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Pancreatic neuroendocrine tumors (PanNENs) are rare sporadic cancers or develop as

part of hereditary syndromes. PanNENs can be both functioning and non-functioning

based on whether they produce bioactive peptides. Some PanNENs are well

differentiated while others—poorly. Symptoms, thus, depend on both oncological

and hormonal causes. PanNEN diagnosis and treatment benefit from and in some

instances are guided by biomarker monitoring. However, plasmatic monoanalytes are

only suggestive of PanNEN pathological status and their positivity is typically followed

by deepen diagnostic analyses through imaging techniques. There is a strong need for

new biomarkers and follow-up modalities aimed to improve the outcome of PanNEN

patients. Liquid biopsy follow-up, i.e., sequential analysis on tumor biomarkers in body

fluids offers a great potential, that need to be substantiated by additional studies focusing

on the specific markers and the timing of the analyses. This review provides the most

updated panorama on PanNEN biomarkers.

Keywords: pancreatic tumor, pancreatic neuroendocrine tumor, biomarker, neuroendocrine syndrome, FDG

(18F-fluorodeoxyglucose)-PET/CT

INTRODUCTION

Neuroendocrine neoplasms (NENs) are rare and heterogeneous tumors of epithelial origin arising
from cells of the neuroendocrine system. Pancreatic NENs (PanNENs) are low incidence diseases
accounting for less than 3% of all pancreatic malignancies but their prevalence is relatively high
and is actually rising (1). PanNEN patients account for 8.1% of total NEN cases (SEER 18) (2),
present metastases at diagnosis in 60–80% of cases (3) and can be subgrouped in functioning (F-
PanNENs) and non-functioning neoplasms (NF-PanNENs) depending on their ability to secrete
active hormones associated with a specific symptomatology. They can occur as sporadic and
isolated tumors or in the context of complex hereditary syndromes, such as multiple endocrine
neoplasia type 1 (MEN1), von Hippel–Lindau disease (VHL), neurofibromatosis 1, and tuberous
sclerosis (4–6). MEN1, in particular, is the commonest syndrome associated with PanNENs and
about 10% of all PanNEN patients are affected by MEN1 syndrome (1, 7). PanNENs prognosis
differs widely, with some tumors having an indolent nature, with a reasonable length of survival
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even with a metastatic presentation and others being
very aggressive with poor prognosis. PanNENs prognosis
heterogeneity is in part recognized by the World Health
Organization (WHO) classification system. Three independent
PanNEN staging systems coexist and are suggested by the
European Neuroendocrine Tumor Society (ENETS), the
American Joint Committee on Cancer (AJCC) and the World
Health Organization (WHO) respectively (2, 8–10). WHO
classification is based on cellular proliferation (measured as
mitotic count and Ki-67 expression; see Table 1). WHO has
recently updated NENs classification whereby well-differentiated
NENs are defined Neuroendocrine Tumors (NETs) regardless
the grading. This has generated a novel subgroup of well-
differentiated tumors with high Ki-67/mitotic index as G3
and poorly differentiated NENs defined as Neuroendocrine
Carcinomas (NEC) which are G3 by definition (2, 8, 10). The
ENETS staging system is based on TNM classification (1, 14)
whereas the AJCC—draws on the TNM staging for pancreatic
adenocarcinoma (5, 9); see Table 1 for a comparison). Although
the grade of disease is prognostic, several differences in the
clinical behavior remain between each subgroup, making
personalized treatment challenging for PanNENs. There is a
clear unmet clinical need for novel prognostic and predictive
biomarkers able to improve grading and staging assessments,
guide prognostication and support treatment decisions. We will
provide here a general overview of the existing and promising
prognostic and predictive biomarkers for PanNENs.

PANCREATIC NENs BIOMARKERS

Correct diagnosis and accurate staging are of primary importance
when treating cancer patients and the use of biomarkers
is pivotal in this challenge. An ideal biomarker should
display high sensitivity for the diagnosis of NENs, to predict
tumor aggressiveness (prognostic biomarker) and/or response
to treatment (predictive biomarker) (15). Since several factors
impact NEN patients’ survival, a multi-analyte approach,
which takes into consideration clinical, biochemical, histological
and molecular features of the disease is required (16).
Several parameters correlate with the overall survival of NEN
patients. They include tumor localization, size, grade and stage,
vascularization, presence of necrotic tissue and the presence of
metastases (17, 18). NEN diagnosis starts with the biochemical
quantification of circulating analytes in the plasma and/or serum
of patients. Neuroendocrine markers can be divided into two
main groups: non-specific markers that are virtually produced by
all NENs (19) and specific markers that are primarily produced
by F-NENs (Table 2).

Pancreatic NENs Non–specific Biomarkers
Non-specific PanNEN biomarkers include chromogranin-A
(CHGA), Neuron Specific Enolase (NSE), Pancreatic Polipeptide
(PP), Human Chorionic Gonadotropin (HCG), and Alpha
Fetoprotein (AFP) (Table 2, Figure 1). Biochemical evaluation of
these analytes can be easily performed on serum/plasma fraction

of patients with suspected NENs. Aberrant levels of such non-
specific markers should drive further and deepen diagnostic
tests (30).

Chromogranin-A (CHGA) is a glycoprotein secreted by
neurons and neuroendocrine cells, which is a precursor of
bioactive substances such as pancreastatin, catestatin and
vastatins I and II (31). Despite all members of granin family
can be secreted by neuroendocrine tumors, CHGA is the only
one routinely used in clinical practice. The assay has a high
sensitivity (32) and good specificity (19). Increased levels of
CHGA can be detected both in plasma and serum with a
good correlation, suggesting either measurement can provide
reliable evaluations of circulating CHGA (33). Circulating CHGA
has been reported to correlate with tumor progression (19),
presence of metastases (34), tumor burden and response to
treatment in NENs, including PanNENs. In fact, CHGA decrease
in serum can be considered a surrogate marker for treatment
efficacy (35). In contrast, despite two to three-fold increase
of CHGA can be considered marker for NENs and also for
neuroendocrine differentiation of other non-neuroendocrine
cancers, several non-pathological factors, such as food intake (6)
and several non-neoplastic endocrine diseases can increase its
level in the bloodstream (36), making diagnosis challenging. For
those patients affected by concomitant conditions, CHGA assay
specificity may decrease up to 50%. Therefore, CHGA should be
never considered a first-line diagnostic or screening tool in these
sub-populations (37). Despite the above-mentioned limitations,
up to now CHGA is the most used liquid biomarker not only in
the diagnosis but also during the follow-up of NEN patients.

Neuron Specific Enolase (NSE) is an enzyme found in
neurons and neuroendocrine cells, even if only 30–50%, of
NENs secretes NSE (22, 32, 38). This marker may be elevated
in 38–40% of high-grade GEP-NENs, including PanNENs thus
providing also prognostic information (39). NSE levels have been
directly associated with tumor differentiation, aggressiveness
and size (39, 40) and it was found to inversely correlate with
overall survival (OS) and with progression-free survival (PFS)
in ENETS TNM stage IV. NSE has low sensibility but relatively
high specificity (see Table 2). Indeed, NSE can be virtually
overexpressed also by several non-neuroendocrine tumors, such
as parathyroid cancer, prostate carcinoma, neuroblastoma, and
it has been correlated with poor differentiation, prognosis and
high-grade disease (24). For these reasons NSE alone is rarely
used for diagnostic purposes or to distinguish NENs from non-
endocrine tumors. Up to date, there is no robust evidence
of the predictive role of NSE in predicting therapy efficacy
and monitoring patients during follow-up. On the other hand,
elevated baseline CHGA/NSE provide prognostic information on
PFS and survival in patients with advanced PanNEN treated with
the mTOR inhibitor everolimus (41). Evaluation of both NSE and
CHGA concentration increases the reliability of NEN diagnosis;
however, given the non-specific nature of these markers, they
do not provide information on the primary tumor site and its
origin (24).

Pancreatic Polypeptide (PP) PP is a 36 amino acid linear
oligopeptide, primary secreted by the PP cells of Langerhans’
islets (42). Despite its specific role is not well clarified it is
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TABLE 1 | Current WHO grading guidelines and 8th AJCC/UICC—ENETS consensus for pancreatic neuroendocrine neoplasms (11, 12).

WHO 2017 G Mitoses 10

HPF*

Ki-67 Index* Genetic

background

Neoplastic

evolution•

8th AJCC/UICC—ENETS consensus for pan NET staging

Well-

differentiated

NENs

NET G1 < 2 ATRX G1-G2
< 3

3− 20

> 20















G2 2-20 MEN-1 ↓↓ T stage

G3 >20 DAXX G3 T1 Confined to pancreas*, <2 cm

↓ T2 Confined to pancreas*, 2-4 cm

Poorly-

differentiated

NENs

↓ T3 Confined to pancreas*, >4 or

duodenum or bile duct invasion

NEC G3 > 20 RB NEC T4 Invasion of vessels and

contiguous organsTp53

> 20















MiNEN** G1-G3 NET/NEC Mixed features

+

ADC/SCC

WHO, World Health Organization; NEN, Neuroendocrine Neoplasm; NET/C, Neuroendocrine Tumour/Carcinoma; HPF, Hight Power Field; AJCC, American Joint Committee on Cancer;

ENETS, European Neuroendocrine Tumour Society; UICC, Union for International Cancer Control; ADC, Adenocarcinoma; SCC, Squamous cell Carcinoma. •Neoplastic evolution

Current classification considers the possibility of an evolution with time of a well-differentiated G1-G2 NEN to a higher G3 and, even more rarely, toward a poorly differentiated NEC

(13). **MiNENs (Mixed-NENs): may contain of non- neuroendocrine components (e.g., adeno or squamous) and neuroendocrine ones (at least 30% for each component) (11). *Specific

parameters for PanNET according to 8th AJCC/UICC-ENETS consensus.

supposed to regulate pancreatic, GI secretions (32) and hepatic
glycogen levels (38). PP is generally considered a neuroendocrine
differentiation marker with good specificity but low and variable
sensitivity (30) (Table 2). Since 2015, PP has been suggested for
the diagnosis of PanNENs (NCCN guidelines) (43) and ESMO
2012 consensus guidelines already considered PP diagnostic
also for NF-PanNENs (29). Despite PP has been observed
to be elevated in metastatic disease with increased sensitivity
(up to 80%) (44), <50% of PanNEN patients presents with
elevated serum PP (19). Additionally, serum concentrations
of PP can be increased by many factors, including physical
exercise, hypoglycemia, and food intake (32), as well as decreased
by somatostatin and hyperglycemia, diarrhea, laxative abuse,
increased age, GI inflammatory processes and chronic renal
disease (45). Detection of high levels of circulating PP, together
with CHGA is suggestive for PanNENs with increased sensitivity
(30, 42). Production of PP and/or CHGA is observed in 100%
of spontaneous and hereditary gastrinomas (46). In contrast,
decline of PP level during patients monitoring is considered a
good prognostic marker (19).

Finally, human chorionic gonadotropin (HCG) and alpha-

fetoprotein (AFP) can be also considered in biochemical
assessment of certain malignancies, although their use is limited
(24). HCG is a glycoprotein physiologically synthesized by
syncytiotrophoblastic cells of the placenta during pregnancy
(24, 32) and it is composed of α and β subunits. The β subunit
(β-HCG) is specific, since tumor cells usually lack the mechanism
to link α and β subunits. An increased secretion of the β subunit
is reported in pancreatic tumors and PanNENs. AFP is a peptide
hormone produced during development. In adults increase of

AFP in serum has been reported in NENs (25, 26). AFP-
producing PanNENs are rare and often associated with other
malignancies (47, 48). However, the literature is controversial on
the sensitivity and specificity HCG and AFP, thus limiting their
use in NENs (37, 49).

PanNENs Specific Biomarkers
Bioactive peptides retrieved in the blood of F-PanNEN patients
are useful prognostic and predictive biomarkers (24). However,
hormones are not always secreted and retrievable from the
blood. Indeed, evaluation of expression directly on the neoplastic
tissue is the gold standard for diagnosis. In addition, symptoms
associated with their increased levels help both to diagnose and to
identify the primary site of disease (50). F-PanNENs are named
after the hormones they produce as insulinomas, glucagonomas,
gastrinomas, somatostatinomas, VIPomas, which are suggestive
of their cell-of-origin.

Circulating Biomarkers
Gastrin (GAS) is a linear peptide hormone secreted by G–cells
of pyloric antrum, duodenum and pancreas implicated in the
regulation of chloride acid release from parietal cells in the
stomach, gastric motility and pancreatic secretion. A plasma
concentration of GAS >300 pg/mL correlates with the presence
of gastrinomas, even if GAS is secreted as well by functioning
NENs especially in the context of MEN-1 and Zollinger–Ellison
syndrome (ZES) (32).

Insulin (INS) is a dimeric peptide hormone of 51
amino acids, physiologically secreted by the β cells of
the pancreatic islets in response to glycemia increase and
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TABLE 2 | Biochemical biomarkers in use for PanNEN diagnosis, prognosis, and treatment monitoring.

Biochemical markers Source Level Sens.

(%)

Spec. (%) Combinations

improving

sens./spec.

Clinical use References

Non–specific Chromogranin A CHGA Serum 63–14.750

ug/l

60–83 72–85 NSE; PP For diagnosis and

follow up in

GEP-NENs and

treatment monitoring

(20, 21)

(22, 23)

Neuron-specific

enolase

NSE Plasma 5–92 ug/l 33 73 CHGA For diagnosis and

follow up in

GEP-NENs and

treatment monitoring

(20, 21)

(22, 23)

Pancreatic-

Polipetide

PP Plasma 480–780

pg/ml

31-63 67 CHGA For diagnosis and

follow up in

PanNENs

(23)

Human Corionic

Gonadotropin

HCG Serum Increased na Na AFP; CHGA; PP;

HCG

Indicative of

pancreatic origin

(24)

Alpha Fetoprotein AFP Serum Increased na Na HCG; CHGA; PP Indicative of

pancreatic origin and

de-differentiation

(25, 26)

Specific Gastrin GAS Serum ≥300

pg/mL

94 100 MEN-1; ZES Diagnostic for

Gastrinoma of

pancreatic origin

(24, 27)

Insulin INS Serum/

Plasma

≥43•

pmol/L

52 - 94 92−100 Whipple’s triad Diagnostic for

Insulinoma;

suggesting for WD

NETs.

(28)

Glucagon GCG Plasma 500–1000

pg/mL

High High - Diagnostic for

Glucagonoma;

suggesting for WD

NETs; Indication for

liver metastases

(24)

Somatostatin SST Plasma Increased◦ na Low SSoma syndrome◦ Diagnostic for

SSoma of

pancreatic origin;

(24)

Vasoactive

Intestinal Peptide

VIP Serum/Plasma 75•−200

pg/dL

na na Verner Morrison Diagnostic for

ViPoma of

pancreatic tail origin.

(29)

PanNENs, Pancreatic Neuroendocrine Neoplasia; GEP-NENs, Gastro-Entero-Pancreatic Neoplasia; WD NETs, well differentiated tumors; Sens., sensibility; Spec., specificity. •Diagnostic

serum/plasma level in association with specific syndrome. ◦Somatostatin increase is very a-specific, increase SS level with SSoma syndrome is suggesting for GEP-NENs.

involved in the regulation of body anabolism. INS can
increase as a consequence of several oncologic and non-
oncologic conditions, therefore, its concentration alone does not
represent a solid marker for insulinoma. Insulinoma should be
suspected when patients display the so-called “Whipple’s triad”
symptoms: clinical evidence of hypoglycemia, serum glucose
≤40 mg/dL and improvement following administration of
glucose (51).

Glucagon (GCG) is a peptide hormone secreted by pancreatic
α-cells to increase catabolism thereby mobilizing energy reserves
to free glucose molecules via gluconeogenesis and glycogenolysis.
An increased plasma GCG level >500 pg/mL is indicative
of glucagonoma albeit requires further diagnostic work-up to
exclude non-oncologic reasons. By contrast, GCG levels >1000
pg/mL are diagnostic for glucagonoma and used in the clinical
practice (52).

Somatostatin (SST) is a peptide hormone physiologically
secreted by pancreatic δ-cells, APUD cells and gastric antrum
D cells (53). SST can repress GCG and INS secretion by α and
β cells of the pancreas, respectively. SST excess induces non-
specific manifestations and it can result in the formation of
gallstones, intolerance to fat in the diet, diarrhea and diabetes.
Furthermore, increased levels of SST are not only associated
with somatostatinoma of the pancreas but also with various
extra-Pancreatic NENs (54). Hence, SST level per se is not
sufficient to diagnose somatostatinoma but it requires very
careful clinical assessment.

Vasoactive Intestinal Peptide (VIP) is a peptide
hormone released by pancreatic and brain cells. It is both a
neurotransmitter and a potent vasodilator regulating smooth
muscle activity, epithelial cell secretion and blood flow in the
gastrointestinal tract. VIPoma, a non-ß pancreatic islet cell
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FIGURE 1 | Schematic representation of PanNEN biomarkers Circulating peptides (i.e., CHGA, PP) are circled in light red, markers assayed by IHC on tissue (i.e.,

CHGA, SSTR) are circled in yellow and circulating molecular biomarkers (i.e., RNA transcripts, cfDNA) are circled in red.

tumor, shows a syndrome of watery diarrhea, hypokalemia, and
achlorhydria (WDHA syndrome) and it is diagnosed by a serum
VIP concentration above 200 pg/dL. A mild increase in VIP
concentration (75-200 pg/dL) can be also considered in patients
with Verner Morrison syndrome (29). These biomarkers can
be suggestive of a PanNEN. However, symptoms can often be
nuanced or aspecific, and careful clinical and histo-pathological
assessment remains mandatory.

Tissue Biomarkers
Histological diagnosis is usually assessed on surgical or
endoscopic biopsies, on which morphological and marker
distribution analysis is performed by immunohistochemistry

(IHC) (29) (Table 3). PanNENs can also produce hormones that
are not subsequently secreted, and specific stains for GAS, INS,
and SST can confirm clinical symptoms without biochemical
increase in serum. However, IHC alone for hormones and
bioactive peptides cannot prove site of origin and confirm
functionality of NENs (29). At present chromogranin A (CHGA)
and synaptophysin (SYP) are considered the most specific
markers for NEN differentiation by immunohistochemistry (62).
CHGA is contained in the granules of neurons and pancreatic
cells, it is a precursor of several functional peptide hormones
such as vasostatins and pancreastatin. CHGA is widely expressed
in well–differentiated NENs whereas generally low or focally
positive in poorly–differentiated NEC (55). SYP is an integral
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TABLE 3 | Immunohistochemical (IHC) biomarkers for PanNENs diagnosis, prognosis and treatment monitoring.

Immunohistochemical markers (IHC) Source Level Combinations

improving sens./spec.

Clinical use References

Differentiation Chromogranin A CHGA Surgical/endoscopic

biopsy

Over-expressed SYP Diagnosis of NENs;

Grading; Differentiation

(23)

(24)

Synaptophysin SYP Surgical/endoscopic

biopsy

Over-expressed CHGA Diagnosis of GEP-NENs;

grading; differentiation

(24)

Site of Origin Insulin gene

neanche

homeeobox - 1

ISL-2 Surgical/endoscopic

biopsy

Over-expressed in

endocrine pancreas

Low expression in case

of Gastrinoma

Over-expressed in Pan

NENs (especially in WD

tumors)

(55)

Progesteron

Receptor

PGR Surgical/endoscopic

biopsy

Positive CHGA + SYP Indicative of pancreatic

origin (40-75%) (negative

in GI-NENs)

(56)

Pancreatic and

duodenal

homeobox 1

PDX-1 Surgical/endoscopic

biopsy

Positive CHGA + SYP Indicative of pancreatic

origin

(57)

Neuroendocrine

secretory protein

55

NESP55 Surgical/endoscopic

biopsy

Focally positive CHGA + SYP Indicative of pancreatic

origin (40−50%)

(56)

Prognostic/

Predictive

Somatostatin

receptors 2a

SSTR2a Surgical/endoscopic

biopsy

Over-expressed CHGA + SYP Indicative of pancreatic

origin; Predictive for

PRRT treatment; inverse

correlation with grading.

(58)

(59)

ATRX/DAXX ATRX/ DAXX Surgical/endoscopic

biopsy

Loss of expression CHGA + SYP Prognostic for tumor

aggressiveness;

(associated with WD

tumors)

(60)

Programmed Cell

Death Ligand

PD-L1 Surgical/endoscopic

biopsy

Over-expressed CHGA + SYP Prognostic/Predictive for

anti-PD-L1 therapeutic

agents

(61)

PanNENs, Pancreatic Neuroendocrine Neoplasia; GEP-NENs, Gastro-Entero-Pancreatic Neoplasia; WD NETs, well differentiated tumors.

transmembrane glycoprotein expressed in neuroendocrine cells
and neurons involved in synaptic transmission with a diffuse
cytoplasmic immunostaining (63). CHGA and SYP combined
assessment represents the first of a multi–step approach currently
in use to confirm the neuroendocrine nature of the disease and
then its pancreatic origin.

EMERGING MARKERS IN PanNEN

Tissue Biomarkers
Besides the validated diagnostic markers, other tissue biomarkers
are under investigation to improve PanNENs management
providing information on the site of origin, grading, immune
and genetic landscape of the disease. In addition, novel
biomarkers could be new therapeutic targets. Up to now
several immunohistochemical panels have been proposed to
identify primary tumor site of origin, especially in NENs
of the gastro-entero-pancreatic (GEP-NENs) tract. Although
many recent studies focused on these biomarkers they are not
routinely used and validated for diagnosis and/or prognosis in
PanNENs management.

Islet 1 (ISL-1) is a homeobox transcription factor expressed
in all endocrine pancreatic cells (57). This pattern of expression
suggests a general role in the development of multiple cell
lineages of the endocrine pancreas. ISL-1 expression is detected
in 70–82% of panNENs (64). Unfortunately, other GI–NENs,

in particular NENs of the rectum, overexpress this marker
(65) and gastrinomas of the pancreas show low expression of
ISL-1 making its application as a general PanNEN diagnostic
biomarker troublesome.

Progesteron Receptor (PR), represent a widely—studied, but
still incoming and more specific pancreatic marker. Nuclear
positivity for PR has been reported in most pancreatic endocrine
tumors, and recent studies confirm PR expression in 40–
75% of PanNENs (56, 64). In addition, PR immunoreactivity
has been demonstrated to be strictly confined to endocrine
compartment of normal and neoplastic human pancreatic
islets (56, 64) and to be significantly associated with a
favorable prognosis and a lower clinical stage (66). The relative
expression of PR isoforms (PRA; PRB) have been reported
to have a prognostic role in NENs from different site of
origin (e.g., breast) (67, 68). Recent findings focused on the
role of PRA and PRB in PanNENs demonstrated that PRB
activation promotes Cyclin D1 (CCND1) overexpression and, as
a consequence of c-Fos and c-Jun induction transcription factors
supporting cell proliferation and tumorigenesis (69). In addition,
progesterone signaling via PRA could inhibit tumorigenesis
by PRB suppression. In addition, PRA can be a suitable
predictive factor in PanNEN and inversely correlated with tumor
progression (70).

Neuroendocrine secretory protein 55 (NESP55) is a protein
belonging to the chromogranin family which can be considered
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highly specific marker for PanNENs, since other GI-NENs
subtypes show low to none expression of this protein (64).
Recent findings report focal and specific expression of NESP55
in 40–74% of PanNENs in contrast with very rare expression
observed in other GI-NENs and NENs of the lung and rectum
(5 and 8%, respectively) (64, 71).

Paired box 8 (PAX 8) represents a transcription factor able
to regulate organogenesis in a variety of organs (72). Although
PAX8 has been considered a marker for renal development
and neoplasms, Sangoi et al. observed high PAX8 reactivity
in PanNENs and normal pancreatic islets in a large tissue
microarray evaluation (73). In contrast with ileal or pulmonary
NETs and NENs of duodenum, stomach, and rectum which
were negative to PAX8 staining or show very low expression,
respectively. PAX8 has been demonstrated to be particularly
useful in metastatic NENs with unknown primary tumor site,
the expression PAX8 in combination with ISL-1 could indicate
pancreatic origin (5).

Pancreatic and duodenal homeobox 1 (PDX-1) is
transcriptional activator of several genes, including insulin,
somatostatin, glucokinase, islet amyloid polypeptide, and glucose
transporter type 2 (74). PDX-1 immunoreactivity is reported
in 54–100% of PanNENs (64). Despite PDX-1 can be expressed
also by other GI-NENs, NENs of the ileum have been reported
to be negative for PDX1 thus it can be useful, especially when
used in combination with ISL-1, PAX8, and/or NESP55 in
defining pancreatic site of origin when it is unclear. In addition,
PDX-1 is involved in the early development of the pancreas and
plays a key role in glucose-dependent regulation of insulin gene
expression (74).

Among those, combinations of Islet 1 (ISL-1), Progesteron
Receptor (PR), neuroendocrine secretory protein 55 (NESP55),
paired box 8 (PAX8), and Pancreatic and duodenal homeobox
1 (PDX1) suggest pancreatic origin (73, 75–77). In addition,
the well-known Somatostatin Receptors (SSTRs) and GLUT-1
are companion markers for imaging techniques which fulfill a
primary role in PanNEN diagnosis and prognosis.

Somatostatin receptors 2a and 5 (SSTR2a and SSTR5) have
been widely studied as prognostic and predictive biomarker
in GEP-NENs since most of GEP-NENs shows diffuse SSTRs
overexpression (78), especially G1 and G2 stage tumors (79).
Indeed, an inverse correlation between SSTR2a expression
and NENs differentiation has been observed (80). SSTR2a is
particularly over-expressed in PanNETs compared to NENs
of different origin (e.g., GI-NENs/NEC). SSTRs represent the
molecular target for 68Gallium-labeled compounds and PET/CT
(68 Ga - PET/CT scan) that has recently become the gold standard
for the diagnosis and management of these tumors. Recent
study by Liverani et al. observed an inverse correlation between
68Ga - PET/CT uptake and tumor differentiation in a small
GEPNENs subsets (81). Therefore, SSTR2 can be considered for
both diagnostic and therapeutic purposes. Intriguingly, SSTR2 is
more expressed in primary PanNENs than in metastases (82),
suggesting a novel additional role of SSTR2a in monitoring the
tumor progression (79). Most of those biomarkers are not yet
used in clinical practice. However, multianalyte combinations
should show higher sensitivity and might be more effective than

the current use of monoanalytes as shown in some studies (83,
84). Several peptides and growth factors have been explored as
biomarkers for PanNENs to improve early diagnosis and follow-
up of NENs, among these α-Internexin, Paraneoplastic antigen
2 (PNMA2) and X-linked inhibitor of apoptosis (XIAP) are
emerging immunocytochemical markers.

Glucose transporter 1 (GLUT-1) is a uniporter protein
that mediates the transport of glucose molecules through
the cell membrane. GLUT-1 is observed to be overexpressed
in several tumors, probably related with higher metabolism
and cell growth (85). Several studies have shown association
between GLUT-1 expression and tumor aggressiveness, poor
prognosis and neuroendocrine differentiation in a number of
carcinomas (86–88). Fujino, M. et al. investigated the prognostic
role of GLUT-1 in G1/G2 PanNENs. GLUT-1 overexpression
correlates with grading, Ki-67 mitotic index, vessel invasion,
lymph node metastases and poor disease free survival rate (89).
In addition, HIF-1α overexpression was observed in GLUT-
1 positive cases, suggesting a HIF-1α dependent induction of
GLUT-1 in hypoxic conditions (89). In addition, GLUT-1 over
expression in NENs correlates with an increased uptake of 2-
deoxy-2-[fluorine-18] fluoro-D-glucose and positivity in PET-
CT (90). High 18F-FDG uptake is a useful prognostic marker
in PanNENs (91), thereby GLUT-1 expression may be a good
surrogate prognostic marker for 18F-FDG captation. Altogether
those evidences suggest that GLUT-1 expression might be
taken into consideration for PanNENs prognostic assessment.
Since 18F-FDG uptake by PanNENs is a valuable prognostic
marker associated with important aspects of tumor metabolism
it is becoming of paramount importance to find biomarkers
that correlate with this status for longitudinal analyses in
patients. In line with this observation, our preliminary data,
presented at the 2019 ESMO meeting reported a prognostic
miRNA signature associated with 18F-FDG PET status in
PanNENs (92).

Programmed Cell Death Ligand (PD-L1), a protein involved
in the immune checkpoint, is recently observed to be strongly
upregulated in G3 tumor patients both on tumor and
infiltrating immune cells, resulting in poor T-cell-mediated
tumor surveillance (93). Thus, PD-L1 expression may represent
a predictive biomarker for GEP-NENs patients who may benefit
from immunotherapy (94). Interestingly, it has been recently
reported that DAXX and ATRX molecular alterations correlate
with increased tumor-associatedmacrophage (TAMs) infiltration
thereby with inferior Disease Specific Survival rates, suggesting
TAMs as potential prognostic biomarkers and targets for
immune-modulating therapies in PanNETs (61). Finally, latest
publications and communications at international meetings
propose novel tissue markers with diagnostic, prognostic and/or
therapeutic markers for PanNENs, such as Delta-like protein 3
(DLL-3). Interestingly, PD-L isoform 2 (PD-L2) has been found
significantly overexpressed (p < 0.001) in PanNENs compared to
non-pancreatic NENs (e.g., lung) (95). The same study identified
that PD-L2 inversely correlates with presence of tumor necrosis
and with PD-L1 expression levels (p < 0.03).

DLL-3 is a member of the Notch ligand family that is
aberrantly expressed on the cell surface of Small cell lung
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cancer (SCLC), Merkel cell Carcinoma (MCC) (96) and other
neuroendocrine tumor cells (96–99) making it an attractive
therapeutic target in NECs as proposed at latest international
conferences, including AACR (96) and ESMO 2019 (100)
annual meetings (96) and tested in ongoing trials on SCLC
(TAOHE, NCT0306181).

α-Internexin is a cytoskeleton protein involved in
tumorigenesis and disease progression (101) and is overexpressed
in nervous system cell but also in insulinomas (102). Its
evaluation in tumor tissue specimens has been observed to be
useful as monoanalyte to predict and monitor treatment efficacy
in insulinomas (102, 103). Furthermore, combination of α-
Internexin and Ki-67 mitotic index, as prognostic multianalytes
tests, is observed to predict tumor aggressiveness in insulinomas
(89, 104–107). Loss or reduced expression of α-internexin protein
represents potential prognostic marker for non-insulinomas
PanNENs in terms of overall survival (OS) (102).

Paraneoplastic antigen 2 (PNMA2) is a neuronal antigen
identified as marker of neurological paraneoplastic syndromes
(108). PNMA2 shows correlation with disease progression and
recurrence free survival in PanNENs (109).

X-linked inhibitor of apoptosis (XIAP) suppresses apoptosis
in cancer cells (110, 111). It is a prognostic factor in cancer
patients. Despite its role in PanNENs is not well established it
is overexpressed in neuroendocrine GI tract and can represent
a potential target for therapies (112–114).

Novel forthcoming DNA/RNA markers are also studied.
DNA/RNA markers usefulness is mainly explored in the
bloodstream via non-invasive liquid biopsy. Nevertheless,
detection, analysis, and data interpretation of liquid markers are
challenging and still under development. For this reason, many
studies explored the expression pattern of DNA/RNA markers
and/or molecular mechanisms, such as alternative lengthening of
telomeres (ALT), non-coding RNAs, andmutational patterns also
and primarily on tumor tissue specimens.

ALT is a tissue DNA prognostic marker for NENs. In
PanNENs, ALT was shown to correlate with inactivating
mutations in ATRX/DAXX genes (115, 116). Despite the
literature is controversial about it, ALT expression is associated
with larger tumor size, grading, vascular/perineural invasion
and metastasis (117, 118). In contrast, other studies have found
association with prognosis (119, 120).

MicroRNAs (miRNAs) are 21-24 nucleotides non-coding
RNAs (ncRNAs) that interfere with gene expression. A plethora
of studies have been performed and propose specific tissue
miRNA signatures to distinguish PanNENs patients from healthy
individuals and the primary tumor from the metastatic disease
with a prognostic and/or predictive role. For example, Roldo
et al. described a tumor specific miRNA signature defined
by miR-103 and miR-107 expression and by the absence
of miR-155 expression distinguishing PanNEN from normal
pancreatic tissue (121). Furthermore miR-204 is primarily
expressed in insulinomas and correlates with insulin expression
on tissue (122).

Genetic Alterations Promoting Nen
Development
Before the last decade genetic studies on molecular alterations
of GEP-NENs were limited and mainly based on data from
genetic syndromes associated with endocrine neoplasms. The
diffusion and fruition of next-generation sequencing and other
high-throughput techniques (microarray expression, miRNAs,
and methylome analyses) in recent years have provided a larger
amount of genetic and epigenetic information and a wider view
of these malignancies, and especially of PanNENs, from a genetic
perspective as reviewed in a very comprehensive manner by
several authors (119, 123–130).

This information improved patients’ stratification. Indeed,
the WHO 2017 update for PanNENs proposed the separation
of PanNECs and PanNENs, based on molecular alterations
and regardless of the grading (14, 131–133). TP53 and RB1
combined loss has been confirmed to be driver mutation of
pancreatic carcinoma development. PanNECs represent the 7, 5%
of all PanNENs (134) and they are characterized by TP53 and
RB1 inactivating mutations 20–73 and 71%, respectively while
NENs, including G3 NENs with higher Ki-67 percentage and
proliferation index do not display thesemutations (124, 125, 134–
138). RB1 is a key negative regulator of the cell cycle via p16
and other proteins. Indeed, loss of p16 immunostaining has been
reported in 20–44% PanNECs, alone or in combination with
Rb loss (134, 139–142). Interestingly, RASSF1A, another cell
cycle repressor of downstream to Rb displayed methylation of
the promoter in 10–60% of PanNECs, pinpointing the crucial
role of cell cycle deregulation in carcinomas tumorigenesis (143–
146). Interestingly TP53 inactivation and/or P53 protein nuclear
accumulation have been identified in 20-70% and 65-100% of
PanNECs respectively (134, 142, 147–149).

A specific mutational pattern has been also reported for
PanNENs, that lack RB/TP53 mutations or an impaired RB/P53
expression. These tumors frequently display DAXX/ATRXX (9–
25%) and MEN-1 (10–36%) mutations or protein impaired
expression (150, 151). The first whole-exome study on PanNETs,
identified ATRX and DAXX as mutated genes, located in the
chromatin remodeling compartment (119). ATRX/DAXX loss
occurs in 18 and 25% of PanNETs and leads to ALT phenomenon,
chromosomal instability and higher tumor stage suggesting this
mutation is a late event in the neoplastic transformation (116,
152, 153). A second effect of ATRX/DAXX alteration concerns
PTEN and, as consequence the inhibition of the PI3K/mTOR
pathway (117, 119, 154, 155).

In addition, whole-genome/exome studies identified PTEN
and TSC1/2 as potential driver mutations in NENs development
when compared to carcinoma tumorigenesis, with a frequency
of inactivating lesions among PanNEN cases of 7 and 6%,
respectively (119, 156). These alterations, in particular RB1/TP53
loss, are particularly important for diagnosis and prognosis to
distinguish NECs from G3 PanNENs, especially in challenging
cases as when morphology and immunostaining are unreliable
(131, 132, 151, 157, 158).
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Germline Mutations and Sporadic PanNEN
Development
Genetic studies on molecular alteration of GEP-NENs has been
limited and mainly based on data from genetic syndromes
associated with endocrine neoplasm for a long time. Genetic
syndromes with recurrent germline mutated genes such as
MEN, VHL, NF1, and TS (159–164)have been demonstrated to
favor GEP-NENs development in about 10% of all NENs (4).
Interestingly, somatic mutations on the same genes have been
reported to promote sporadic PanNEN onset, with variable
frequencies. Data derived from hereditary syndromes first, and
from sequencing of sporadic PanNENs later, highlighted the
involvement of two main pathways in PanNENs development:
cyclin-dependent cell cycle regulation (MEN-1) and the
PI3K/mTOR pathway (MEN-1, VHL, NF-1, TS).

Multiple Endocrine Neoplasia type I is an autosomal
dominant disease, promoting the development of pancreatic
endocrine tumors in 60% of patients (165). It is caused by
germline-inactivating mutations in the MEN-1 gene (166, 167)
and by subsequent somatic loss of the normal allele (168).MEN-
1 gene alteration has been also reported in 44% of sporadic
NETs (127). For these reasons it is considered one of the main
genes involved in NET biology (119, 156, 169–173). MEN-1
loss affects a large number of cellular activities, including (a)
histone methylation and expression of the CDKN2C/CDKN1B
cell cycle inhibitors (174); (b) PI3K/mTOR signaling via Akt
(175); (c) homologous recombination (HR) through interactions
with DNA repair complexes (e.g., RAD51 and BRCA1)(176, 177).
In addition, MEN-1 mutations have been associated with loss of
P27 as an early alteration in NET development (178).

Von Hippel–Lindau disease is caused by inactivating
mutations of the VHL gene. VHL is observed to be inactivated
also by deletion or methylation in up to 25% of sporadic
PanNETs (127). VHL inactivation leads to the activation of the
hypoxia induced pro-proliferative signaling (179, 180).

Neurofibromatosis type I disease derives from germline
mutations of NF1 that are associated with NEN development in
10% of patients affected by the syndrome. NF1 protein product
is a negative regulator of PI3K/mTOR pathway which holds a
key role in NEN tumorigenesis (169, 181). Nevertheless, NF1 has
been rarely reported to be mutated in sporadic PanNENs (127).

Inactivating mutations in TS lead to Tuberous Sclerosis
Complex (TSC) syndrome and to sporadic PanNENs in 35% of
cases (127). This is caused by inactivation of TSC1 and TSC2,
thus inhibiting PI3K/mTOR signaling downstream of AKT1
(119, 182).

Chromosomal and Epigenetic Alterations
Mutational events alone cannot be traced back and explain all
cases of NEN. Evidence points instead to chromosomal and/or
epigenetic alterations as origin of neuroendocrine transformation
in about 50% of cases. CNV analysis and whole-genome
sequencing (117, 124, 156) allowed the definition of four
PanNENs subtypes based on chromosomal alterations: (i) loss of
chromosome 11q (where MEN1 resides); (ii) a recurrent pattern
of whole chromosomal loss (RPCL) in association with higher

mitotic index, ALT and ATRX/DAXX inactivation; (iii and iv)
patterns of chromosome gaining, complementary to losses of
the RPCL group and associated with higher risk of metastasis
(126, 183–187). In addition, whole-genome mutational analysis,
identified 10% of germline mutations in base-excision repair
(MUTYH) and homologous recombination repair (BRCA2,
CHEK2) genes (119, 182).

From a transcriptional perspective PanNENs have been
classified into 3 subtypes, which are related to key pathways
of NEN disease, namely, chromatin remodeling in MEN1-like
tumors, PI3K/mTOR in insulinoma-like tumors and hypoxia-
related genes in the metastasis-like primarytumors cluster (188).

DNA methylation alteration is also found and is associated
with PanNETs. Hyper-methylation of RASSF1A, HIC-1,
CDKN2A, VHL, and MGMT genes for example has been
reported in a large fraction of PanNETs (189–191). In contrast,
hypo-methylation was reported for ALU and LINE1. In
particular LINE1 has been associated to poor prognosis and
chromosomal instability in ATRX/DAXX negative tumors
(190, 192, 193).

Liquid Forthcoming Markers in PanNENs
Three key methods allow a comprehensive assessment of
the neuroendocrine disease: clinical evaluation, imaging, and
biomarkers assessment (62, 84, 194). Imaging is complex,
based on sophisticated and expensive technologies, and often
fails to predict early changes of the disease and to anticipate
progressions or resolve pseudo-progressions (195). In addition,
standard serial CT/MRI imaging have well-described sensitivity
limitations (196) and may even provide false negative output
in comparison to functional imaging 68Ga-somatostatin analogs
(SSA)-PET/CT (197, 198). Furthermore, imaging can be invasive
as it exposes patients to repetitive radiation sessions. Both clinical
and imaging strategies, have high intra-observer variability and
are operator-dependent (199). In contrast, blood biomarkers
represent an easy-to-detect and non-invasive method to evaluate
disease with objective measurements (62, 84). The advent of
sophisticated and sensitive technologies has revolutionized the
concept of biopsy, changing the focus from a tumor tissue-
oriented framework to a systemic vision of the disease. Liquid
biopsy allows the detection of specific nucleic acids in body
fluids and it has particularly benefited fromNGS and quantitative
PCR approaches, partially overcoming the limit of tumor
heterogeneity present in tissue biopsies (195, 200). Application
of those analyses to blood samples has clear advantages, by
allowing multiple and consecutive measurements to follow
disease recurrence and clinical management outcomes. The
National Institute of Health (NIH) has classified bio-markers
into three categories for diagnosis and/or clinical applications
(201): (i) Type 0 markers are ‘indicators of the natural history of
disease’. They can directly or indirectly correlate with diagnosis,
prognosis, and outcome of the disease. (ii) Type I markers
‘describe the effects of an intervention in accordance with
the mechanism of action of the drug’ and reflect the general
efficacy of treatment through a specific mechanism. Finally,
(iii) Type II markers can be used as surrogates for tumor
functionality or clinical endpoints (e.g., PFS is often considered
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for GEP-NENs) (194). In addition, regarding the blood based
multianalyte tests (mRNA transcripts, i.e., NETest), the Food and
Drug Administration provides guidelines for in vitro diagnostic
(IVD) tools development. Indeed, FDA defines as IVD “any
reagent, instrument, and/or system intended for use in diagnosis
of disease or other conditions, including a determination
of the state of health, in order to cure, mitigate, treat, or
Liquid biomarkers include circulating cell-free DNA (cfDNA),
circulating tumor cells (CTCs), small-non-coding molecules, as
microRNAs (miRNAs) or long non-coding RNAs (lncRNA),
blood transcripts (e.g., NETest) and proteins (Table 4).

The role of cfDNA in PanNENs is debated. CNV analysis of
circulating cfDNAmirrors the presence of tumor-specific genetic
alterations of PanNEN cells (59). Nevertheless, the prognostic
value of cfDNA harboring RB1 and TP53 mutations, typically
found in NECs, has not met a consensus yet and it is still under
investigation. Similarly genetic alterations affecting ATRX/DAXX
and MEN-1 recently found in a subgroup of PanNETs with poor
prognosis are not detected yet in cfDNA with a prognostic role
(60, 124, 204).

The prognostic significance of CTCs is uncertain and reports
about them in NENs are conflicting. Indeed, some studies
associate CTCs increase and bone metastasis in NENs (205),
whereas others highlight CTCs low sensitivity for PanNENs (84).
At present, the 2016Delphic consensus on circulating biomarkers
in NENs has defined CTCs as a non–reliable marker, due to
technical limitations in evaluating their number and phenotype.

Circulating miRNAs are more stable than mRNAs in biofluids
and are largely explored as prognostic and/or predictive
biomarkers in NEN patients (58, 202). Accordingly, several
studies have produced signatures of circulating miRNAs
associated with PanNEN tissue expression although few
reporting prognostic power in PanNENs. Among those miR-21,
miR-642, miR-210, miR-196a, miR-96, miR-182, miR-183, and
miR-200 are the best characterized (121, 206–208). In addition,
a set of 10 miRNAs (miR-125a,−99a,−99b,−125b-1,-342,-
130a,−132,−129-2, and−125b-2) has been found to distinguish

PanNETs from NEC, whereas miR-204 over-expression resulted
to cluster insulinomas (209). Moreover, mir-21 overexpression,
which affects PI3K/mTOR pathway via PTEN, has been shown
to correlate with higher Ki-67 percentage and liver metastasis
in PanNENs (209). Another study reported overexpression of
miR-196a as an independent predictor of earlier recurrence,
also associated with grade, stage, and lymphatic spread at
diagnosis (208). Interestingly, despite the paucity of available
preclinical models for NET disease, a metastasis-like (MLP)
murine miR-signature (miR-23b,−24-1,−24-2,−27b,−132,-
137,−181a1, and−181a2) has been detected and interestingly,
it has also found to be overexpressed in about 65% of human
PanNETs (188).

LncRNAs can promote angiogenesis, metastasis, and tumor
suppressors escape (210–213). The role of lncRNA in PanNENs
remains poorly explored in detail yet andmost studies investigate
their correlation with MEN1 gene-encoding “menin” protein
in PanNETs. Modali et al., describe lncRNA Meg3 (maternally
expressed gene) as tumor-suppressor in PanNEN cells. PanNENs
which produce Menin can activate Meg3. Meg3 downregulates
c-Met affecting cell proliferation, migration and invasion in
insulinoma. Indeed, Meg3 and c-MET levels are described to
be inversely correlated, both in MEN1-associated PanNENs and
sporadic insulinomas. In a recently published paper, Ji et al.
found a significant difference in lncRNA and mRNA expression
between pNEN tumors and adjacent normal tissues (214).

Blood Transcripts (mRNA)—The NETest
The NETest is a PCR-based multianalyte test built on tissue and
peripheral blood transcripts using a signature of 51 NETs-related
genes (23, 215). This algorithmic multigene assay was designed
and validated specifically for GEP and bronchopulmonary NET
diseases (83, 203, 216). Recent studies showed that NETest
serves as diagnostic tool in PanNENs, since it distinguishes NET
disease from cancers of different site of origin or non-neoplastic

TABLE 4 | Circulating and tissue molecular biomarkers for PanNENs diagnosis, prognosis and treatment monitoring.

Molecular Markers Source Level Clinical use References

Potentially

prognostic and/or

predictive

Circulating Tumor Cells CTCs Serum/plasma Increased Related to the PFS and OS (202)

Circulating cell free

DNA

cfDNA Serum/plasma Increased Indicative of pancreatic tumor

origin, correlates with primary

tumors mutations (e.g.,

ATRX/DAXX)

(59)

Circulating transcripts NETest Serum/plasma Presence of NET “finger

print” genes

Prognostic for tumor

aggressiveness; predictive for

treatment efficacy.

(203)

MicroRNAs miRNAs Serum/plasma* Up/down—regulated Diagnostic for site of origin;

prognostic and potentially

predictive for treatment efficacy.

(58)

PanNENs, Pancreatic Neuroendocrine Neoplasia; PFS, progression-free survival; OS, overall survival. Serum/plasma*: also detected in tumor and healthy tissue. Useful for correlation

between circulating and primary tumor markers.
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conditions (e.g., chronic pancreatitis) with 94% accuracy. Indeed,
the NETest resulted much more accurate than current validated
CgA measurements, which displayed 56% overall accuracy (83).

NETest can act as both type 0 and type II biomarker, as
it serves both as diagnostic tool and for prognostication on
disease status (stable/progressive disease) and treatment efficacy
prediction (154, 203, 216–219). Latest meta-analysis by Oberg
et al. recently reported a diagnostic accuracy of NETest of
95–96% with a mean diagnostic odds ratio (DOR) of 5 853,
positive likelihood ratio (+LR) of 195, and negative LR of
0.06 in determining the presence of neuroendocrine neoplasia
(194). The normalized 51-marker signature is interrogated using
2 separate mathematical algorithmic analyses composing a
single score, which is scaled 0–100% (the NETest score). The
updated cut-off of NETest score for diagnosis is 20% (220–
225). These data are consistent with the definition of IVD
functional ability to establish a diagnosis and determine the
presence/absence of the disease. In addition, the NETest was
84.5–85.5% accurate as a marker of disease status, distinguishing
stable disease from progressive disease at the time of the blood
draw (219–221, 224–226). These data show the highest (>80%)
concordance with the current Response Evaluation Criteria
in Solid Tumors (RECIST) among NET biomarkers, fulfilling
NIH proposed cut-off (149). In addition, NETest is observed
to be related to functional imaging (e.g., 68Ga-somatostatin
analogs (SSA)-PET/CT) with 98% concordance in GEP-NETs,
including PanNETs (225). Further studies are required to assess
whether a blood test can replace imaging for disease monitoring,
thus limiting radiation exposure and potential healthcare costs
reduction. NETest is also a valuable marker of natural history of
the disease (type 0), with an accuracy of 91.5–97.8%. In particular,
a cut-off of 40 has been demonstrated to distinguish stable
disease (≤40%) and progressive disease (≥40%) (227). Finally,
NETest can be considered also an interventional/response
biomarker with 93.7–97.4% accuracy, fulfilling type II biomarker
requirements of NIH classification. In particular, a decrease
and/or stabilization (≤40%) of NETest levels correlates with
response to PRRT; in contrast with increased levels (≥40%)
during therapy and/or follow up which is suggestive of treatment
failure (219, 224, 226–228). To enforce NETest clinical value as

a PRRT—response biomarker, it can be combined with PRRT
Predictive Quotient (PPQ) to improve patient stratification (228).
PPQ is a blood-based classifier based on specific variants of the
NETest gene signature (encompassing growth factor signaling
andmetabolomic gene expression) (154, 228–230). PPQ has been
demonstrated to predict tumor response to internal radiations
in broncopulmonary and GEP-NETs (231). PPQ—positive score
can predict PRRT-responders with∼95% accuracy (227). Modlin
et al. recently observed that NETest levels significantly decrease
after PRRT treatment PPQ positive cohort of “responders,” in
contrast with increased level of NETest reported in PPQ-negative
cohort of “non-reponders.” NETtest levels negatively correlate
with PPQ positivity (p < 0.0001) (229, 230). Additionally it
has been recenty shown that NETest: (i) high levels (≥40)
better predict disease recurrence in post-operative PanNETs
alone (AUC: 0.82) or in combination with RECIST criteria
(88% accuracy) (232); (ii) is very accurate also for GEP and
broncopulmonary NEN with 100% diagnostic accuracy for the
latter (233) and (iii) decreased levels after radical resection
provide early assessment of surgical efficacy (234).

Very recently, G protein coupled receptor-associated sorting
protein-1 (GPRASP-1), known as lysosomal sorting and Beclin2
regulator, has also been proposed as a novel circulating biomarker
for neuroendocrine differentiation for PanNENs (235) (Table 5).

CONCLUSIONS

Currently available biomarkers for PanNENs have limitations
and this unmet need hampers early diagnosis, prognosis
and follow-up, stratification of patients for therapy selection
and post-operative recurrence identification. Assessment of
monoanalytes (e.g., CHGA, SYP) is poorly informative about the
pathological status and positivity always need to be supported
by further investigations. However, the combination of markers,
as CHGA/PP, CHGA/NSE, GLUT-1/Ki-67 have been shown
to increase specificity and sensitivity, to trace back to the
primary tumor site and to better assess the disease aggressiveness,
thus helping clinicians in therapeutic decisions. Liquid biopsy
represents the new frontier for PanNEN diagnosis and prognosis,
since the sensitivity of technologies is constantly increasing,

TABLE 5 | Novel potential biomarkers for PanNENs diagnosis, prognosis and treatment monitoring.

Putative markers Source Level Clinical use References

Potentially

Prognostic and/or

Predictive

Delta-like protein 3 DLL-3 Surgical/endoscopic

biopsy

Over-expressed Potentially prognostic and

therapeutic target

(236, 237)

Tumor-Associated—

Macrophages

TAMs Surgical/endoscopic

biopsy

Increased Associated to reduced DSS (61)

G protein coupled

receptor-associated

sorting protein 1

GPRASP-1 Serum Down-regulated Neuroendocrine

de-differentiation

(235)

Glucose transporter 1 GLUT-1 Surgical/endoscopic

biopsy

Over-expressed Prognostic for higher

metabolism and tumor

aggressiveness

(90)

PanNENs, Pancreatic Neuroendocrine Neoplasia; GEP-NENs, Gastro-Entero-Pancreatic Neoplasia.
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hence allowing the detection of smaller and smaller amounts
of biomarkers with non-invasive procedures. This is leading
to earlier diagnosis and more accurate assessment of minimal
residual disease after treatment. However, the role of markers
such as cfDNA and CTCs is still controversial and requires
expensive equipment and well-trained personnel for the analyses.
Conversely, the detection of non-coding RNAs, such as miRNAs
and lncRNAs is less expensive and more accessible from an
economical and a know-how stand-point. Notably, circulating
RNAs can not only function as prognostic and/or predictive
biomarkers, but also serve as therapeutic targets for tailored
approaches, including miRNA replacement. Recently designed
clinical trial, SENECA study (NCT03387592) and translational
ones as the NET-SEQ study (NCT02586844) and the Royal
Marsden PaC-MAn Study (NCT03840460) are at the forefront
of this challenge. In particular the Italian SENECA trial focuses
on some specific biomarkers on primary tumor tissues and
for miRNAs on blood samples while NET-SEQ and PaC-MAN

studies are investigating the molecular alterations in intestinal
and pancreatic neuroendocrine tumors both in tissue and blood
samples. Both studies leverage on NGS sensitivity to discover
novel DNA/RNA-based biomarkers from liquid biopsies of NEN
patients. We believe those trials will pioneer the identification of
the next generation biomarkers for PanNENs.
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