

between GAP and GMP when LSTM was used in the LX images may be that similar parameters

were extracted from the feature maps by GAP and GMP during the pooling process.

Fig 13. ROC curves of the GAP versus GMP in long-axis view.

https://doi.org/10.1371/journal.pone.0264002.g013
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Visual comparison of the incorrectly and correctly classified cases showed that those with

low video contrast, high noise, or high brightness of the myocardium were misclassified. These

results suggest that image quality, such as noise and contrast in the video image, is among the

most important factors in the classification of AMI and normal cases on echocardiography. In

addition, incorrect cases tended not to be shown adequately in the image: the left ventricle was

blurred and a different short-axis level view was shown. In future work, accuracy should be

improved by the analysis of echocardiography images and patient data from more facilities to

create a robust network model.

Similar studies are listed in Table 9 for comparison with our study. Since there are very few

studies with the same images and objectives, a simple comparison with this study may be diffi-

cult. However, our method was able to classify MI with an accuracy of more than 80% using

202 cases, confirming its validity.

We then calculated the accuracy of the classification using left ventricular LX and short-axis

PM level views, which were subsequently used to detect anteroseptal infarction. Acute antero-

septal infarction was evaluated by cardiologists and experienced sonographers using left ven-

tricular LX and short-axis PM level views as well as apical four-chamber and apical LX views,

allowing for observation of the apex. However, inexperienced clinicians, non-cardiologists,

residents, and those otherwise unfamiliar with echocardiography may find it difficult to obtain

apical four-chamber and apical LX view images with adequate quality. In addition, the

Fig 14. ROC curves of the LSTM versus ANN in short-axis papillary muscle view.

https://doi.org/10.1371/journal.pone.0264002.g014
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Fig 15. ROC curves of the GAP versus GMP in short-axis papillary muscle view.

https://doi.org/10.1371/journal.pone.0264002.g015

Fig 16. False-positive cases on long-axis view images.

https://doi.org/10.1371/journal.pone.0264002.g016
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detection of AMI is an emergent matter and requires accurate and rapid detection using left

ventricular LX and short-axis PM level views, which are relatively easy to obtain. These results

indicate that this method correctly identifies acute anteroseptal infarction with superior accu-

racy clearly distinguishing it from normal myocardium. Therefore, this method can greatly

assist non-cardiologists and inexperienced clinicians alike to diagnose acute anteroseptal

infarction during initial treatment.

Limitations and future works

This study has a few limitations. First, the echocardiograms were performed at the same insti-

tution. Second, this classification method is performed offline; therefore, it is necessary to

apply it to real-time processing so that classification during echocardiography can be utilized.

Third, we did not evaluate each segment of the heart individually; rather, we examined only

the acute anterior wall septal infarction with occlusion of #6 in the American Heart

Fig 17. True-negative cases on long-axis view images.

https://doi.org/10.1371/journal.pone.0264002.g017

Fig 18. False-negative cases on long-axis view images with anteroseptal infarction with regional abnormal wall

motion circled in red.

https://doi.org/10.1371/journal.pone.0264002.g018
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Association Committee Report, which occurs the most frequently. Since this study focused

only on acute anteroseptal infarction, the classification and evaluation of infarcts in each seg-

ment and in other coronary dominant regions should be performed in the future.

Conclusion

In this study, we developed an automatic detection scheme for AMI on echocardiography

images using CNN and LSTM. The accuracy of the classification showed that our proposed

method was able to classify AMI and normal cases with high accuracy, confirming its effective-

ness as a supplemental tool for the detection of AMI on echocardiography. Here specialists

and skilled doctors can easily detect an anteroseptal infarction. However, it may be difficult for

residents and physicians who are unfamiliar with echocardiography at the time of the initial

visit or physicians in non-cardiology clinics to detect it. Anteroseptal infarctions occur

Fig 19. True-positive cases on long-axis view images.

https://doi.org/10.1371/journal.pone.0264002.g019

Fig 20. False-positive cases on short-axis view papillary muscle level images.

https://doi.org/10.1371/journal.pone.0264002.g020
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frequently and require accurate detection and diagnosis, regardless of the technician or physi-

cian’s experience, field, or situation. This method can contribute to the detection of AMI and

is expected to lead to its appropriate treatment of and the prognosis of affected patients.

Another technical novelty of this study is the use of LSTM, which enables a time-series analysis

of wall motion on echocardiography. The results showed that LSTM can detect AMI more

accurately than ANNs without a time-series analysis function, confirming its superiority using

LSTM. In addition, here we used left ventricular long-axis and short-axis views (papillary mus-

cle level), which are minimal and easy to depict for diagnosis, as input. Since the classifications

were performed using highly accurate views, we found the possibility of applying this method

using LSTM to other views, which are easy to take. In addition, although this study focused

only on acute anteroseptal infarction, its methodology is expected to be extended to the detec-

tion of infarcts in other coronary artery dominant regions.

Fig 21. True-negative cases on short-axis view papillary muscle level images.

https://doi.org/10.1371/journal.pone.0264002.g021

Fig 22. False-negative cases on short-axis view papillary muscle level images.

https://doi.org/10.1371/journal.pone.0264002.g022
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Table 9. Comparison of related works.

Author dataset purpose method performance

Kusunose et al.

[7]

Patients with old MIMI: 400

Normal: 100

Detection of regional abnormal wall motion on

echocardiography

Classification using CNN AUC: 0.97

Zhang et al.

[32]

Patients with MIMI: 169

Control: 69

Detection of chronic MIMI on nonenhanced

cardiac cine MRI

Classification using region extraction

model and LSTM

Sensitivity: 0.90

Specificity: 0.99

AUC: 0.94

Baloglu et al.

[33]

MIMI: 148

Normal: 52

Detection of MIMI on 12-lead ECG Classification using CNN Overall accuracy: 0.9978

Huang et al.

[9]

Regional wall motion

abnormality: 947

Detection of regional abnormal wall motion on

echocardiography

Segmentation using U-Net Dice index: 0.756

Vece et al. [34] Patients with takotsubo

syndrome: 110

Patient with a MIAMI: 110

Detection of Takotsubo cardiomyopathy on

echocardiography

Classification using machine learning AUC: 0.801 Overall

accuracy: 0.745

Shimizu et al.

[35]

Patients with takotsubo

syndrome: 50

Patient with MIAMI: 50

Detection of Takotsubo cardiomyopathy and

AMI on echocardiography

Classification using CNN Mean accuracy: 0.748

Shahin et al.

[36]

8 of cardioviews: 432 Classification of echocardiographic view types Classification using CNN and LSTM Accuracy: 0.963

https://doi.org/10.1371/journal.pone.0264002.t009
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